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Abstract

With the success of integrating large language
models into the development of conversational
systems, many studies have shown the effec-
tiveness of retrieving and augmenting external
knowledge for informative responses. While
many existing studies agree on the necessity of
Retrieval Augmented Generation (RAG), fur-
ther investigation into the necessity and value
of applying RAG to every turn of the conver-
sation is needed. In this study, we propose to
investigate the need for each turn of system
response to be augmented with external knowl-
edge. In particular, by leveraging human judge-
ments on the binary choice of adaptive aug-
mentation, we develop RAGate, a gating model,
which models conversation context and rele-
vant inputs to predict if a conversational system
requires RAG for improved responses. We con-
duct extensive experiments on devising and ap-
plying RAGate to conversational models, joined
with well-rounded analyses of various conver-
sational scenarios. Our experimental results
and analysis indicate the effective application
of RAGate in RAG-based conversational sys-
tems in identifying if system responses require
RAG to generate high-quality responses with
high confidence. This study also identifies and
shows the correlation between the generation’s
confidence level and the relevance of the aug-
mented knowledge. We have also released the
implementation code and resources in https:
//github.com/wangxieric/RAGate.

1 Introduction

Recently, the advancement of Large Language
Models (LLMs) has significantly improved con-
versational systems, enabling the generation of nat-
ural and high-quality responses (Ni et al., 2023).
Despite these advancements, recent studies have
identified several limitations on the simple use
of LLMs to address conversational tasks (Onoe
et al., 2022; Huang et al., 2021; Ren et al., 2018).
These limitations include the lack of up-to-date

Can you find me some interesting things to do?
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the saturation of air in the homosphere. 
Cloud the Droplets or particles are 
suspended in the atmosphere above 
the surface of a planetary body.

Sure! Here are a few interesting things you can do: 
1. Explore the science of clouds.
2. Virtual museum tours
3. Online Courses
4. Read a Book or listen to an audiobook.

Sure! Here are a few suggestions based on different 
interests:
1. Creative activities: painting, writing, DIY crafts
2. Physical activities: exercise, outdoor walk and 

dancing
3. Entertainment: movies, games, books

Use Knowledge

Not Use Knowledge

Figure 1: Example conversation when generating a re-
sponse with or without a knowledge snippet using a
language model (GPT-4 in this example).

knowledge (Onoe et al., 2022), the generation of
non-factual or hallucinated content (Huang et al.,
2021), and restricted domain adaptability (Ren
et al., 2018). These issues can hinder the develop-
ment of conversational agents with satisfactory user
experience. To address these identified challenges,
a common approach is to retrieve and augment
LLMs with external knowledge to enhance the con-
versational response, making them more accurate,
reliable, and adaptable to different domains (Zhao
et al., 2020; Lian et al., 2019; Ye et al., 2024). For
example, Shuster et al. (2021) demonstrated that us-
ing a dense retrieval model (DPR) (Karpukhin et al.,
2020) to retrieve relevant knowledge for augmenta-
tion can significantly reduce the hallucination rate,
according to a corresponding human evaluation.
Similarly, Yang et al. (2020) showed that leverag-
ing a graph-structured knowledge base can boost
the reasoning ability and domain generalisability of
task-oriented conversational agents. These achieve-
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ments of knowledge-augmented techniques high-
light a promising direction for enhancing conversa-
tional agents and address the current limitations.

However, while implementing retrieval augmen-
tation to a conversational system for improved re-
sponse generation, we question the necessity of
knowledge augmentation for every turn of system
responses. To develop effective human-computer
conversations, it is essential to provide factual and
relevant responses, offer appropriate amount of
information, and not unnaturally drive and shift
the conversation to non-relevant topics (Kasirzadeh
and Gabriel, 2023; Miehling et al., 2024). We ar-
gue that overusing external knowledge could result
in system responses against these core criteria. Fig-
ure 1 presents a conversation example that shows
how the system response to a generic user utter-
ance about suggesting activities can vary with and
without augmented knowledge. The knowledge-
augmented system response is being information
conditioned with limited diversity and assuming
specific user preferences. In contrast, without
the addition of external knowledge, the system re-
sponse is more diverse and natural in this early
stage of a conversation. This indicates that mis-
using external knowledge can lead to system re-
sponses with unnecessary or misleading specific-
ness and a negative user experience.

To address this, we investigate an adaptive
retrieval-augmented generation solution for effec-
tive conversational systems. In particular, moti-
vated by the gate function in Long-Short Term
Memory (LSTM) models (Graves and Graves,
2012), which explicitly controls the use of input
and memory, we propose a binary knowledge gate
mechanism, called RAGate, to manipulate the use
of external knowledge for a conversational sys-
tem. To model the conversation context and ac-
curately estimate the need for augmentation, we
leverage the human labels as ground truth and de-
velop RAGate by exploring the use of recent ad-
vanced language models or constructing attention
neural gate models. To validate the effectiveness
of RAGate, we conduct extensive experiments on
an annotated Task-Oriented Dialogue (TOD) sys-
tem dataset, KETOD, that builds upon the SGD
dataset with TOD-spanning 16 domains, such as
Restaurant and Weather. The experimental results
show that RAGate enables conversational systems
to efficiently use external knowledge at appropriate
conversation turns, producing high-quality system
responses. In particular, by modelling the uncer-

tainty and confidence level of the system – which
correlates with the likelihood of hallucinated output
(Varshney et al., 2023) – we show that augment-
ing external knowledge to every turn of conver-
sation can significantly increase generation uncer-
tainty and the risk of hallucination. After apply-
ing RAGate, we can effectively control the con-
versation system to make confident and informa-
tive responses. In addition, by varying the use of
knowledge snippets in different relevance levels,
we also observe the positive correlation between
the calculated confidence score and the relevance
of augmented knowledge, which can be valuable
for many future studies.

2 Related Work

In the pipeline of knowledge-augmented generation
for a conversation system, two main components
are identified: the knowledge retriever and the re-
sponse generator. Existing studies have improved
conversational responses to different extents by im-
proving one or both components (Li et al., 2022;
Komeili et al., 2022; Wang et al., 2024).

Knowledge Retrieval: Several studies have ex-
plored the use of dense passage retrieval techniques
(Lewis et al., 2020; Karpukhin et al., 2020) and
public search service for effective retrievers (Li
et al., 2022). For example, Li et al. (2022) retrieved
Wikipedia passages through a database interface
and then ranked them according to statistical rele-
vance, calculated by TF-IDF, or semantic relevance
as per cosine similarity. Similarly, Komeili et al.
used a search engine API to retrieve relevant knowl-
edge but first transformed the dialogue context into
a natural search query using an encoder-decoder
model before searching.

Joint Optimisation of Retriever and Genera-
tor: On the other hand, another thread of re-
search studies has explored joint optimisation ap-
proaches. For instance, Shi et al. (2023) introduced
a retriever-generator architecture that aims to im-
prove the performance of Task-Oriented Dialogue
(TOD) systems by using a dual-feedback mecha-
nism. The retriever identifies relevant knowledge
from a database, while the generator uses this in-
formation to create appropriate system responses.
The feedback from the generator is further used as
pseudo-labels to train the retriever to select perti-
nent information. Shen et al. (2023) introduced a
training method based on maximal marginal like-
lihood. This method jointly optimise a perceptive
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Figure 2: RAGate variants for implementing the gating function. The three variants are the prediction with pre-
trained language models after prompting (1), after parameter-efficient fine-tuning (2), and with a multi-head attention
encoder (3).

retriever and the response generation in a feed-
back loop. The proposed approach incorporates
meta-knowledge, which guides the generator to
improve the utilisation of knowledge and, conse-
quently, the quality of the generated responses.
Kang et al. (2023) further advance the retriever
by proposing SUbgraph Retrieval-augmented GEn-
eration (SURGE), which employed a graph neural
network (GNN)-based context-relevant subgraph
retriever. SURGE incorporates contrastive learn-
ing to optimise the latent representation space, en-
suring that generated texts closely resemble the
retrieved subgraphs.

Despite the richness of existing retrieval-
augmented generation techniques for conversa-
tional systems, they commonly hypothesise that
every conversation turn needs external knowledge.
However, the necessity of augmenting every turn
of the conversation with external knowledge re-
mains questionable. A relevant thread of work that
aims to answer this question is the introduction of
the knowledge-seeking turn detection task using
the DSTC-9 dataset (Kim et al., 2020), and the
follow-up studies, such as (Hong et al., 2023; Jin
et al., 2021). However, this task is to identify the
turns in conversations injected by human workers
about knowledge enquiry instead of identifying the
system responses that require knowledge augmen-
tation for improvements. This research gap high-
lights the value and novelty of this study, which
investigates the adaptive use of retrieval-augmented
generation for advanced conversational systems.

3 Methodology

3.1 Problem Formulation
This study addresses the challenge of effectively
identifying conversation turns that require augmen-
tation of external knowledge. In particular, we aim
to develop a gate mechanism that dynamically de-
termines when to search for external knowledge
to ensure natural, relevant and contextually appro-
priate responses. First, we define the task of user-
system conversation. Let D = {d1, d2, ..., d|D|} be
a set of user-system dialogues, and each dialogue d
comprises a sequence of interactions between users
and systems (i.e., d = {u0, s0, u1, s1, ..., uT , sT })
with varying lengths. Here, ut and st denote the
user utterance and system response at the t-th turn,
respectively. The conversational context up to turn
t can be formulated by aggregating the previous
user-system interactions, i.e., ct = u0, s0, .., ut.
With this context information ct, the conversation
system can augment it with a list of retrieved exter-
nal knowledge, et,k, where k represents the rank-
ing cutoff for the retrieved knowledge. Hence, the
binary gate mechanism proposed in this study, de-
ciding the knowledge augmentation, can be formu-
lated as f(ct) = {0, 1} or f(ct, et,k) = {0, 1} if
the external knowledge et,k is considered. Then,
the follow-up response generation function g(·) can
be formulated as follows:

g(·) =
{
g(ct, et,k) if f(ct) or f(ct, et,k)
g(ct) otherwise.

(1)

Hence, by evaluating and estimating the necessity
of augmenting with external knowledge, we dy-
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namically update the conversational response gen-
eration accordingly.

3.2 RAGate Gate Mechanism
To effectively estimate the need to use external
knowledge and implement adaptive retrieval aug-
mented generation for a conversation system, we
introduce our proposed gate mechanism, RAGate,
that uses the conversational context and, option-
ally, the retrieved external knowledge to predict the
binary choice of using external knowledge. In par-
ticular, we explore three RAGate variants that are
implemented by the use of Large Language Mod-
els (LLMs) with devised prompts, with parameter
efficient fine-tuning (e.g., QLoRA (Dettmers et al.,
2024)) and the construction of an end-to-end multi-
head attention encoder. This exploration is moti-
vated by the recent advancement of transformer-
structured neural models in natural language pro-
cessing. In Figure 2, we illustrate the application
of RAGate and its three variants. We describe each
of these three variants to clarify the use of RAGate:

RAGate-Prompt: As denoted by Arora et al.
(2022), a language model can effectively adapt
to new tasks by using a natural language prompt
that explains the process to address the tasks with-
out extra training. Hence, we can formulate a
gate function f(·) as f(y|ct) = f(y|Θ, ct, p),
where Θ denotes the used language model with
its pre-trained weights and p is the devised nat-
ural language prompt. Alternatively, if the re-
trieved knowledge is also involved in prediction,
we have f(y|ct) = f(y|Θ, ct, et,k, p). Specifi-
cally, we explore two types of prompts: zero-shot
and in-context learning. Zero-shot prompts de-
scribe the task that uses the conversational con-
text and, optionally, the retrieved knowledge to
generate a response with binary feedback. As for
the in-context learning prompts, we augment the
zero-shot prompts with illustrative examples. We
show the set of prompts in Appendix A. Note that
RAGate-Prompt follows a reasoning process sim-
ilar to ReAct (Yao et al., 2023), first determining
the necessity of augmentation and then performing
selective augmented generation.

RAGate-PEFT: Despite the high adaptabil-
ity of the language model with devised prompts,
we further explored the use of instruction tun-
ing on language models with a parameter-efficient
fine-tuning method (i.e., QLoRA (Dettmers et al.,
2024)) to meet the goal of an effective gate func-
tion. QLoRA is built upon the known Low-rank

Adapter (LoRA) (Hu et al., 2021), which keeps the
pre-trained weight matrix W0 frozen and addresses
the gradient updates of the weight matrix ∆W
through low-rank approximation (i.e., ∆W = BA,
where B and A are the result of lower-rank de-
composition on ∆W ). Hence, the forward pass
during the model training can be updated from
h = W0x+∆Wx to h = W0x+ BAx. QLoRA
(Dettmers et al., 2024), which is used in this study,
further quantises the language model into a 4-bit
NormalFloat data type and leverages the page-to-
page transfer between the CPU and GPU to fur-
ther avoid memory spikes. To implement RAGate-
PEFT, we format the train data with devised in-
structions, joined with paired inputs and outputs
for developing parameter-efficient fine-tuned large
language models. In particular, we provide a set
of instruction-input-output triples for model train-
ing. The input can vary with the provision of a
set of available features. Apart from the use of the
conversational context (contx), we also include the
system response (resp), synthetic responses gener-
ated by the language model (syn-resp) due to the
missing responses as input in the practical scenario,
the name entities within the incoming responses
(ner), retrieved knowledge (know) and the descrip-
tion of the knowledge source, e.g., the WikiHow
website (source). By using various combinations of
inputs and customising the corresponding instruc-
tions, we explore the effectiveness of the result-
ing learned language models that implement the
RAGate-PEFT.

RAGate-MHA: Apart from the use of pre-
trained language models and further fine-tuned lan-
guage models, we also explore the introduction
of a multi-head attention neural encoder to model
the context as input and estimate the augmenta-
tion necessity (i.e., RAGate-MHA). Here, we de-
scribe the model structure of RAGate-MHA. At
first, as denoted by (Vaswani et al., 2017), the at-
tention mechanism is formulated as the interaction
between three objects, queries Q, keys K, and val-
ues V : Attention(Q,K, V ) = softmax(QKT

√
dk

)V .
To estimate the necessity of augmentation, we fit
the context and the retrieved knowledge into the
roles of these three objects. Specifically, we in-
clude the setups of (1) using context only (contx)
or (2) using the concatenated context and retrieved
knowledge (contx ⊕ know) as queries, keys, and
values, and (3) using the context as queries and
interact with the retrieved knowledge as keys and
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Retrieval Models Recall@1 Recall@3
TF-IDF 0.0227 0.0871
BERT-Ranker 0.2475 0.4714

Table 1: Retrieval Performance Evaluation when using
context as the query.

values (contx × know). Next, following (Vaswani
et al., 2017) in the encoder construction of a trans-
former model, we encode the inputs via an input
embedding layer into latent vectors and a position
encoding layer to encode the order of tokens in the
sequence. After that, we leverage the multi-head
attention to learn attention weights on the inputs
and then followed by a feed-forward network:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

where W1 and W2 are two learned parameter
matrics with two bias terms (b1 and b2). Both multi-
head attention and feed-forward neural modules are
followed by residual connection (He et al., 2016)
and layer normalisation (Ba et al., 2016). Unlike
the introduction of another decoder module that
addresses the sequence-to-sequence generation in
(Vaswani et al., 2017), we followed the encoder out-
put with a linear projection module and a softmax
function for our binary classification task.

4 Model Training and Evaluation Setups

We evaluate the performance of introducing RA-
Gate according to its binary classification perfor-
mance and the effectiveness of the resulting re-
sponse generation. Specifically, we use the KE-
TOD dataset (Chen et al., 2022), which has fully
annotated 5,324 dialogues and 52,063 turns of con-
versations. In particular, it is associated with 33,761
knowledge snippets to be retrieved and augmented.
In addition, KETOD was developed with human
labels on turns of conversations (around 12.1% of
turns) about the need for augmenting with retrieved
knowledge snippets for a natural and informative
system response. Hence, we use these human labels
as natural ground truths when evaluating RAGate.
It is worth indicating that many current knowledge-
augmented conversational datasets often ground
their conversations on the knowledge snippet, such
as Wizard of Wikipedia (Dinan et al., 2018) and
CMU_DoG (Zhou et al., 2018), which makes them
not a natural fit to be investigated in this study.

Due to the limited computational resource avail-
ability, we explore the use of Llama-v2-7B and

Llama-v2-13B to implement RAGate-prompt and
fine-tune Llama-v2-7B for RAGate-PEFT. We im-
plement QLoRA using the PEFT library (Man-
grulkar et al., 2022) and set the lower rank to 16. As
discussed in Section 3, we have various input fea-
tures to be combined for performance optimisation.
We begin with the use of context only, then concate-
nate the context with the real response (contx-resp),
with the synthetic response and recognised enti-
ties (contx-syn-resp-ner) and further extend with
the use of retrieved knowledge (contx-syn-resp-ner-
know) or the source of knowledge (contx-syn-resp-
ner-source). Specifically, we retrieve the relevant
knowledge by exploring the use of TF-IDF and
a learned BERT ranker. We evaluate their perfor-
mance with the classic Recall@1 and Recall@3 on
the test collection. We use a shallow cutoff because
we only use top-relevant knowledge snippets for
augmentation. Table 1 shows their retrieval per-
formance. According to the leading performance
of BERT-Ranker, we augment knowledge with its
retrieved top 3 relevant knowledge snippets (i.e.,
k = 3). Regarding the development of RAGate-
MHA, we explore the combinations of 2 to 8 layers,
2 or 4 heads and the embedding size in [64, 128,
256] for the best classification accuracy. We report
the precision, recall, F1, Area Under Curve (AUC)
and the False Discovery Rate (FDR) as the main
measures to show the classification effectiveness.

Next, we further deploy the best-performing RA-
Gate gate function to update the KETOD dialogue
system (Chen et al., 2022), which uses GPT-2 (Rad-
ford et al., 2019) as the backbone model. To high-
light the effect of various augmentation setups,
we use the context with the gold action without
extra prediction as input to KETOD. Then, we
compare the resulting performance to the KETOD
model without knowledge augmentation and aug-
menting every system response as baselines. To
report the response generation effectiveness, we
report how close the response is to the ground truth
via BLEU, ROUGE-1/2/L and BERTScores and
the confidence score calculated by the minimum
probabilities of individual tokens that compose the
response. As argued by Varshney et al. (2023), this
calculated confidence score can highly correlate
with a language model’s likelihood of generating
hallucinated responses. We trained our models and
conducted the evaluations on one machine with one
NVIDIA 4090 GPU.
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Model Variants Precision Recall F1
RAGate-Prompt: LLMs – Zero Shot

Llama-2-7B 0.1323 0.0278 0.0460
Llama-2-13B 0.1422 0.1083 0.1230

RAGate-Prompt: LLMs – In-Context Learning

Llama-2-7B 0.1417 0.0294 0.0487
Llama-2-13B 0.0989 0.0851 0.0915

RAGate-PEFT: Parameter Efficient Fine-tuned LLMs (Llama2-7B)

[contx⊕resp] 0.4926 0.3095 0.3802

contx-only 0.5203 0.3359 0.4082

contx-(syn-resp)-ner 0.6818 0.2321 0.3464
contx-(syn-resp)-ner-know 0.4698 0.0603 0.1069
contx-(syn-resp)-ner-source 0.4000 0.0185 0.0355

RAGate-MHA: Context with / without Knowledge Input

MHA(contx)-h(4)-l(5)-emb(64) 0.3210 0.5541 0.4065
MHA([contx⊕know])-h(4)-l(2)-emb(64) 0.2795 0.5201 0.3636
MHA(contx×know)-h(4)-l(2)-emb(64) 0.2272 0.5835 0.3271

RAGate-MHA: Context-Response Input

MHA([contx⊕resp])-h(4)-l(4)-emb(64) 0.3500 0.5510 0.4281

Table 2: Classification accuracy on adaptive augmenta-
tion for system response. “contx”, “resp”, and “know”
refer to the use of context, initial system response, and
retrieved knowledge snippets as input. “syn-resp” and
“ner” are the additional synthetic response and name en-
tity recognition steps in the model fine-tuning prompts.
h, l and emb refer to the best-performed configuration
on the number of heads, layers and embedding size.

5 Results and Analysis

5.1 Augmentation Need Classification

First, we evaluate the classification accuracy of our
developed RAGate gate methods for addressing
the adaptive RAG to system responses. Table 2
presents the classification performance of RAGate
baselines while evaluated on the test collection of
the KETOD dataset, which includes rich human
labels on the use of RAG for response generation.
As discussed in Section 3, we explore the devel-
opment of RAGate with three variants: the use
of LLM prompting (RAGate-Prompt), parameter-
efficient fine-tuned LLMs (RAGate-PEFT), and a
neural classifier with Multi-Head Attention struc-
ture (RAGate-MHA).

RAGate performance with LLM prompting ver-
sus fine-tuning. By comparing the corresponding
performance reported in Table 2, we observe that,
on average, fine-tuning a Llama-2-7B with QLoRA
(i.e., RAGate-PEFT) can significantly outperform
RAGate-Prompt. For example, by looking at the
RAG-PEFT with context-only input, without using
extra input features and instruction updates, it can
outperform all RAG-Prompt approaches by a big
margin (e.g., 0.4082 versus the highest 0.1230 F1

scores). This reflects the difficulty of this adap-
tive knowledge augmentation task, which can not
be properly addressed by prompting a general pre-
trained language model. In particular, the use of
larger language models and the in-context learn-
ing setup, which often result in improved perfor-
mance (Arora et al., 2022), can not guarantee the
enhancement of models’ classification accuracy re-
garding this classification task.

Regarding the performance of RAGate-PEFT
approaches, by first examining the effect of us-
ing synthetic response and recognised name enti-
ties, we observe significantly improved precision
(0.5203 to 0.6818) but with the cost of lower recall
(0.3359 to 0.2321). In addition, when we add the
retrieved knowledge to the input features for pre-
diction, we observe a significant performance drop
across all evaluated aspects. This can be caused
by the additional complexity introduced by the in-
cluded retrieved knowledge snippets. Furthermore,
we also explored the performance impact of nam-
ing the source of the knowledge snippet. We use
wikiHow1 in this study, which can provide rich task
instructions for offering informative task-oriented
system response (Sen et al., 2023). However, the
fine-tuned model cannot reasonably connect the
promised rich resource from the knowledge source
and the prediction of augmentation necessity.

RAGate Performance between fine-tuned LLM
and MHA classifier. Next, by comparing the ex-
perimental results of RAGate-MHA and RAGate-
PEFT in Table 2, we observe a wide-margin re-
call improvement using RAGate-MHA, reaching
a minimum recall of 0.52, but with significantly
lower precision accuracy. In Table 2, we also in-
clude the use of both the context and the initial
system responses (i.e., MHA([contx, resp])) for
additional insights. We can observe that a higher
precision can be achieved but the use of response
does not improve the recall performance. These re-
sults are consistent with the observed performance
of RAGate-PEFT, which further encourages the
use of a synthetic response due to the unavailability
of a system response in a practical scenario. In
addition, we also observe a similar performance
drop when including the retrieved knowledge snip-
pets for classification. Even though the RAGate-
MHA model, using the interaction between context
and retrieved knowledge snippets, can achieve the
highest recall of 0.5835, it can not outperform the

1https://www.wikihow.com
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Figure 3: Frequency analysis of adaptive augmentations
about the position of a conversation.

RAGate-MHA using context-only on other metrics.
Hence, considering the similar F1 and AUC perfor-
mance levels of RAGate-PEFT and RAGate-MHA
leads to a trade-off balance between precision and
recall for the two groups of approaches. To further
evaluate the classification effectiveness of RAGate,
in Appendix C, we provide a detailed discussion
of a conducted user study that explores whether
RAGate can also assess the potential contribution
of retrieved snippets when predicting the decision
for retrieval augmentation.

5.2 Adaptive Augmentation Analysis
In addition to the classification accuracy, we also
compare the choice of human workers and RA-
Gate approaches in augmenting specific turns.
Specifically, we analyse the frequency of aug-
mentation in different positions of conversations
and different domains covered in the KETOD
dataset. We use the RAGate-PEFT (contx-(syn-
resp)-ner) with the highest precision and RAGate-
MHA (MHA(contx)) with the best overall perfor-
mance in the above analysis as representatives for
comparison. Figure 3 presents the frequency in
different positions. Due to the unequal number of
conversational turns, we use the ratio to indicate
the relative position. According to the reported
results in Figure 3, most human augmentation se-
lections happen at the beginning of a conversation.
This trend is also effectively captured by both RA-
Gate approaches, especially RAGate-MHA. This
can be caused by the reason that a conversation
is semantically coherent, and once sufficient addi-
tional information is provided at the early stage,
the value of knowledge augmentation to the later
turns is naturally lower.
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Figure 4: Frequency analysis of adaptive augmentations
about dialogue domains.

On the other hand, Figure 4 presents the augmen-
tation frequency over different domains. We ob-
serve that system responses about certain domains
are selected more often by humans than other do-
mains, such as travel, hotels, trains, flights, service
and rental cars, which require access to additional
information to assist the suggestion-making, and
the domains, like movies, music, media, events
that often include entities require enriched de-
scription. By looking into the performance of
RAGate-PEFT and RAGate-MHA, RAGate-MHA
can make aligned selections for humans. However,
the RAGate-PEFT does not guarantee the identifi-
cation of appropriate augmentation use and often
presents fewer augmentations, apart from the travel
domain. Hence, by considering both position and
domain augmentation frequency, we conclude that
RAGate-MHA can outperform RAGate-MHA and
effectively capture the trend of augmentation needs.

5.3 RAGate for Response Generation
To evaluate the effect of adaptive RAG for a conver-
sational system, we use RAGate-PEFT (contx-(syn-
resp)-ner) with the highest precision and RAGate-
MHA (MHA(contx)) with the best overall perfor-
mance in the above analysis, to support the adaptive
retrieval augmented conversational response gen-
eration. Table 3 presents the results of applying
RAGate to the KETOD model for adaptive knowl-
edge augmentation when evaluated on the KETOD
dataset. We include four types of adaptive augmen-
tation, namely the use of RAGate and comparison
to the random selection with equal numbers of se-
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Variants # Augs BLEU ROUGE-L BERTScore Confidence
No-Aug 0 9.38 0.3780 0.8105 9.3425 –

Augment BERT Ranker Retrieved Knowledge
RAGate-PEFT 230 10.45• 0.3825• 0.8144• 9.3374• -0.05%
RAGate-MHA 787 12.14 ◦• 0.3882 ◦ 0.8192 ◦ 9.3083 ◦• -0.36%
Random-Aug 230 9.53• 0.3784• 0.8110• 9.2984◦• -0.47%
Random-Aug 787 10.01• 0.3795• 0.8126• 9.1877◦• -1.65%
Human-label 631 11.66 ◦• 0.3856◦ 0.8176◦ 9.2550◦• -0.93%
Aug-All 4964 16.08◦ 0.3927◦ 0.8258◦ 8.3677◦ -10.43%

Augment Rank-1 Relevant Knowledge

RAGate-PEFT 230 10.54• 0.3822• 0.8142• 9.3642◦• +0.23%
RAGate-MHA 787 11.99◦• 0.3883◦ 0.8191◦ 9.3774◦• +0.37%
Random-Aug 230 9.51• 0.3784• 0.8110• 9.3328• -0.10%
Random-Aug 787 10.01• 0.3800• 0.8127• 9.2982◦• -0.47%
Human-label 631 11.52◦• 0.3846◦ 0.8170◦ 9.3218• -0.22%
Aug-All 4964 16.05◦ 0.3944◦ 0.8259◦ 9.0655◦ -2.9%

Table 3: Performance of applying RAGate and evaluate on the KETOD dataset. Confidence is calculated by
the average value over the lowest logit of each generation. The significant difference compared to No-Aug or
the corresponding Aug-all is indicated by ◦ and •, respectively, when p-value < 0.05, calculated by Wilcoxon
signed-rank test.

lections, human choice, and the commonly used
“all” augmentation. In addition, to explore the ef-
fect of varied quality of knowledge snippets, we
also extend the evaluation of using the top-3 knowl-
edge snippets ranked by different retrievers (i.e.,
BERT-ranker and TF-IDF) and the use of knowl-
edge snippets at the 1st and 5th rank according to
the BERT-ranker. Due to the space limit, we first
present the results of using BERT-ranker retrieved
and top-1 relevant knowledge and top-1 relevant in
Table 3 and show the full results in the Appendix D.

At first, without adaptive knowledge augmenta-
tion, we compare the choice of response generation
without augmentation and with “always” augmen-
tation (i.e., No-Aug versus Aug-All). In Table 3,
we observe that by augmenting a total of 4,964
system responses in the test collection, the con-
versational model can generate more informative
and effective responses according to the reported
scores of BLEU, ROUGE and BERTscore. This
aligns with the reported effectiveness of RAG in
many existing studies. However, we also identify
a significant drop in the model’s generation confi-
dence level. As denoted by Varshney et al. (2023),
a lower confidence level can correlate with a higher
chance of generating hallucinated responses, which
could be caused by the unnecessary use of external
knowledge. Hence, to investigate the effectiveness
of adaptive knowledge augmentation, we examine
the impact of using RAGate. According to the re-
ported experimental results in Table 3, the adaptive
augmented response generation with fewer knowl-

edge snippets can indeed result in a significantly
higher confidence level than Aug-All.

Moreover, comparing the performance between
RAGate and random selections shows that, consid-
ering equal numbers (230 or 787 according to the
classification with RAGate) of system responses for
augmentation, RAGate can further result in a higher
quality of generated response. RAGate-MHA even
enables results that are comparable to Aug-All’s
response quality, with only 787 turn augmentations
instead of all 4964 turns. Specifically, the use of
RAGate-PEFT, which identifies 230 turns of sys-
tem responses for knowledge augmentation, can
even outperform the random baseline that augments
787 system response turns with improved response
quality. Apart from the improved response quality,
RAGate also enables the conversational model to
maintain a high confidence level and ensure faith-
ful responses. Indeed, using RAGate-MHA, which
augments 787 system responses, only lowers the
average confidence score by 0.36%, instead of the
1.65% when randomly selecting an equal number
of turns to augment.

In addition, considering the use of different qual-
ity and amount of knowledge snippets for augmen-
tation, we also include the use of the most relevant
knowledge snippet according to BERT-ranker in Ta-
ble 3. We observe that the use of different amounts
of knowledge snippets in different relevance lev-
els has a marginal effect on this learned dialogue
system. However, we observe a significant differ-
ence in the confidence level. We observe that using

498



only the most relevant knowledge snippet enables
the Aug-All to suffer less from a lower confidence
level. In particular, the application of RAGate can
even increase the confidence level of the conversa-
tion system in response generation. This indicates
that the confidence score can also correlate with
the quality of the augmented knowledge snippets.
This observation is further validated using knowl-
edge snippets with fifth-ranking positions by BERT-
ranker and the use of TF-IDF ranker. We include
the full experimental results in Table 5 and attached
in the Appendix. In addition, we also extend our
evaluations to replace the conversational agent with
large pre-trained language models, llama-2-7B and
llama-2-70B (see Appendix B) and obtain similar
conclusions. These observations indicate the value
of adaptive system response augmentation via RA-
Gate in generating high-quality outputs, ensuring
faithful responses, and potentially saving retrieval
costs. We also show the value of using confidence
scores to reflect the contribution of RAG.

6 Conclusions

Our study investigates a core research question
about whether retrieval-augmented generation is
always useful to a conversational system. To an-
swer this research question, we propose adaptive
retrieval-augmented generation for conversational
systems and introduce corresponding gate func-
tions, RAGate, for explicit control. A comprehen-
sive set of experiments and results show the RA-
Gate approaches can effectively identify augmen-
tation needs. In addition, RAGate can capture hu-
man preference by augmenting the beginning turns
of conversations, and RAGate can further identify
knowledge augmentation for assisting suggestion-
making and enriching description. When applying
RAGate to conversational systems, we observe that
it can ensure comparable quality of generated re-
sponses and enable the system to increase genera-
tion confidence for faithful outputs, especially with
the appropriate use of relevant knowledge snippets.

Limitations

There are three limitations of this study. At first,
due to the main focus of examining the adaptive
retrieval-augmented generation for a conversation
system. We only consider a few examples of
retrieval techniques (TF-IDF and BERT-ranker),
which can be further extended to recent retrieval
techniques, such as dense passage retrieval for ad-

ditional insights. The second limitation is the miss-
ing use of larger language models, such as GPT-4,
due to the shortage of computational resources. In-
cluding larger language models for conversational
systems could introduce additional experimental in-
sights. The third limitation is the shortage of appro-
priate conversational data for extensive evaluations.
This is mainly caused by the recent development of
the retrieval augmented generation technique and
its application to conversational systems. Future
research is encouraged to address this limitation.

Ethics Statement

All experiments in this study were conducted us-
ing publicly available datasets and open-released
language models, which do not contain any private
information that could raise ethical concerns.
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A Prompts for RAGate-Prompt

In this section, we list the used prompts for the
RAGate-Prompt gate mechanism.

Zero-Shot Prompt:
Below is an instruction that describes a task.

Please respond with ‘True’ or ‘False’ only that
appropriately completes the request.

### Instruction: Analyse the conversational con-
text so far. Generate an appropriate response. Con-
sider the invovled entites. Estimate if augmenting
the response with external knowledge is helpful
with an output of ‘True’ or ‘False’ only.

### Input: [Converstion Context Input]
### Response:
In-Context Learning Prompt:
Below is an instruction that describes a task.

Please respond with ‘True’ or ‘False’ only that
appropriately completes the request.

### Instruction: Analyse the conversational con-
text so far. Generate an appropriate response. Con-
sider the invovled entites. Estimate if augmenting
the response with external knowledge is helpful
with an output of ‘True’ or ‘False’ only.

### Example 1: USER: I’m planning a trip, can
you help me look for a flight? SYSTEM: Which
day are you planning to return and from which
city? USER: I want to go from NYC the day after
tomorrow and return on the 13th of this month.
SYSTEM: Where would you like to go? USER: I
want to go to Vancouver, BC. Can you look for a
Premium Economy class ticket. SYSTEM: I found
1 flight for you. It is a Delta Airlines flight that
takes off at 6 am and returns at 2:50 am. The price
is $505. USER: What is the departure airport, and
how many stops does the flight have?

### Response: True
### Example 2: USER: Get me bus tickets to a

Cher event on March 6th. SYSTEM: How many to
buy? USER: only one, please.

### Response: False
### Input: [Converstion Context Input]
### Response:

B Extended Evaluation with larger
language models as Conversational
Agent

To further validate the reliability of our conclu-
sions, we include additional experiments by replac-
ing the KETOD model with recent advanced large
language models, namely llama-2-7b and llama-
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2-70b (Touvron et al., 2023). The generation is
instructed by the following prompt:

“You are a conversational assistant. given the
following input as context, generate an appropri-
ate system response to the last user utterance to
continue the conversation:

Input: {input_text}

Response: ”

We repeat the experiments using top BERT-
ranker retrieved knowledge and apply the many
variants of selective augmentation strategies. Ta-
ble 4 reports the corresponding experimental re-
sults. According to the experimental results and
compared to the results reported in Table 3, the
increasing size of language models does not eas-
ily outperform the fine-tuned conversational agent
in providing high quality responses. Indeed, the
best performance llama-2-70b variant, which uses
our RAGate-PEFT, can merely achieve the BLEU,
ROUGE-L and BERTScore of 3.0910, 0.1064,
0.6972. This is significantly lower than the KE-
TOD model even without knowledge augmentation
(9.38, 0.3780 and 0.8105 of BLEU, ROUGE-L and
BERTScore).

On the other hand, regarding the effectiveness
of RAGate, we observe similar conclusions as in
Section 5.2. At first, the confidence level decreases
from using no augmentation to augment knowledge
to every response. However, different from the
performance increases with the use of additional
knowledge in Table 3, we observe a consistent per-
formance drop from No-Aug to Aug-All. This
indicates that without conversational model fine-
tuning, it is challenging for a model to leverage
external knowledge to improve response quality,
even on a large scale (e.g., Llama-2-70b). Mean-
while, comparing the approaches that consider an
equal number of augmentations using RAGate and
random sampling, the RAGate-based strategies re-
main outperforming with higher generation quality
and confidence. In particular, when applied to the
Llama-2-70b, the use of RAGate-PEFT can even
improve the generation quality without model fine-
tuning.

Overall, these observations indicate the consis-
tent need for adaptive retrieval augmented gener-
ation to both conversational models in different
scales and with or without fine-tuning.

Variants # Augs BLEU ROUGE-L BERTScore Confidence
Llama-2-7b

No-Aug 0 1.9179 0.0859 0.6901 16.8174 –
RAGate-PEFT 230 1.7161 0.0823 0.6886 16.4665
RAGate-MHA 787 1.5579 0.0787 0.6880 16.1309
Random-Aug 230 1.6429 0.0808 0.6890 15.2705
Random-Aug 787 1.5019 0.0783 0.6871 15.3122
Human-label 631 1.8130 0.0831 0.6885 17.0015
Aug-All 4964 1.6148 0.0799 0.6868 16.3096

Llama-2-70b

No-Aug 0 3.0175 0.1045 0.6965 15.1094 –
RAGate-PEFT 230 3.0910 0.1064 0.6972 14.8349
RAGate-MHA 787 3.0365 0.1039 0.6957 15.1906
Random-Aug 230 3.0898 0.1055 0.6969 14.6211
Random-Aug 787 3.0124 0.1039 0.6961 14.7746
Human-label 631 3.0152 0.1037 0.6957 14.5912
Aug-All 4964 2.6605 0.0976 0.6909 15.0136

Table 4: Performance of applying RAGate and com-
pared to Llama2-7b and Llama2-70b on the KETOD
dataset. Confidence is calculated by the average value
over the lowest logit of each generation.

C Impact of Retrieval Quality on
Adaptive RAG

To have a successful conversation model with a
retrieval-augmented system, two main criteria must
be met. One is identifying insufficient context, and
the other is the quality of retrieved information
(Salemi and Zamani, 2024; Yu et al., 2024). A
conversational model performs better when both
criteria are satisfied. In our proposed approach,
as shown in Table 2, we have already assessed
whether our adaptive retrieval method can detect
insufficient context. We further explored to deter-
mine whether our model can inherently estimate
the quality of the retrieved snippets to address such
insufficiency and, based on that, decide on the re-
trieval. Although we do not explicitly provide re-
trieved snippets to our model, retrieval comes with
a corpus that includes potentially relevant knowl-
edge snippets. Consequently, given a query and
a retrieval collection, it can be estimated whether
useful information for the query exists in the corpus
to address the insufficient context. To investigate
by following this direction, we randomly selected
50 samples from instances where our proposed ap-
proach (RAGate-MHA, the best-performing gate
model) predicted using retrieval augmentation. We
asked domain experts (co-authors) to score whether
they thought the retrieved snippets in those scenar-
ios could be useful to response generation. Users
rated the snippets on a scale of 0− 4, with scores
of 3 or 4 indicating ‘useful’ or ‘highly useful’. We
found that in 54% of cases where the prediction
was for augmentation, users also found the snippets
useful. This indicates that our proposed approach
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Augmentation Variants # Augs BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore Confidence
No-Aug 0 9.38 0.4111 0.2246 0.3780 0.8105 9.3425

Augment BERT Ranker Retrieved Knowledge
RAGate-Llama 230 10.45• 0.4165• 0.2273• 0.3825• 0.8144• 9.3374•
RAGate-MHA 787 12.14◦• 0.4227◦ 0.2318◦ 0.3882◦ 0.8192◦ 9.3083◦•
Random-Aug 230 9.53• 0.4119• 0.2250• 0.3784• 0.8110• 9.2984◦•
Random-Aug 787 10.01• 0.4138• 0.2265• 0.3795• 0.8126• 9.1877◦•
Human-label 631 11.66◦• 0.4198• 0.2297 0.3856◦• 0.8176◦• 9.2550◦•
Augment-All 4964 16.08◦ 0.4301◦ 0.2364◦ 0.3927◦ 0.8258◦ 8.3677◦

Augment TF-IDF Ranker Retrieved Knowledge
RAGate-Llama 230 10.52• 0.4165• 0.2273• 0.3826• 0.8144• 9.3418•
RAGate-MHA 787 12.11◦• 0.4233◦ 0.2319◦ 0.3889◦ 0.8193◦ 9.3058◦•
Random-Aug 230 9.47• 0.4118• 0.2251• 0.3783• 0.8110• 9.3006•
Random-Aug 787 9.93• 0.4136• 0.2259• 0.3793• 0.8125• 9.1942•
Human-label 631 11.60◦• 0.4198◦• 0.2293◦ 0.3854◦ 0.8175◦• 9.2639◦•
Augment-All 4964 15.76◦ 0.4289◦ 0.2345◦ 0.3914◦ 0.8256◦ 8.4188◦

Augment Rank-1 Relevant Knowledge

RAGate-Llama 230 10.54• 0.4162• 0.2271• 0.3822• 0.8142• 9.3642•
RAGate-MHA 787 11.99◦• 0.4227◦ 0.2316◦ 0.3883◦ 0.8191◦ 9.3774◦•
Random-Aug 230 9.51• 0.4117• 0.2250• 0.3784• 0.8110• 9.3328•
Random-Aug 787 10.01• 0.4140• 0.2267• 0.3800• 0.8127• 9.2982•
Human-label 631 11.52◦• 0.4189• 0.2289 0.3846 0.8170◦• 9.3218•
Augment-All 4964 16.05◦ 0.4308◦ 0.2365◦ 0.3944◦ 0.8259◦ 9.0655◦

Augment Rank-5 Relevant Knowledge

RAGate-Llama 230 10.47• 0.4161• 0.2272• 0.3823• 0.8142• 9.3592•
RAGate-MHA 787 12.18◦• 0.4224◦ 0.2314◦ 0.3883◦ 0.8192◦ 9.3704•
Random-Aug 230 9.52• 0.4118• 0.2252• 0.3785• 0.8110• 9.3315•
Random-Aug 787 10.01• 0.4135• 0.2263• 0.3794• 0.8127• 9.2961•
Human-label 631 11.58◦• 0.4186• 0.2287 0.3845 0.8170◦• 9.3210•
Augment-All 4964 15.97◦ 0.4290◦ 0.2349◦ 0.3927◦ 0.8256◦ 9.0604◦

Table 5: Performance of applying RAGate and compared to KETOD on the SGD dataset. Confidence is calculated
by the average value over the lowest logit of each generation. The significant difference compared to No-Aug or
the corresponding Aug-all is indicated by ◦ and •, respectively, when p-value < 0.05, calculated by Wilcoxon
signed-rank test.

can implicitly capture the potential for obtaining
high-quality retrieval snippets.

D Additional experimental results about
RAGate for Response Generation

In Table 5, we include the complete experimental
results of applying RAGate for adaptive retrieval-
augmented system response generation. Specif-
ically, explore the use of retrieved knowledge
snippets to different extents of relevance. We in-
clude top-3 knowledge snippets retrieved by BERT-
ranker and TF-IDF. In addition, we also explore
the use of knowledge snippets in different ranking
positions (rank 1 and 5) according to the BERT-
ranker retriever. The experimental result shows
that precisely using a suitable amount of relevant
knowledge can generate a response with higher
confidence (i.e., less is more). In addition, this
observation also indicates the potential use of con-
fidence levels to evaluate the quality of the aug-
mented knowledge.
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