ResoFilter: Fine-grained Synthetic Data Filtering for Large Language Models through Data-Parameter Resonance Analysis

Zeao Tu, Xiangdi Meng, Yu He, Zihan Yao, Tianyu Qi, Jun Liu, Ming Li


Abstract
Large language models (LLMs) have shown remarkable effectiveness across various domains, with data augmentation methods utilizing GPT for synthetic data generation becoming prevalent. However, the quality and utility of augmented data remain questionable, and current methods lack clear metrics for evaluating data characteristics. To address these challenges, we propose ResoFilter, a novel method that integrates models, data, and tasks to refine datasets. ResoFilter leverages the fine-tuning process to obtain Data-Parameter features for data selection, offering improved interpretability by representing data characteristics through model weights. Our experiments demonstrate that ResoFilter achieves comparable results to full-scale fine-tuning using only half the data in mathematical tasks and exhibits strong generalization across different models and domains. This method provides valuable insights for constructing synthetic datasets and evaluating high-quality data, offering a promising solution for enhancing data augmentation techniques and improving training dataset quality for LLMs. For reproducibility, we will release our code and data upon acceptance.
Anthology ID:
2025.findings-naacl.299
Volume:
Findings of the Association for Computational Linguistics: NAACL 2025
Month:
April
Year:
2025
Address:
Albuquerque, New Mexico
Editors:
Luis Chiruzzo, Alan Ritter, Lu Wang
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
5414–5428
Language:
URL:
https://preview.aclanthology.org/fix-sig-urls/2025.findings-naacl.299/
DOI:
Bibkey:
Cite (ACL):
Zeao Tu, Xiangdi Meng, Yu He, Zihan Yao, Tianyu Qi, Jun Liu, and Ming Li. 2025. ResoFilter: Fine-grained Synthetic Data Filtering for Large Language Models through Data-Parameter Resonance Analysis. In Findings of the Association for Computational Linguistics: NAACL 2025, pages 5414–5428, Albuquerque, New Mexico. Association for Computational Linguistics.
Cite (Informal):
ResoFilter: Fine-grained Synthetic Data Filtering for Large Language Models through Data-Parameter Resonance Analysis (Tu et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/fix-sig-urls/2025.findings-naacl.299.pdf