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Abstract

To efficiently select optimal dataset combina-
tions for enhancing multi-task learning (MTL)
performance in large language models, we pro-
posed a novel framework that leverages a neural
network to predict the best dataset combina-
tions. The framework iteratively refines the se-
lection, greatly improving efficiency, while be-
ing model-, dataset-, and domain-independent.
Through experiments on 12 biomedical datasets
across four tasks—named entity recognition, re-
lation extraction, event extraction, and text clas-
sification—we demonstrate that our approach
effectively identifies better combinations, even
for tasks that may seem unpromising from a hu-
man perspective. This verifies that our frame-
work provides a promising solution for maxi-
mizing MTL potential.

1 Introduction

Natural Language Processing (NLP) has made sig-
nificant strides in recent years (Liu et al., 2023),
evolving from fully supervised learning (Kot-
siantis et al., 2007), to feature engineering (Patil
et al., 2023), architecture innovations like Trans-
former (Vaswani et al., 2017), and the dominance
of pre-trained large models such as BERT and GPT
(Devlin et al., 2018; Radford et al., 2018, 2019).
More recently, the instruction-tuning (Zhang et al.,
2023) and prompting engineering (Liu et al., 2023)
have emerged, allowing Large Language Models
(LLMs) to handle tasks effectively through prompt-
ing (Wei et al., 2022).

With the rapid advancements in NLP, Multi-Task
Learning (MTL) has emerged as a powerful tech-
nique to boost model performance by jointly train-
ing on multiple related tasks (Zhang and Yang,
2018, 2021; Zhan et al., 2025), as illustrated in
Fig. 1. By sharing knowledge across tasks, MTL
enhances model generalization (Wang et al., 2021)
and efficiently captures the complementary rela-
tionships between tasks (Ma et al., 2018). For in-

(a) Single-task learning (b) Multi-task learning

Figure 1: Comparison of (a) single-task learning and (b)
multi-task learning in large language models.

stance, the Named Entity Recognition (NER) task
and the Relation Extraction (RE) task are closely
linked—accurate entity recognition can provide a
critical context for extracting relationships, while
relation extraction, in turn, can refine entity recog-
nition.

As models become larger, the amount of
data used for training has also significantly in-
creased (Chen et al., 2024), giving rise to mod-
els capable of understanding and solving problems
across various domains. For instance, ChatGPT
can generate realistic and creative outputs across
various domains (Yenduri et al., 2024; Zhou et al.,
2024). Previously, achieving MTL required modi-
fying the model architecture and adjusting the out-
put layers for different tasks (Misra et al., 2016).
Now, by simply modifying the prompt, MTL has
found greater utility and flexibility without re-
designing the architecture (Liu et al., 2023; Li et al.,
2024). This indicates that large models have truly
become tools accessible to everyone. As long as
users know how to utilize frameworks like Hug-
ging Face (Wolf et al., 2020), they can fine-tune
models with their own prompts without needing
any knowledge of Attention mechanisms (Vaswani
et al., 2017) or model architecture.

To take advantage of the natural compatibility of
MTL and LLMs, many recent large models have
improved performance by incorporating multi-task
training. Models like DeepStruct (Wang et al.,
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2022a), InstructUIE (Wang et al., 2023), and
Code4Struct (Wang et al., 2022b) have demon-
strated the power of multi-task learning by train-
ing on diverse datasets across tasks like NER, RE,
Event Extraction (EE), and Slot Filling (SF), etc.
In addition, GoLLIE (Sainz et al., 2023) used
datasets spanning both biomedical and news do-
mains, achieving state-of-the-art results in these
fields. ADELIE (Qi et al., 2024) further empha-
sized that aligning LLMs with multiple Informa-
tion Extraction (IE) tasks significantly improves
task performance in the biomedical domain.

Despite the encouraging results achieved by
many multi-task LLMs, we still lack a clear un-
derstanding of how to effectively select datasets for
training. Most successful outcomes rely heavily on
trial and error, subjective judgment, or experience.
This reveals a significant question: how to effec-
tively select dataset combinations to enhance per-
formance? If we have one dataset and four related
auxiliary datasets, there are 24 = 16 possible com-
binations, which is feasible to enumerate. However,
when the number of auxiliary datasets increases to
10 or more, it becomes practically impossible to
train and evaluate all possible combinations to find
the optimal one.

To take a step toward filling the gap, this paper
proposes a framework to identify a good combina-
tion of datasets for improving model performance.
The framework is dataset-independent and model-
independent, so the framework could be applied
to any domain, datasets, and to any LLMs. The
full description of the proposed framework is in
Section 3. The main contributions of this paper are
as follows:

• We propose a new MTL framework designed
specifically to effectively optimize the selec-
tion of datasets to release the potential of
MTL-LLMs.

• Based on this framework, we conduct a
comprehensive evaluation of 12 biomedical
datasets across four tasks: NER, EE, RE, and
TC. The results show that the performance of
LLMs on datasets could be increased by find-
ing better combinations using our framework.

2 Related Work

There have been several attempts to explore
how to select dataset combinations to improve
MTL (Zhang and Yang, 2018, 2021; Thung and

Wee, 2018; Sener and Koltun, 2018; Crawshaw,
2020). For instance, Bingel and Søgaard (2017)
systematically investigated and found the MTL
gains are related to the characteristics and features
of datasets. However, what kind of characteris-
tics and features we should consider for different
domains are unknown, so the analysis is mostly
based on experience. Also, Standley et al. (2020)
tried to figure out which tasks should be learned
together by considering the space of all possible
task subsets, training networks for each subset, and
then using each network’s performance to choose
the best combination. It is straightforward, but
training all possible combinations is impossible
when we consider many tasks. Pruksachatkun
et al. (2020) perform a large-scale study on the
pre-trained RoBERTa model with 110 intermedi-
ate–target task combinations, and then evaluate all
trained models with 25 probing tasks. However,
they failed to observe more granular correlations
between probing and target task performance. Guo
et al. (2019) proposed AUTOSEM which uses a
multi-armed bandit controller to find appropriate
auxiliary tasks but each arm only considers the re-
lation between 2 tasks and doesn’t consider the
interaction of two or more auxiliary tasks. Fifty
et al. (2021) proposed to measure inter-task affinity
by training all tasks together in a single multi-task
network and to quantify the effect to which one
task gradient update would affect another task loss.
It effectively computes task groupings from only
a single training run but we know the gradient up-
date depends on the loss function and the initial
point. For non-convex loss functions, there may be
many local optima, so the grouping results from
this method are various.

By contrast, our proposed framework avoids un-
reliable human experience and low effective brute
force, using a simple neural network to find good
dataset combinations based on some combination-
score pair data.

3 Framework

The most straightforward approach to evaluate the
effect of all possible dataset combinations on a
given LLM would be to directly do experiments
for each combination via fine-tuning and inference
of the corresponding LLM. However, this naive
method is computationally expensive and requires
substantial resources. By contrast, multi-layer neu-
ral networks are much faster to compute. If a fast
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Figure 2: Overview of the proposed framework. The combination generator produces dataset combinations to be
instruction-tuned on an LLM. In each iteration, the neural network identifies and refines the best combination until
no further improvements can be made.

neural network could effectively filter out combi-
nations that are unlikely to yield good results, or
directly predict the best combination, it would save
significant time and computational power. Driven
by this idea, we propose a new framework to opti-
mize dataset selection for MTL.

As shown in Fig. 2, our proposed framework
consists of four parts. First, we generate suffi-
cient combinations of datasets to at least cover all
datasets. Next, fine-tuning LLMs on these dataset
combinations. After inference for each combina-
tion, we record all combinations and their corre-
sponding performance scores in a table. Using this
table data, we then train a neural network to pre-
dict the best dataset combination by enumerating
all possible combinations through the neural net-
work, which could predict the best combination in
a super-efficient way. The framework iteratively
trains the large model with the predicted combina-
tions and tests the results. The process continues
until the neural network predicts an optimal combi-
nation that has already been tested, at which point
the loop terminates.

The proposed framework offers several advan-
tages. First, it saves time by using a neural net-
work to infer relationships between datasets, al-
lowing us to focus on testing the most promising
combinations based on existing data. Second, it is
highly flexible, applicable across different models
and dataset pools, and adaptable to various neural
network architectures for predicting the optimal
combination. Lastly, it is robust. Even if the initial

selections are limited or random, and the neural net-
work struggles to predict good combinations due to
insufficient data, the iterative process ensures that
as more data is gathered, the system will eventually
find a good (or even optimal) combination.

The inspiration for this framework comes from
the concept of feedback in control systems (Doyle
et al., 2013). In a data-driven system, finding the
optimal controller requires first accumulating a cer-
tain amount of data and then trying to control the
systems using the controller trained by the accu-
mulated data (Kiumarsi et al., 2014). With each
attempt, more feedback is gathered, allowing the
system to refine the controller. The better the con-
troller becomes, the closer it gets to finding the op-
timal solution. Similarly, in our framework, we be-
gin by generating various dataset combinations and
get the corresponding performance score for each
combination by inference. The neural network,
much like a feedback-driven controller, gives lower
scores to poor combinations and higher scores to
promising ones. As the process continues, the neu-
ral network encourages the exploration of good
combinations and discourages poor ones. With
more iterations, the system converges towards iden-
tifying the optimal dataset combination.

4 Experiment setup

4.1 Dataset

In this paper, we focus on four critical NLP tasks:
EE, RE, NER, and TC. For each of these tasks, we
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Training Prompt Template

### Instruction:

Please do a classification task. You need to classify the input sentence to the 

following predefine set. The response should be in predefine set: {'background', 

'conclusions', 'methods', 'objective', 'results'}

### Input Sentence:

A total of 125 patients with primary knee OA were randomized 1:1 ; 63 received 

7.5 mg/day of prednisolone and 62 received placebo for 6 weeks .

### Response:

methods\n\n

Testing Prompt Template

### Instruction:

Please do a Named entity recognition task. You need to to accurately recognize 

and label these entities for the input sentece. The input sentence have been 

divided into a list form. The response should be a list and each element is 

corresponding to the each word and sign in the input sentence. Response should 

follow this rule: {\"non chemical\": 0, \"B-Chemical\": 3, \"I-Chemical\": 4}

### Input Sentence:

['Effects', 'of', 'docosahexaenoic', 'acid', 'and', 'methylmercury', 'on', 'child', \"'\

", 's', 'brain', 'development', 'due', 'to', 'consumption', 'of', 'fish', 'by', 'Finnish', 

'mother', 'during', 'pregnancy', ':', 'a', 'probabilistic', 'modeling', 'approach', '.']

### Response:

Figure 3: Training and testing prompt template.

selected three datasets to evaluate the potential of
our framework comprehensively.

For Event Extraction task, we utilize the fol-
lowing datasets:

• PHEE (Sun et al., 2022): A comprehen-
sive dataset providing high-accuracy annota-
tions for 2 events: ’Adverse_event’, ’Poten-
tial_therapeutic_event’.

• GENIA2011 (Kim et al., 2011): A bench-
mark EE dataset from the biomedical
domain. The event types include ’Regulation’,
’Localization’, ’Transcription’, ’Binding’,
’Gene_expression’, ’Positive_regulation’,
’Protein_catabolism’, ’Negative_regulation’,
’Phosphorylation’ and ’NA’, totally 10 event
types.

• GENIA2013 (Kim et al., 2013): An
updated version of the genia2011 dataset,
with additional and refined annotations
reflecting the latest biomedical research.
The event type include ’Regulation’, ’Neg-
ative_regulation’, ’Protein_modification’,
’Positive_regulation’, ’Localization’,
’Phosphorylation’, ’Ubiquitination’, ’Pro-
tein_catabolism’, ’Gene_expression’,
’Binding’, ’Transcription’ and ’NA, totally 12
event types.

For Relation Extraction task, we employ:

• DDI (Segura-Bedmar et al., 2013): The Drug-
Drug Interaction dataset, crucial for identify-
ing interactions between different medications.
The relation types include ’advise’, ’effect’,
’int’, ’mechanism’, and ’NA’, totally 5 relation
types.

• GIT (Li et al., 2023): A dataset fo-
cused on general interactions between

entities, aiding in the development of
versatile relation extraction models. There
are 22 relation types: ’PREVENTS’,
’TREATS’, ’DOES_NOT_TREAT’, ’AS-
SOCIATED_WITH’, ’CAUSES’, ’DIAG-
NOSES’, ’MANIFESTATION_OF’, ’USES’,
’STIMULATES’, ’INHIBITS’, ’DISRUPTS’,
’INTERACTS_WITH’, ’PRODUCES’, ’AD-
MINISTERED_TO’, ’COEXISTS_WITH’,
’AFFECTS’, ’PROCESS_OF’, ’COMPLI-
CATES’, ’AUGMENTS’, ’PRECEDES’,
’SYMPTOM_OF’, ’PREDISPOSES’

• BioRED (Luo et al., 2022): The Biolog-
ical Relation Extraction Dataset, which
includes detailed annotations of biological
interactions within scientific texts. The
relation types include ’Positive_Correlation’,
’Negative_Correlation’, ’Conversion’,
’Drug_Interaction’, ’Cotreatment’, ’Compari-
son’, ’Association’, ’Bind’, totally 8 relation
types.

For Named Entity Recognition task, our chosen
datasets are:

• BC5CDR (Li et al., 2016): This dataset con-
tains annotated mentions of chemicals and
diseases in biomedical literature. Named en-
tities include ’B-Chemical’, ’B-Disease’, ’I-
Disease’, ’I-Chemical’ and ’else’, which are
mapped to 1,2,3,4,0 respectively in response.

• BC2GM (Smith et al., 2008): The BioCre-
ative II Gene Mention dataset, used for recog-
nizing gene names. In response, gene names
are mapped to 1 and others to 0.

• BC4CHEMD (Krallinger et al., 2015):
The BioCreative IV Chemical and Drug
dataset, providing comprehensive annotations
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for chemical and drug names. The model need
to map ’B-chemical’ to 3, ’I-chemical’ to 4,
’others’ to 0.

For Text Classification task, we utilize:

• ADE (Gurulingappa et al., 2012): The Ad-
verse Drug Events dataset could be used for
binary classification task. The goal is to deter-
mine if the input sentence is ADE-related or
not.

• PubMed20krct (Dernoncourt and Lee,
2017): A large dataset of biomedical liter-
ature from PubMed. The task requires the
model to classify the sentence into 5 cate-
gories: ’background’, ’conclusions’, ’meth-
ods’, ’objective’, ’results’.

• HealthAdvice (Yu et al., 2019): A dataset
containing health-related information and ad-
vice. The model need to classify the sentence
to three categories: ’no advice’, ’week ad-
vice’, ’strong advice’.

4.2 Model

The specific model used in this paper is not the
focus of our paper, as the proposed framework is
designed to be applicable to any LLMs. There-
fore, we opted for a representative open-source
model: LLama3-8B 1. It was selected due to its
widespread use and strong performance across var-
ious NLP tasks, making it an ideal candidate for
demonstrating the effectiveness of our dataset se-
lection framework. Additionally, its open-source
nature ensures reproducibility and allows for fur-
ther experimentation by the research community.

4.3 Data preparation

To begin, it is necessary to generate several dataset
combinations as basic data (including the single
task learning as baseline), which will later allow
the neural network to learn the relationships be-
tween datasets. For the 12 datasets we selected, we
run combinations both within the same task and
across different tasks. These combinations ensure
that all datasets are involved, providing a diverse
and comprehensive basis for understanding how
different datasets interact and contribute to overall
performance.

1https://github.com/meta-llama/llama3

4.4 Neural Network

The choice of neural network architecture is flexi-
ble. In our experiment, we used a two-layer neural
network with 12 inputs and 1 output to perform a
regression task. The 12 inputs correspond to the
12 datasets: if a dataset is used, the correspond-
ing input is set to 1; if it is not used, the input is
set to 0. The output of the neural network is the
score we aim to predict, such as the F1 score in
our experiments. This design directly establishes
a relationship between the use of specific datasets
and the resulting F1 score.

Each time a new combination of datasets is
trained and tested, the neural network is trained
again. After training, we input all possible com-
binations and use the predicted F1 scores to deter-
mine the best combination for the next iteration
and keep optimizing model performance.

4.5 Instruction-tuning

The prompt examples we used are shown in Fig.
3. The training prompt example includes instruc-
tion, an input sentence, and its corresponding re-
sponse. By contrast, the testing prompt is empty
in response, which allows the model to continue to
generate the next tokens. \n\n is the ending mark
for completing the response generation. Then in
the evaluation stage, we will extract output tokens
before the ending token.

Since the size of each dataset varies, to be fair,
we instruction-tuned each model for 5000 steps, no
matter how many tasks we included. We saved the
model every 1000 steps and used the best model for
the latter generation. When using multiple datasets,
we sampled evenly from each one to make sure
they were equally weighted.

4.6 Metrics

In the evaluation stage, we used Micro Precision,
Recall, and F1-score. When using these metrics, a
prediction is considered correct only if the entire
predicted output exactly matches the ground truth.

5 Results

5.1 Data preparation for RE task

We included all attempts related to the RE task in
Table 1. As shown, the combinations involving
BioRED, DDI demonstrate performance improve-
ments for some specific combinations, while for
the remaining GIT datasets, the baseline achieved
the highest F1 score. Specifically, for the BioRED
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Table 1: Data preparation for RE task, including BioRED, DDI, and GIT datasets. ⋆ indicates the best F1 score
and best combination in the data preparation phase. Each line represents one experiment and

√
means the dataset is

selected for this run.

Training sets

RE task NER task EE task TC task Metrics

BioRED DDI GIT BC2GM BC4CHEMD BC5CDR GENIA2011 GENIA2013 PHEE ADE HealthAdvice PubMed20krct Task Test Set Precision Recall F1 Score
√

Baseline BioRED 37.11 95.95 53.52√ √
RE BioRED 36.23 97.75 52.86 ↓√ √
RE BioRED 37.77 95.95 54.20 ↑√ √
RE BioRED 37.45 91.44 53.14 ↓√ √
RE BioRED 38.57 97.30 55.24 ↑√ √
RE BioRED 40.65 95.95 57.10 ↑√ √ √
RE BioRED 40.22 97.30 56.92 ↑√ √ √
RE BioRED 37.99 96.85 54.57 ↑√ √ √
RE BioRED 46.84 90.09 61.63 ↑√ √ √
RE BioRED 41.62 97.30 58.30 ↑√ √ √ √
RE BioRED 42.69 97.30 59.34 ↑√ √ √ √
RE BioRED 43.93 94.59 60.00 ↑√ √ √ √
RE BioRED 41.73 95.50 58.08 ↑√ √ √ √
RE BioRED 42.15 95.50 58.48 ↑√ √ √ √
RE BioRED 44.69 92.79 60.32 ↑√ √ √ √
RE BioRED 41.15 96.40 57.68 ↑√ √ √ √
RE BioRED 40.34 95.95 56.80 ↑√ √ √ √
RE BioRED 42.97 97.75 59.70 ↑√ √ √ √
RE BioRED 38.92 97.30 55.60 ↑√ √ √ √
RE BioRED 48.18 95.50 64.05 ⋆√ √ √ √
RE BioRED 40.26 96.85 56.88 ↑√ √ √ √
RE BioRED 39.85 96.40 56.39 ↑√ √ √ √
RE BioRED 35.16 98.20 51.78 ↓√ √ √ √
RE BioRED 42.48 95.50 58.81 ↑√ √ √ √
RE BioRED 39.63 96.40 56.17 ↑√ √ √ √
RE BioRED 44.61 95.05 60.72 ↑√ √ √ √
RE BioRED 40.80 96.85 57.41 ↑√ √ √ √
RE BioRED 46.67 94.59 62.50 ↑√ √ √ √
RE BioRED 44.57 86.94 58.93 ↑√ √ √ √
RE BioRED 39.23 96.85 55.84 ↑√ √ √ √
RE BioRED 37.16 91.89 52.92 ↓√ √ √ √
RE BioRED 33.65 96.40 49.88 ↓√ √ √ √
RE BioRED 39.17 93.69 55.25 ↑√ √ √ √
RE BioRED 38.64 97.30 55.31 ↑√ √ √ √
RE BioRED 38.60 96.85 55.20 ↑√ √ √ √
RE BioRED 34.76 98.65 51.41 ↓√ √ √ √
RE BioRED 39.17 97.75 55.93 ↑√

Baseline DDI 71.10 71.10 71.10√ √
RE DDI 72.60 72.60 72.60 ↑√ √
RE DDI 38.98 67.90 49.53 ↓√ √
RE DDI 73.20 73.20 73.20 ↑√ √
RE DDI 48.30 73.90 58.42 ↓√ √
RE DDI 72.40 72.40 72.40 ↑√ √ √
RE DDI 64.21 65.30 64.75 ↓√ √ √
RE DDI 61.70 67.50 64.47 ↓√ √ √
RE DDI 61.52 68.10 64.64 ↓√ √ √
RE DDI 73.68 74.20 73.94 ⋆√ √ √ √
RE DDI 68.92 69.20 69.06 ↓√ √ √ √
RE DDI 31.31 76.30 44.40 ↓√ √ √ √
RE DDI 37.86 71.90 49.60 ↓√ √ √ √
RE DDI 54.99 68.90 61.16 ↓√ √ √ √
RE DDI 30.20 66.60 41.56 ↓√ √ √ √
RE DDI 37.97 73.70 50.12 ↓√ √ √ √
RE DDI 60.56 68.80 64.42 ↓√ √ √ √
RE DDI 34.35 80.20 48.10 ↓√ √ √ √
RE DDI 67.07 67.20 67.13 ↓√ √ √ √
RE DDI 53.15 65.00 58.48 ↓√ √ √ √
RE DDI 65.68 70.80 68.14 ↓√ √ √ √
RE DDI 69.80 69.80 69.80 ↓√ √ √ √
RE DDI 67.80 67.80 67.80 ↓√ √ √ √
RE DDI 61.88 72.40 66.73 ↓√ √ √ √
RE DDI 64.29 64.80 64.54 ↓√ √ √ √
RE DDI 61.95 65.30 63.58 ↓√ √ √ √
RE DDI 62.41 68.90 65.49 ↓√ √ √ √
RE DDI 29.27 53.30 37.79 ↓√ √ √ √
RE DDI 29.93 78.20 43.29 ↓√ √ √ √
RE DDI 62.13 67.60 64.75 ↓√ √ √ √
RE DDI 25.19 63.80 36.12 ↓√ √ √ √
RE DDI 21.57 60.30 31.78 ↓√ √ √ √
RE DDI 62.65 66.10 64.33 ↓√ √ √ √
RE DDI 60.96 68.70 64.60 ↓√ √ √ √
RE DDI 36.25 70.80 47.95 ↓√ √ √ √
RE DDI 66.32 70.50 68.35 ↓√

Baseline GIT 77.20 77.20 77.20 ⋆√ √
RE GIT 17.55 80.65 28.82 ↓√ √
RE GIT 64.52 64.52 64.52 ↓√ √
RE GIT 67.31 67.31 67.31 ↓√ √
RE GIT 66.67 66.67 66.67 ↓√ √
RE GIT 43.65 67.31 52.96 ↓√ √ √
RE GIT 15.97 70.54 26.04 ↓√ √ √
RE GIT 50.75 58.49 54.35 ↓√ √ √
RE GIT 20.42 71.83 31.79 ↓√ √ √
RE GIT 57.20 57.20 57.20 ↓√ √ √ √
RE GIT 46.21 58.92 51.80 ↓√ √ √ √
RE GIT 41.87 47.10 44.33 ↓√ √ √ √
RE GIT 28.45 43.01 34.25 ↓√ √ √ √
RE GIT 25.73 66.67 37.13 ↓√ √ √ √
RE GIT 17.96 64.30 28.08 ↓√ √ √ √
RE GIT 43.04 58.49 49.59 ↓√ √ √ √
RE GIT 18.54 73.12 29.58 ↓√ √ √ √
RE GIT 26.88 60.86 37.29 ↓√ √ √ √
RE GIT 31.86 54.41 40.19 ↓√ √ √ √
RE GIT 17.37 70.97 27.91 ↓√ √ √ √
RE GIT 27.68 64.95 38.82 ↓√ √ √ √
RE GIT 41.55 59.78 49.03 ↓√ √ √ √
RE GIT 16.04 76.56 26.52 ↓√ √ √ √
RE GIT 16.73 73.76 27.28 ↓√ √ √ √
RE GIT 18.71 68.39 29.38 ↓√ √ √ √
RE GIT 35.96 62.80 45.73 ↓√ √ √ √
RE GIT 20.28 67.96 31.24 ↓√ √ √ √
RE GIT 33.10 61.51 43.04 ↓√ √ √ √
RE GIT 47.53 47.53 47.53 ↓√ √ √ √
RE GIT 34.60 54.62 42.37 ↓√ √ √ √
RE GIT 23.22 60.43 33.55 ↓√ √ √ √
RE GIT 17.65 31.40 22.60 ↓√ √ √ √
RE GIT 29.33 60.86 39.58 ↓√ √ √ √
RE GIT 19.28 46.02 27.17 ↓√ √ √ √
RE GIT 17.93 64.52 28.06 ↓√ √ √ √
RE GIT 18.51 66.45 28.96 ↓√ √ √ √
RE GIT 28.73 54.19 37.56 ↓
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Figure 4: Framework results for datasets in the RE task.

dataset, 30/36 combinations show improvement,
4 combinations for DDI dataset demonstrate im-
provement, and all combinations we tried for the
GIT dataset failed to bring in MTL gain.

As shown in Table. 1, based on the results, the
human experience might conclude that MTL works
particularly well for the BioRED dataset, where
the knowledge learned from other datasets aids the
LLM in extracting relations from BioRED. For the
DDI dataset, MTL offers slight improvements, but
it does not provide any benefits for the GIT dataset.

Another important observation from our data
preparation experiments (also considering the re-
sults from the ablation study) is that for tasks with
poor baseline performance (e.g., F1 scores below
60 in this paper), incorporating multiple related
training datasets within our framework significantly
improves the results. This suggests that for tasks
that are more challenging for LLMs, MTL can ef-
fectively leverage diverse data sources to enhance
learning and improve performance. In contrast,
for tasks with already high baseline performance,
the benefits of MTL are minimal, indicating that
MTL may not provide substantial improvements
for tasks that are already well-optimized. This find-
ing highlights that the impact of MTL is influenced
by the LLM’s capability to handle the task, show-
casing its potential in improving low-performing
tasks, while offering limited gains for tasks that are
already performing well.

5.2 Find better combination for datasets in
the RE task iteratively using the proposed
framework

We applied the framework to three datasets in the
RE task separately. The framework was set to auto-
matically run for 48 hours, exploring better dataset
combinations and stopping once sufficient explo-
ration was achieved, keeping only the best model
and the highest F1 score.

When using the framework, for each dataset, af-
ter each iteration, we enumerate 211 = 2048 kinds
of combinations for the neural network and find
the best combination. The best F1 score curves for
three datasets are shown in Fig. 4. For the BioRED
dataset in Fig. 4(a), our framework could effec-
tively find better combinations for each of several
iterations. In addition, the framework also helps
improve the performance of the GIT dataset, and
then it stops after some exploration, which is out
of expectation and demonstrates the robustness of
our framework because it can find better combina-
tions even if our initial combinations are bad. For
the DDI dataset, the framework cannot find bet-
ter combinations and stops soon, which matches
our expectations because most of the cases show
performance degradation.

5.3 Ablation study for other tasks
Due to space limitation, the different combinations
involving the other 9 datasets for NER, EE, and TC
tasks are presented in the appendix, in Tables 2, 3,
and 4, respectively.

For the EE task, during the data preparation
phase, we observed that several dataset combi-
nations could improve LLM performance on GE-
NIA2011 and GENIA2013, further demonstrating
the potential of MTL. After applying our frame-
work, the performance of GENIA2013 improved
significantly from below 40 to around 58, a sub-
stantial gain. This result is corroborated by the
improvements in GENIA2011, where an effective
combination was tested early in the data prepara-
tion stage, boosting performance from a baseline
of 34 to 57. Given the high similarity between
GENIA2011 and GENIA2013, this suggests that
if performance can be enhanced in GENIA2011,
similar improvements should likely be achieved for
GENIA2013. Although the initial combinations
differed, our framework was able to find similar
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Figure 5: Finding best F1 results using proposed framework for EE (GENIA2011, GENIA2013, PHEE), NER
(BC2GM, BC4CHEMD, BC5CDR), TC tasks (ADE, HealthAdvice, PubMed20krct).

combinations for both datasets, ultimately achiev-
ing comparable results.

For the NER and TC tasks, the six datasets in-
volved all achieved their best F1 scores with the
baseline settings, and every combination we at-
tempted resulted in a performance decline. From
an expert perspective, it appeared that MTL could
not leverage the other datasets in this paper to
improve these six datasets. However, we contin-
ued to use our framework to investigate whether
a specific combination could improve these seem-
ingly unpromising datasets. Surprisingly, as shown
in Figures 5(d), 5(f), and 5(h), our framework
identified promising combinations that led to sig-
nificant improvements for three of the datasets,
despite initial expectations to the contrary. For
the remaining three datasets (BC4CHEMD, ADE,
PubMed20krct), we were unable to find better com-
binations, which aligns with our initial expecta-
tions.

Summarizing all the experiments, each dataset

had 2,048 possible auxiliary combinations. How-
ever, in most cases, we were able to find relatively
optimal combinations within just a dozen itera-
tions, and the framework predicted that no better
combinations existed. Compared to a brute-force
approach, our method significantly improved effi-
ciency.

6 Conclusion

We proposed a novel yet simple framework to ad-
dress the challenge of selecting the optimal dataset
combination for multi-task learning. By iteratively
refining these combinations within a feedback loop,
we take a significant step toward fully unlocking
the potential of MTL in the future.

7 Limitations

The experiments in this paper were conducted us-
ing only a single LLM. Although the authors in-
tended to experiment with multiple LLMs to ex-
plore broader performance variations, the computa-
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tional resources and time required were prohibitive.
As a result, the findings may not fully represent the
potential of our framework.

Secondly, we did not perform a grid search to
find the optimal hyperparameters for model train-
ing. Instead, we ensured that all experiments were
conducted with the same set of parameters to main-
tain fairness.
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Table 2: Data preparation for the NER task, including BC2GM, BC4CHEMD, and BC5CDR datasets. ⋆ indicates
the best F1 score and best combination in the data preparation phase. Each line represents one experiment and

√
means the dataset is selected for this run.

Training sets

RE task NER task EE task TC task Metrics

BioRED DDI GIT BC2GM BC4CHEMD BC5CDR GENIA2011 GENIA2013 PHEE ADE HealthAdvice PubMed20krct Task Test Set Precision Recall F1 Score
√

Baseline BC2GM 98.01 95.60 96.78 ⋆√ √
NER BC2GM 96.85 95.07 95.95 ↓√ √
NER BC2GM 97.42 94.36 95.87 ↓√ √
NER BC2GM 97.50 91.92 94.63 ↓√ √
NER BC2GM 96.30 93.32 94.79 ↓√ √
NER BC2GM 97.51 91.61 94.47 ↓√ √ √
NER BC2GM 96.76 92.77 94.72 ↓√ √ √
NER BC2GM 97.01 90.37 93.57 ↓√ √ √
NER BC2GM 96.78 91.05 93.83 ↓√ √ √
NER BC2GM 96.62 92.53 94.54 ↓√ √ √ √
NER BC2GM 96.95 89.49 93.07 ↓√ √ √ √
NER BC2GM 95.59 89.06 92.21 ↓√ √ √ √
NER BC2GM 95.31 91.61 93.42 ↓√ √ √ √
NER BC2GM 96.35 90.16 93.15 ↓√ √ √ √
NER BC2GM 96.21 87.73 91.77 ↓√ √ √ √
NER BC2GM 97.28 87.84 92.32 ↓√ √ √ √
NER BC2GM 96.40 88.17 92.10 ↓√ √ √ √
NER BC2GM 96.68 87.17 91.68 ↓√ √ √ √
NER BC2GM 96.11 88.34 92.06 ↓√ √ √ √
NER BC2GM 95.60 85.91 90.49 ↓√ √ √ √
NER BC2GM 95.55 85.83 90.43 ↓√ √ √ √
NER BC2GM 96.10 89.45 92.66 ↓√ √ √ √
NER BC2GM 96.73 87.41 91.83 ↓√ √ √ √
NER BC2GM 96.76 89.36 92.91 ↓√ √ √ √
NER BC2GM 96.52 90.03 93.16 ↓√ √ √ √
NER BC2GM 96.12 89.27 92.57 ↓√ √ √ √
NER BC2GM 96.71 87.45 91.85 ↓√ √ √ √
NER BC2GM 96.66 87.42 91.81 ↓√ √ √ √
NER BC2GM 96.26 89.05 92.51 ↓√ √ √ √
NER BC2GM 95.45 89.64 92.45 ↓√ √ √ √
NER BC2GM 96.52 87.05 91.54 ↓√ √ √ √
NER BC2GM 96.86 87.59 91.99 ↓√ √ √ √
NER BC2GM 95.95 92.47 94.18 ↓√ √ √ √
NER BC2GM 96.79 90.17 93.36 ↓√ √ √ √
NER BC2GM 97.27 88.38 92.61 ↓√ √ √ √
NER BC2GM 95.23 92.07 93.63 ↓√ √ √ √
NER BC2GM 95.02 90.71 92.81 ↓√

Baseline BC4CHEMD 98.62 97.20 97.91 ⋆√ √
NER BC4CHEMD 97.36 95.64 96.49 ↓√ √
NER BC4CHEMD 98.20 93.44 95.76 ↓√ √
NER BC4CHEMD 97.74 91.80 94.67 ↓√ √
NER BC4CHEMD 98.02 89.97 93.82 ↓√ √
NER BC4CHEMD 97.94 92.68 95.24 ↓√ √ √
NER BC4CHEMD 98.00 89.49 93.55 ↓√ √ √
NER BC4CHEMD 97.60 88.67 92.92 ↓√ √ √
NER BC4CHEMD 97.37 90.14 93.61 ↓√ √ √
NER BC4CHEMD 97.99 93.11 95.49 ↓√ √ √ √
NER BC4CHEMD 97.49 88.01 92.51 ↓√ √ √ √
NER BC4CHEMD 98.11 87.13 92.29 ↓√ √ √ √
NER BC4CHEMD 96.02 89.68 92.74 ↓√ √ √ √
NER BC4CHEMD 97.94 85.96 91.56 ↓√ √ √ √
NER BC4CHEMD 97.74 88.30 92.78 ↓√ √ √ √
NER BC4CHEMD 97.85 86.98 92.10 ↓√ √ √ √
NER BC4CHEMD 97.96 87.50 92.43 ↓√ √ √ √
NER BC4CHEMD 96.85 86.85 91.57 ↓√ √ √ √
NER BC4CHEMD 97.59 87.59 92.32 ↓√ √ √ √
NER BC4CHEMD 98.12 86.31 91.84 ↓√ √ √ √
NER BC4CHEMD 96.94 88.16 92.35 ↓√ √ √ √
NER BC4CHEMD 97.49 87.61 92.29 ↓√ √ √ √
NER BC4CHEMD 96.90 88.23 92.36 ↓√ √ √ √
NER BC4CHEMD 97.87 86.72 91.96 ↓√ √ √ √
NER BC4CHEMD 97.24 89.02 92.95 ↓√ √ √ √
NER BC4CHEMD 96.51 88.46 92.31 ↓√ √ √ √
NER BC4CHEMD 98.00 86.66 91.98 ↓√ √ √ √
NER BC4CHEMD 97.19 88.13 92.44 ↓√ √ √ √
NER BC4CHEMD 97.86 86.43 91.79 ↓√ √ √ √
NER BC4CHEMD 97.29 87.06 91.89 ↓√ √ √ √
NER BC4CHEMD 97.98 86.98 92.15 ↓√ √ √ √
NER BC4CHEMD 97.39 90.75 93.96 ↓√ √ √ √
NER BC4CHEMD 97.54 88.35 92.72 ↓√ √ √ √
NER BC4CHEMD 97.45 89.08 93.07 ↓√ √ √ √
NER BC4CHEMD 97.59 88.92 93.06 ↓√ √ √ √
NER BC4CHEMD 98.33 87.71 92.72 ↓√

Baseline BC5CDR 97.40 95.46 96.42 ⋆√ √
NER BC5CDR 95.98 95.06 95.52 ↓√ √
NER BC5CDR 96.35 95.28 95.81 ↓√ √
NER BC5CDR 96.60 95.18 95.89 ↓√ √
NER BC5CDR 95.80 93.96 94.87 ↓√ √
NER BC5CDR 96.40 94.02 95.20 ↓√ √ √
NER BC5CDR 96.10 93.54 94.80 ↓√ √ √
NER BC5CDR 96.65 93.24 94.91 ↓√ √ √
NER BC5CDR 96.08 91.41 93.68 ↓√ √ √
NER BC5CDR 96.74 94.21 95.46 ↓√ √ √ √
NER BC5CDR 94.68 89.67 92.11 ↓√ √ √ √
NER BC5CDR 95.11 91.20 93.11 ↓√ √ √ √
NER BC5CDR 95.46 91.06 93.21 ↓√ √ √ √
NER BC5CDR 95.37 91.38 93.33 ↓√ √ √ √
NER BC5CDR 96.63 90.16 93.28 ↓√ √ √ √
NER BC5CDR 94.83 92.23 93.51 ↓√ √ √ √
NER BC5CDR 95.87 90.12 92.90 ↓√ √ √ √
NER BC5CDR 96.00 90.96 93.41 ↓√ √ √ √
NER BC5CDR 96.44 90.55 93.40 ↓√ √ √ √
NER BC5CDR 94.25 92.09 93.15 ↓√ √ √ √
NER BC5CDR 95.66 90.59 93.06 ↓√ √ √ √
NER BC5CDR 94.48 90.76 92.58 ↓√ √ √ √
NER BC5CDR 94.09 91.93 93.00 ↓√ √ √ √
NER BC5CDR 95.74 90.61 93.10 ↓√ √ √ √
NER BC5CDR 95.30 90.90 93.05 ↓√ √ √ √
NER BC5CDR 94.81 89.67 92.17 ↓√ √ √ √
NER BC5CDR 94.68 91.31 92.97 ↓√ √ √ √
NER BC5CDR 96.04 88.27 91.99 ↓√ √ √ √
NER BC5CDR 94.67 90.13 92.34 ↓√ √ √ √
NER BC5CDR 95.42 92.04 93.70 ↓√ √ √ √
NER BC5CDR 94.01 91.52 92.75 ↓√ √ √ √
NER BC5CDR 94.66 89.73 92.13 ↓√ √ √ √
NER BC5CDR 95.65 88.83 92.11 ↓√ √ √ √
NER BC5CDR 95.71 90.97 93.28 ↓√ √ √ √
NER BC5CDR 95.77 90.18 92.89 ↓√ √ √ √
NER BC5CDR 95.62 92.18 93.87 ↓√ √ √ √
NER BC5CDR 95.76 91.35 93.50 ↓
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Table 3: Data preparation for the EE task, including GENIA2011, GENIA2013, and PHEE datasets. ⋆ indicates
the best F1 score and best combination in the data preparation phase. Each line represents one experiment and

√
means the dataset is selected for this run.

Training sets

RE task NER task EE task TC task Metrics

BioRED DDI GIT BC2GM BC4CHEMD BC5CDR GENIA2011 GENIA2013 PHEE ADE HealthAdvice PubMed20krct Task Test Set Precision Recall F1 Score
√

Baseline GENIA2011 21.56 86.56 34.52√ √
EE GENIA2011 27.65 81.70 41.32 ↑√ √
EE GENIA2011 45.09 67.82 54.17 ↑√ √
EE GENIA2011 29.71 84.15 43.92 ↑√ √
EE GENIA2011 34.97 80.08 48.68 ↑√ √
EE GENIA2011 36.70 73.52 48.96 ↑√ √ √
EE GENIA2011 27.45 81.06 41.01 ↑√ √ √
EE GENIA2011 28.78 82.62 42.68 ↑√ √ √
EE GENIA2011 40.65 69.71 51.35 ↑√ √ √
EE GENIA2011 29.95 83.68 44.11 ↑√ √ √ √
EE GENIA2011 31.47 80.34 45.22 ↑√ √ √ √
EE GENIA2011 29.35 80.10 42.96 ↑√ √ √ √
EE GENIA2011 31.83 77.86 45.19 ↑√ √ √ √
EE GENIA2011 29.75 81.34 43.57 ↑√ √ √ √
EE GENIA2011 28.74 82.50 42.63 ↑√ √ √ √
EE GENIA2011 32.13 79.31 45.73 ↑√ √ √ √
EE GENIA2011 27.51 79.03 40.82 ↑√ √ √ √
EE GENIA2011 27.20 83.27 41.01 ↑√ √ √ √
EE GENIA2011 28.94 81.48 42.71 ↑√ √ √ √
EE GENIA2011 51.29 51.29 51.29 ↑√ √ √ √
EE GENIA2011 42.45 64.64 51.25 ↑√ √ √ √
EE GENIA2011 32.99 73.61 45.56 ↑√ √ √ √
EE GENIA2011 28.84 73.32 41.40 ↑√ √ √ √
EE GENIA2011 34.84 57.39 43.36 ↑√ √ √ √
EE GENIA2011 33.04 73.99 45.68 ↑√ √ √ √
EE GENIA2011 28.94 80.85 42.62 ↑√ √ √ √
EE GENIA2011 28.78 69.08 40.63 ↑√ √ √ √
EE GENIA2011 32.81 77.67 46.13 ↑√ √ √ √
EE GENIA2011 34.03 66.19 44.95 ↑√ √ √ √
EE GENIA2011 35.05 76.31 48.03 ↑√ √ √ √
EE GENIA2011 30.67 77.54 43.95 ↑√ √ √ √
EE GENIA2011 31.50 73.83 44.16 ↑√ √ √ √
EE GENIA2011 38.17 69.41 49.26 ↑√ √ √ √
EE GENIA2011 31.54 81.54 45.48 ↑√ √ √ √
EE GENIA2011 53.91 60.65 57.08 ⋆√ √ √ √
EE GENIA2011 33.08 78.30 46.51 ↑√ √ √ √
EE GENIA2011 32.51 77.04 45.73 ↑√

Baseline GENIA2013 14.42 37.54 20.83√ √
EE GENIA2013 13.61 35.49 19.68 ↓√ √
EE GENIA2013 19.62 48.81 27.98 ↑√ √
EE GENIA2013 9.31 27.99 13.97 ↓√ √
EE GENIA2013 16.89 43.34 24.31 ↑√ √
EE GENIA2013 16.49 42.66 23.79 ↑√ √ √
EE GENIA2013 15.37 45.73 23.00 ↑√ √ √
EE GENIA2013 13.08 39.25 19.62 ↓↑√ √ √
EE GENIA2013 28.75 61.43 39.17 ⋆√ √ √
EE GENIA2013 7.20 23.55 11.03 ↓√ √ √ √
EE GENIA2013 24.76 60.41 35.12 ↑√ √ √ √
EE GENIA2013 16.75 45.39 24.47 ↑√ √ √ √
EE GENIA2013 15.59 47.10 23.43 ↑√ √ √ √
EE GENIA2013 20.14 69.28 31.21 ↑√ √ √ √
EE GENIA2013 9.22 33.11 14.42 ↓√ √ √ √
EE GENIA2013 22.08 53.58 31.27 ↑√ √ √ √
EE GENIA2013 20.69 59.39 30.69 ↑√ √ √ √
EE GENIA2013 9.46 31.40 14.53 ↓√ √ √ √
EE GENIA2013 19.35 65.19 29.84 ↑√ √ √ √
EE GENIA2013 17.22 47.44 25.27 ↑√ √ √ √
EE GENIA2013 24.10 59.73 34.35 ↑√ √ √ √
EE GENIA2013 12.70 35.84 18.75 ↓√ √ √ √
EE GENIA2013 15.05 39.46 21.78 ↑√ √ √ √
EE GENIA2013 8.60 30.61 13.43 ↓√ √ √ √
EE GENIA2013 17.49 47.10 25.51 ↑√ √ √ √
EE GENIA2013 16.48 49.83 24.77 ↑√ √ √ √
EE GENIA2013 11.14 34.81 16.87 ↓√ √ √ √
EE GENIA2013 26.68 70.31 38.69 ↑√ √ √ √
EE GENIA2013 21.57 64.85 32.37 ↑√ √ √ √
EE GENIA2013 22.03 59.39 32.13 ↑√ √ √ √
EE GENIA2013 18.03 57.00 27.40 ↑√ √ √ √
EE GENIA2013 12.66 40.27 19.27 ↑√ √ √ √
EE GENIA2013 19.19 53.24 28.21 ↑√ √ √ √
EE GENIA2013 17.22 44.37 24.81 ↑√ √ √ √
EE GENIA2013 21.78 52.56 30.80 ↑√ √ √ √
EE GENIA2013 17.19 64.63 27.16 ↑√ √ √ √
EE GENIA2013 15.52 42.32 22.71 ↑√

Baseline PHEE 48.51 93.75 63.94 ⋆√ √
EE PHEE 55.56 93.15 69.60 ↑√ √
EE PHEE 47.93 93.55 63.39 ↓√ √
EE PHEE 49.73 92.34 64.64 ↓√ √
EE PHEE 45.35 84.48 59.01 ↓√ √
EE PHEE 76.19 89.01 82.10 ↑√ √ √
EE PHEE 47.55 92.84 62.89 ↓√ √ √
EE PHEE 46.41 90.02 61.25 ↓√ √ √
EE PHEE 47.36 92.24 62.59 ↓√ √ √
EE PHEE 47.39 92.34 62.63 ↓√ √ √ √
EE PHEE 69.35 88.51 77.77 ↑√ √ √ √
EE PHEE 47.67 92.84 63.00 ↓√ √ √ √
EE PHEE 47.62 92.94 62.98 ↓√ √ √ √
EE PHEE 47.37 92.44 62.64 ↓√ √ √ √
EE PHEE 47.49 92.64 62.79 ↓√ √ √ √
EE PHEE 49.86 92.44 64.78 ↓√ √ √ √
EE PHEE 47.10 91.53 62.19 ↓√ √ √ √
EE PHEE 47.42 92.54 62.70 ↓√ √ √ √
EE PHEE 49.35 91.43 64.10 ↓√ √ √ √
EE PHEE 47.78 93.15 63.16 ↓√ √ √ √
EE PHEE 46.53 90.62 61.49 ↓√ √ √ √
EE PHEE 51.09 89.82 65.13 ↓√ √ √ √
EE PHEE 47.83 79.94 59.85 ↓√ √ √ √
EE PHEE 46.07 89.31 60.79 ↓√ √ √ √
EE PHEE 18.18 21.77 19.82 ↓√ √ √ √
EE PHEE 53.36 67.24 59.50 ↓√ √ √ √
EE PHEE 47.67 92.94 63.02 ↓√ √ √ √
EE PHEE 49.23 90.83 63.86 ↓√ √ √ √
EE PHEE 48.48 93.04 63.74 ↓√ √ √ √
EE PHEE 46.95 90.02 61.71 ↓√ √ √ √
EE PHEE 48.53 91.63 63.46 ↓√ √ √ √
EE PHEE 94.23 92.14 93.17 ↑√ √ √ √
EE PHEE 48.32 92.84 63.56 ↓√ √ √ √
EE PHEE 47.64 92.64 62.92 ↓√ √ √ √
EE PHEE 53.27 95.97 68.51 ↓√ √ √ √
EE PHEE 47.72 93.04 63.09 ↓
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Table 4: Data preparation for the TC task, including ADE, HealthAdvice, and PubMed20krct datasets. ⋆ indicates
the best F1 score and best combination in the data preparation phase. Each line represents one experiment and

√
means the dataset is selected for this run.

Training sets

RE task NER task EE task TC task Metrics

BioRED DDI GIT BC2GM BC4CHEMD BC5CDR GENIA2011 GENIA2013 PHEE ADE HealthAdvice PubMed20krct Task Test Set Precision Recall F1 Score
√

TC ADE 93.20 93.20 93.20 ⋆√ √
TC ADE 80.30 80.30 80.30 ↓√ √
TC ADE 59.40 59.40 59.40 ↓√ √
TC ADE 90.10 90.10 90.10 ↓√ √
TC ADE 60.28 89.40 72.01 ↓√ √
TC ADE 81.31 88.30 84.66 ↓√ √ √
TC ADE 86.90 86.90 86.90 ↓√ √ √
TC ADE 72.40 89.70 80.13 ↓√ √ √
TC ADE 86.60 89.20 87.88 ↓√ √ √
TC ADE 46.89 87.30 61.01 ↓√ √ √ √
TC ADE 36.46 84.00 50.85 ↓√ √ √ √
TC ADE 85.00 85.00 85.00 ↓√ √ √ √
TC ADE 89.20 89.20 89.20 ↓√ √ √ √
TC ADE 56.42 80.80 66.45 ↓√ √ √ √
TC ADE 68.17 70.90 69.51 ↓√ √ √ √
TC ADE 87.30 87.30 87.30 ↓√ √ √ √
TC ADE 83.00 83.00 83.00 ↓√ √ √ √
TC ADE 83.47 83.80 83.63 ↓√ √ √ √
TC ADE 82.30 82.30 82.30 ↓√ √ √ √
TC ADE 29.17 33.20 31.06 ↓√ √ √ √
TC ADE 44.69 90.80 59.89 ↓√ √ √ √
TC ADE 79.80 79.80 79.80 ↓√ √ √ √
TC ADE 30.24 33.90 31.97 ↓√ √ √ √
TC ADE 23.99 32.50 27.60 ↓√ √ √ √
TC ADE 87.60 87.60 87.60 ↓√ √ √ √
TC ADE 84.50 84.50 84.50 ↓√ √ √ √
TC ADE 55.58 89.60 68.61 ↓√ √ √ √
TC ADE 89.81 89.90 89.86 ↓√ √ √ √
TC ADE 48.14 53.00 50.45 ↓√ √ √ √
TC ADE 80.71 82.00 81.35 ↓√ √ √ √
TC ADE 67.46 68.00 67.73 ↓√ √ √ √
TC ADE 40.39 49.20 44.36 ↓√ √ √ √
TC ADE 80.40 80.40 80.40 ↓√ √ √ √
TC ADE 86.80 86.80 86.80 ↓√ √ √ √
TC ADE 59.61 78.80 67.87 ↓√ √ √ √
TC ADE 70.58 72.70 71.63 ↓√
TC HealthAdvice 91.00 91.00 91.00 ⋆√ √
TC HealthAdvice 89.70 89.70 89.70 ↓√ √
TC HealthAdvice 90.10 90.10 90.10 ↓√ √
TC HealthAdvice 87.30 87.30 87.30 ↓√ √
TC HealthAdvice 83.93 86.70 85.29 ↓√ √
TC HealthAdvice 85.70 85.70 85.70 ↓√ √ √
TC HealthAdvice 87.20 87.20 87.20 ↓√ √ √
TC HealthAdvice 79.74 80.30 80.02 ↓√ √ √
TC HealthAdvice 84.80 84.80 84.80 ↓√ √ √
TC HealthAdvice 62.05 83.40 71.16 ↓√ √ √ √
TC HealthAdvice 77.60 77.60 77.60 ↓√ √ √ √
TC HealthAdvice 85.20 85.20 85.20 ↓√ √ √ √
TC HealthAdvice 85.20 85.20 85.20 ↓√ √ √ √
TC HealthAdvice 78.51 81.10 79.78 ↓√ √ √ √
TC HealthAdvice 83.50 83.50 83.50 ↓√ √ √ √
TC HealthAdvice 53.56 81.30 64.58 ↓√ √ √ √
TC HealthAdvice 86.50 86.50 86.50 ↓√ √ √ √
TC HealthAdvice 55.81 80.20 65.82 ↓√ √ √ √
TC HealthAdvice 80.06 84.70 82.31 ↓√ √ √ √
TC HealthAdvice 41.20 92.50 57.01 ↓√ √ √ √
TC HealthAdvice 84.80 84.80 84.80 ↓√ √ √ √
TC HealthAdvice 82.00 87.90 84.85 ↓√ √ √ √
TC HealthAdvice 84.33 85.60 84.96 ↓√ √ √ √
TC HealthAdvice 86.90 86.90 86.90 ↓√ √ √ √
TC HealthAdvice 59.73 78.60 67.88 ↓√ √ √ √
TC HealthAdvice 77.30 77.30 77.30 ↓√ √ √ √
TC HealthAdvice 84.40 84.40 84.40 ↓√ √ √ √
TC HealthAdvice 81.50 81.50 81.50 ↓√ √ √ √
TC HealthAdvice 57.08 83.40 67.78 ↓√ √ √ √
TC HealthAdvice 69.02 80.20 74.19 ↓√ √ √ √
TC HealthAdvice 82.92 83.00 82.96 ↓√ √ √ √
TC HealthAdvice 83.01 85.00 83.99 ↓√ √ √ √
TC HealthAdvice 84.32 84.40 84.36 ↓√ √ √ √
TC HealthAdvice 68.04 72.80 70.34 ↓√ √ √ √
TC HealthAdvice 78.00 78.00 78.00 ↓√ √ √ √
TC HealthAdvice 58.51 85.60 69.51 ↓√ √ √ √
TC HealthAdvice 83.17 84.50 83.83 ↓√
TC PubMed20krct 87.30 87.30 87.30 ⋆√ √
TC PubMed20krct 84.60 84.60 84.60 ↓√ √
TC PubMed20krct 83.10 83.10 83.10 ↓√ √
TC PubMed20krct 84.20 84.20 84.20 ↓√ √
TC PubMed20krct 85.10 85.10 85.10 ↓√ √
TC PubMed20krct 84.36 84.70 84.53 ↓√ √ √
TC PubMed20krct 85.10 85.10 85.10 ↓√ √ √
TC PubMed20krct 82.28 83.10 82.69 ↓√ √ √
TC PubMed20krct 86.30 86.30 86.30 ↓√ √ √
TC PubMed20krct 82.64 83.30 82.97 ↓√ √ √ √
TC PubMed20krct 81.40 81.40 81.40 ↓√ √ √ √
TC PubMed20krct 82.90 82.90 82.90 ↓√ √ √ √
TC PubMed20krct 84.10 84.10 84.10 ↓√ √ √ √
TC PubMed20krct 84.30 84.30 84.30 ↓√ √ √ √
TC PubMed20krct 82.02 83.00 82.50 ↓√ √ √ √
TC PubMed20krct 56.46 59.90 58.13 ↓√ √ √ √
TC PubMed20krct 75.84 81.60 78.61 ↓√ √ √ √
TC PubMed20krct 84.40 84.40 84.40 ↓√ √ √ √
TC PubMed20krct 69.37 71.10 70.22 ↓√ √ √ √
TC PubMed20krct 81.30 81.30 81.30 ↓√ √ √ √
TC PubMed20krct 48.16 83.60 61.11 ↓√ √ √ √
TC PubMed20krct 48.26 72.00 57.78 ↓√ √ √ √
TC PubMed20krct 58.81 61.40 60.08 ↓√ √ √ √
TC PubMed20krct 69.57 72.00 70.76 ↓√ √ √ √
TC PubMed20krct 82.90 82.90 82.90 ↓√ √ √ √
TC PubMed20krct 59.93 68.80 64.06 ↓√ √ √ √
TC PubMed20krct 66.98 78.90 72.45 ↓√ √ √ √
TC PubMed20krct 82.30 82.30 82.30 ↓√ √ √ √
TC PubMed20krct 75.75 77.80 76.76 ↓√ √ √ √
TC PubMed20krct 49.03 78.30 60.30 ↓√ √ √ √
TC PubMed20krct 34.66 80.40 48.43 ↓√ √ √ √
TC PubMed20krct 71.18 72.60 71.88 ↓√ √ √ √
TC PubMed20krct 27.59 92.10 42.46 ↓√ √ √ √
TC PubMed20krct 42.18 72.00 53.20 ↓√ √ √ √
TC PubMed20krct 55.82 63.80 59.54 ↓√ √ √ √
TC PubMed20krct 81.71 82.20 81.95 ↓√ √ √ √
TC PubMed20krct 80.84 81.00 80.92 ↓
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