
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 5325–5340

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Aligning to Constraints for Data-Efficient Language Model Customization

Fei Wang12∗ Chao Shang2 Shuai Wang2 Sarthak Jain2 Qiang Ning2

Bonan Min2 Vittorio Castelli2 Yassine Benajiba2 Dan Roth2

1University of Southern California 2AWS AI Labs
fwang598@usc.edu {chshang,wshui,jsarth,qning,bonanmin,vittorca,benajiy,drot}@amazon.com

Abstract

General-purpose language models (LMs) are
aligned to diverse user intents, but fall short
when it comes to specific applications. While
finetuning is the default method for customized
alignment, human annotations are often un-
available in various customization scenarios.
Based on the observation that one of the main
issues of LM customization is constraint ad-
herence, we investigate the feasibility of using
constraints as a bridge from general LMs to
customized ones. We investigate common con-
straints in NLP tasks, categorize them into three
classes based on the types of their arguments,
and propose a unified and efficient framework,
ACT (Aligning to ConsTraints), for customiz-
ing LMs without human annotation. Specifi-
cally, ACT uses automatic constraint verifiers,
which are typically easy to implement in prac-
tice, to compute constraint satisfaction rate
(CSR) of each response. It samples multiple
responses for each prompt and collects prefer-
ence labels based on their CSR. Subsequently,
ACT adapts the LM to the target task through
a ranking-based learning process. Experiments
on fine-grained entity typing, abstractive sum-
marization, and temporal question answering
demonstrate that ACT is capable of enhanc-
ing LMs’ ability to adhere to different classes
of constraints, thereby improving task perfor-
mance comparable to or approaching that of
finetuning with labeled data.

1 Introduction

General languages models (LMs) are aligned to
diverse user instructions, but fall short when it
comes to specific applications (Raffel et al., 2020;
Ling et al., 2023; Saha et al., 2023). Customized
alignment, which enables users to improve the task-
specific capabilities of LMs, is therefore in high
demand (Zhang et al., 2024; Lin et al., 2024; Zhou
et al., 2024). To fullfil this goal, finetuning is the

*Work done during internship at AWS AI Labs.

Figure 1: Each user instruction contains one or more
constraints. The same task may be associated with dif-
ferent constraints depending on user intents, whereas
different tasks may share similar constraints.

default method in LM services, such as GPT-41

and Gemini2 finetuning APIs, which typically re-
quires exhaustive human-annotated data. However,
human annotations are often unavailable in various
customization scenarios. Users have distinct pur-
poses necessitating distinct annotations, but it is
impractical to collect human annotations everytime
due to budget limitation.

Recent research finds that the unsatisfactory ad-
herence to task constraints is one of the main rea-
sons for the failure of general LMs in downstream
applications (Sun et al., 2023; Qin et al., 2024;
Jiang et al., 2023; Abdin et al., 2023). Based on this
observation, we investigate the feasibility of lever-
aging constraints to bridge the gap between general
LMs and customized usages (Fig. 1). Downstream
applications typically contain explicit or implicit
task constraints. For example, the fine-grained en-
tity typing task has a label option list to define its
decision space and a label hierarchy to describe
the relation of sub-decisions (Fig. 2). These con-

1https://platform.openai.com/docs/guides/
fine-tuning

2https://ai.google.dev/docs/model_tuning_
guidance

5325

https://platform.openai.com/docs/guides/fine-tuning
https://platform.openai.com/docs/guides/fine-tuning
https://ai.google.dev/docs/model_tuning_guidance
https://ai.google.dev/docs/model_tuning_guidance

Figure 2: An example of fine-grained entity typing with
label option and label hierarchy constraints. A feasible
response must satisfy both constraints.

straints contain informative task knowledge and
can be automatically verified. On one hand, con-
straints produces informative supervision signals.
They can help approximate the solution space, iden-
tify prediction errors, and guide the model toward
the correct answer (Chang et al., 2007; Wang et al.,
2023; Ning et al., 2018; Wang et al., 2020a). On
the other hand, constraints enables efficient data
collection. Assessing LM response quality with
automatic constraint verifiers requires no human
effort during the annotation process.

In this paper, we investigate common constraints
in NLP tasks, categorize them into three classes
based on the types of their arguments, and propose
a unified and efficient LM customization frame-
work, ACT (Aligning to ConsTraints), using auto-
matic constraint verifiers to provide supervision sig-
nals for adapting models to downstream tasks (§3).
As shown in Fig. 3, ACT starts from selecting con-
straints that can provide essential knowledge about
user intents while at the same time automatically
verifiable. Then, the constraint verifiers can effi-
ciently measure constraint satisfaction rate (CSR)
of model responses. These verifiers are typically
easy to implement and are applicable to all in-
stances governed by the corresponding constraints.
With their assistance, ACT gathers supervision
signals for LM adaptation based on unlabeled in-
stances. It samples multiple responses for each un-
labeled instance and automatically assigns relative
preferences to them based on their CSR. Through a
ranking-based learning process (Yuan et al., 2023;
Liu et al., 2022), ACT integrates the knowledge
revealed by the constraints into the LM.

We verify the effectiveness of our method on
tasks with each class of constraints (§4), including
fine-grained entity typing (Ling and Weld, 2012),
abstractive text summarization (Narayan et al.,
2018), and temporal question answering (Ning
et al., 2020). Experimental results show that our
method, even with little or no labeled data, can
significantly enhance model capabilities on down-
stream tasks, achieving comparable performance
to finetuning with the same amount of labeled data.

Our contributions are three-fold. First, we iden-
tify that downstream tasks often contain informa-
tive and auto-verifiable constraints. In this context,
we formally define three classes of constraints that
are beneficial to LM customization. Second, we
propose ACT, a unified and efficient framework for
customizing LMs, leveraging automatic constraint
verifiers to produce supervision signals. Third, ex-
perimental results on various tasks and constraints
demonstrate the effectiveness of our method across
all classes of constraints.

2 Related Work

We briefly review two relevant research topics.

Constraints in NLP. Constraints provide essen-
tial information about the detailed requirements of
user intents, which widely exist in various NLP
tasks, such as natural language inference (Roth
and Yih, 2004; Minervini and Riedel, 2018; Li
et al., 2019), information extraction (Ning et al.,
2017; Wang et al., 2020a; Lin et al., 2023), and
text summarization (Dou et al., 2021; Wang et al.,
2022; Dixit et al., 2023). Constraints in these tasks
range from simple fixed label options and format re-
quirements to complex logic dependency (Faghihi
et al., 2023). Prior works have integrated these
constraints into artificial intelligent models through
learning-based or inference-only methods, such
as constraint driven learning (Chang et al., 2007;
Minervini and Riedel, 2018), structured inference
(Ning et al., 2017; Wang et al., 2023), and con-
strained decoding (Hokamp and Liu, 2017; Qin
et al., 2022). Recent work also investigated in-
tegrating constraints into LMs to improve model
performance on binary question answering (Burns
et al., 2022; Jung et al., 2022) and natural language
inference (Mitchell et al., 2022). Building upon
these findings, we leverage automatic constraint
verifiers for LM customization with an unified and
efficient framework. Our framework makes no as-
sumptions about the constraint type or source.

5326

Figure 3: Overview of ACT. ACT utilizes automatic constraint verifiers, which are typically easy to implement
in practice, to assess how well a response satisfies the constraints specified in the instruction. It samples two or
more responses (e.g., RA and RB) for each prompt. Then, it computes the constraint satisfaction rate (CSR) of each
response and assigns the preference label to each response pair based on their CSR (e.g., RA is better than RB). The
preference labels serve as supervision signals for LM customization.

LM Alignment and Customization. LM align-
ment is crucial for LMs’ capabilities in general
scenarios (Zhang et al., 2023a; Ouyang et al., 2022;
Mishra et al., 2022). However, aligning to gen-
eral user instructions may not adequately improve
LMs’ capabilities in downstream use cases from
unique and differentiated users. To enhance the
task-specific capabilities of LMs, customization
through finetuning is necessary (Zhang et al., 2024;
Ling et al., 2023). Prior work on LM finetuning
has explored various aspects, including parameter-
efficient tuning (Dettmers et al., 2024), data cu-
ration (Zhang et al., 2024), model selection (Lin
et al., 2024), privacy protection (Yu et al., 2021),
and safety issues (Qi et al., 2023). Some recent
work has also finetuned task-specific reward mod-
els to adapt LMs (Wu et al., 2024). However, most
of these works assume the availability of human-
annotated data. When facing the data scarcity is-
sue, there is no unified LM finetuning method that
can be applied to various downstream tasks. Our
work addresses the data issue in LM customization
through the perspective of constraint satisfaction.

3 Method

We seek to build a unified framework to align LMs
with various constraints. As shown in Fig. 3, the
ACT framework starts from selecting proper con-
straints (§3.1) and implementing corresponding

constraint verifiers (§3.2). Then, it samples mul-
tiple responses for each instance in the unlabeled
task dataset (§3.3). The automatic constraint ver-
ifiers will measure the constraint satisfaction rate
of responses and provide supervision signals for
model alignment (§3.4). Finally, ACT aligns the
model with constraints for adaptation (§3.5).

3.1 Constraint Selection
Formally, we define constraint as a function f that
verifies the satisfiablity of the prompt x and the
model response y. Derived from user instructions,
they verify essential requirements for fulfilling user
intents. According to the argument of f , we cate-
gorize task constraints into three classes:

• f(y) defines a constraint for a response, such
as response length, response format, and re-
sponse candidate. For example, the fine-
grained entity typing task requires the LM
to respond with given options.

• f(x, y) defines a constraint for a prompt-
response pair. This type of constraint requires
comparing the model input and output, such
as their relevance and text overlap. For exam-
ple, the abstractive summarization task expect
a high relevance between the input document
and the model-generated summary.

• f({xi, yi}) defines a constraint for multiple
prompt-response pairs. This type of constraint

5327

involves comparing multiple instances, such
as the logical consistency of answers to related
questions. For example, in temporal question
answering, the answers to "what happens be-
fore event A" and "what happens after event
A" should have no overlap.

In ACT, constraints should possess two properties:
revealing essential knowledge and being automat-
ically verifiable. Generally, constraints that more
precisely approximate the user intent are more
effective in LM alignment. ACT can combine
multiple constraints from different perspectives to
achieve a more effective approximation.

3.2 Verifier Realization

Constraint verifiers are the realization of f , measur-
ing how well the response satisfies the constraints.
They take the model response (and prompt) as
the input, returning a constraint satisfaction rate
(CSR). A higher CSR indicates that the response
adheres to the constraints better. The verifiers can
be rule-based (e.g., a function comparing words)
or model-based (e.g., a relevance scorer), typically
easy to implement from scratch or adapt from ex-
isting tools. In §4, we showcase the use of Python
functions, model-based metrics, and rule engines
as constraint verifiers. Note that each task may be
associated with one or more constraints. Thus, the
complete constraint verifier could be a combination
of multiple sub-verifiers. The final CSR will be a
weighted average of CSR from each sub-verifier,
with the weights determined by the importance of
the constraints.

3.3 Response Sampling

While a series of LM alignment studies have men-
tioned response sampling, little attention has been
paid on improving the alignment effectiveness
through decoding strageties. We draw inspiration
from contrastive learning to gather high-quality
negative responses (Robinson et al., 2021). The
key to this step is ensuring that responses for the
same unlabeled instance are distinguishable by the
constraint verifiers (i.e., true negative), while simul-
taneously achieving high sampling probability (i.e.,
hard negative). If two responses have a close CSR,
it could be challenging for even human annotators
to decide which one is better. If the response with
a low CSR also has a low sampling probability, pe-
nalizing it will not significantly benefit the model.
In a nutshell, we seek to collect high-probability re-

sponses with non-negligible CSR gaps. Therefore,
we employ decoding strategies that incorporate di-
versification and probability restriction, such as di-
verse beam search (Vijayakumar et al., 2018). This
enables the collection of informative supervision
signals in the next step.

3.4 Constraint Verification

Constraint verifiers can offer approximate but es-
sential guidance for task adaptation, making them
well-suited for the cost-efficient customization of
LMs to specific tasks. ACT takes advantage of this
property of automatic constraint verifiers to provide
supervision signals for LM alignment. Specifically,
the constraint verifier returns a CSR for each re-
sponse or response combination. Then, we can
assign preference labels to responses for the same
prompt based on their CSR. For constraints defined
over a single response or prompt-response pair, the
response that has a higher CSR will be preferred.
For example, in a task with label options constraint,
a response within the option list is preferable to a
response beyond it. For constraints defined over
multiple prompt-response pairs, ACT creates a re-
sponse combination by picking one response for
each prompt. The constraint verifier computes the
CSR for each response combination, and responses
from the response combination with a higher CSR
will be preferred. For example, when asking about
events occurring before or after an event, the re-
sponse combination that have no conflict (i.e., no
overlap between the answers to ‘before’ and ‘af-
ter’) are preferable to those with conflicts. Then,
each response will inherit the preference label of
the combination it belongs to. As a result, ACT
can collect preference labels from constraint veri-
fiers as supervision signals to align models based
on any type of constraints introduced in §3.1.

3.5 Training

With the preference labels from constraint verifiers
as supervision signals, ACT follows the learning
objective of Yuan et al. (2023) with CSR as the
reward. It encourages the model to generate the
response with highest CSR for each prompt with

Lft = −
∑

i

logP (yi|x,y<i),

and optimizes a rank loss over all responses for the
same prompt based on their relative CSR

Lrank =
∑

CSRi<CSRj

max(0, P (yi|x)−P (yj |x)).

5328

Figure 4: Results on fine-grained entity typing with f(y)
constraint. ACT, using supervision signals from auto-
matic constraint verifiers, achieves performance close to
that of Finetuning on the same amount of labeled data.

Since the CSR gap between each response pair
may indicate fine-grained preference information,
such as the relevance score in text summarization,
we can further enhance the above loss functions.
For Lft, we use CSR to reweight each datapoint.
Because the quality of the best responses we sam-
ple for different prompts may vary, this strategy
amplifies the impact of responses with higher CSR
while reducing noise. For Lrank, we use the CSR
gap between each pair of responses as the ranking
margin. This strategy allows the ranking loss to
consider the relative preference, providing more
informative supervision signals.

To further enhance learning efficiency, we adopt
parameter-efficient tuning to align the LM with
constraints. Specifically, we train LoRA modules
(Hu et al., 2021) as customized adapters in a plug-
and-play manner. The learning process is cost-
efficient, and users have the flexibility to choose
adapters based on constraints they need.

4 Experiment

In this section, we evaluate ACT on three represen-
tative tasks, each of which has one distinct class
of constraints introduced in §3.1, including fine-
grained entity typing with label option and label
hierarchy constraint (f(y); §4.1), abstractive sum-
marization with document-summary relevance con-
straint (f(x, y); §4.2), and temporal question an-
swering (QA) with the “no temporal conflict” con-
straint (f({xi, yi}); §4.3).

4.1 f(y): Fine-Grained Entity Typing

Task and Constraint. Fine-grained entity typing
seeks to select one or more applicable entity types
of different granularities for an entity in a given
sentence. We select two sub-constraints defined
over the model response for this task: (1) label

Figure 5: Average CSR of raw responses on fine-grained
entity typing. Label Option constraint limits the can-
didate set of entity types. Label Hierarchy constraint
requires the answer to follow the hierarchy between
coarse- and fine-grained entity types. A correct answer
must satisfy Both constraints. ACT achieves CSR com-
parable to that of Finetuning.

option, requiring all entity types to be selected
from a fixed option list; and (2) label hierarchy,
requiring to select a coarse-grained type if its cor-
responding fine-grained type is selected (e.g., an
artist entity must be a person entity). Verifying
these constraints needs to check the model out-
put y. We implement the constraint verifier as a
rule-based Python function, comparing the model
response with the predefined label option and label
hierarchy. Its pseudo code is in Appx. §A.

Dataset and Metric. We conduct experiments on
the FIGER dataset (Ling and Weld, 2012) consist-
ing of 112 entity types in two granularities. We
sample 1K instances, which is the smallest effec-
tive data size used for LM alignment in prior stud-
ies (Jin et al., 2023; Zhou et al., 2023), from the
official training set as the unlabeled data, and five
additional instances as in-context examples. For
evaluation, we use the official test set. Following
Ling and Weld (2012), we use macro-F1 over all
instances as the evaluation metric. For this and
the following tasks, we report the average result of
three runs.

Baselines. We compare ACT with both training-
free constraint integration and finetuning with la-
beled data. To integrate constraints into LMs, one
way is prompt w/ constraints by adding verbalized
constraints in the prompt. It adds into prompts the
list of entity types with “Label options: {all
types}" and the type dependency with “If an
entity is any of {fine-grained types}, it
must also be {coarse-grained type}." The
other way is inference w/ constraints through post-

5329

Method Training Data Automatic Evaluation Human Evaluation
labeled : unlabeled BERTScore ROUGE-L Consistency Informativeness Coherence

Raw Model - 42.8 10.7 0.54 2.78 2.93
Prompt w/ Cons. - 55.5 12.8 0.63 3.06 3.21

Inference w/ Cons. - 58.9 13.6 0.56 2.87 3.07
ACT 0% : 100% 65.1 15.7 0.68 3.12 3.35
ACT 10% : 90% 68.6 18.2 0.65 3.20 3.44

Finetuning 100% : 0% 68.2 18.2 0.68 3.24 3.40

Ground-Truth - - - 0.81 3.66 3.81

Table 1: Automatic and human evaluation on abstractive summarization with constraint of f(x, y) class. We also
report the ratio of human-labeled and unlabeled training data for ACT and Finetuning. Note that Inference w/
Constraints is also applied to ACT and Finetuning, as they are complementary.

hoc correction.3 The corrector is derived from the
constraint verifier, correcting prediction errors ac-
cording to the task constraints. Finetuning adopts
the same instances used by ACT with human-
annotated labels.

Implementation Details. For this and the follow-
ing tasks, we use Falcon-7B-Instruct (Penedo et al.,
2023) as the base model, because it is one of the
few SOTA instruction-tuned LMs with Apache 2.0
license. We apply LoRA tuning in both ACT and
finetuning. All models are trained using the same
prompt templates and hyper-parameters in Appx. B
and C. For each unlabeled instance, ACT collects
multiple model responses through diverse beam
search. Note that in this task, we consider a bi-
nary CSR, selecting one response that satisfies all
constraints and another that does not satisfies some
constraints, for training. During the training and
inference for all methods, we use the same five
in-context examples.

Results. As shown in Fig. 4, ACT, with automatic
feedback from constraint verifier, achieves compa-
rable results to finetuning with human annotation
on same amount of data. Further analysis in Fig. 5
shows that ACT achieves the same overall CSR as
finetuning. These observations indicate that feed-
back from automatic constraint verifiers are effec-
tive surrogate of human feedback. Moreover, ACT
can significantly improve the model’s constraint-
following capability with the help of automatic con-
straint verifiers. Although inference w/ constraints
can further improve the performance of all meth-
ods as a complement, the improvement on ACT
and finetuning are much smaller, indicating most of
the knowledge about label constraints are already
learned during training. Prompt w/ constraints im-

3While other inference-time constraint integration ap-
proaches may also work, we do not observe significant differ-
ence in performance.

Figure 6: Average CSR of relevance constraint on
model-generated summaries. ACT achieves even higher
CSR than Finetuning.

proves model CSR, but does not improve the F1
score. We attribute this to the increased prompt
length. Verbalizing the constraint adds several hun-
dreds of tokens in the prompt, which unsurprisingly
make it more difficult to understand.

4.2 f(x, y): Abstractive Summarization

Task and Constraint. Abstractive summarization
seeks to provide a brief summary for a given docu-
ment. An essential constraint for this task is rele-
vance – the information in the generated summary
should be relevant to that in the given document.
This constraint is necessary to achieve better fac-
tual consistency (Zhu et al., 2021; Dixit et al., 2023)
and information coverage. To verify this constraint,
we need to compare the model input x and output
y. We use BERTScore-Recall (Zhang et al., 2019)
as the constraint verifier, because prior works have
shown that it aligns well with the human judgement
of summary quality and outperforms other metrics
in downstream applications (Fabbri et al., 2021;
Adlakha et al., 2023; Gupta et al., 2023). Note that
we compute the BERTScore-Recall between the
model response and the input document as CSR,
which allows ACT to collect feedback with no
human-annotated summary.

Dataset and Metrics. We conduct experiments on
the XSUM dataset (Narayan et al., 2018), where

5330

each news article is paired with a human-written
one-sentence summary. For training, we sample 1K
instances from the official training set. We evaluate
the model performance in a zero-shot manner. For
automatic evaluation, we report ROUGE-L (Lin,
2004), BERTScore, and CSR. We further conduct
human evaluation following the protocol in Zhang
et al. (2023b). We recruit annotators from Ama-
zon Mechanical Turk to label consistency (0 or 1),
informativeness (5 point likert scale), and coher-
ence (5 point likert scale) for system-generated and
human-written summaries. Each summary is eval-
uated by three different annotators. The human
evaluation instruction is in Appx. §G. Due to the
computational and annotation cost, we sample 100
articles from the official test set for evaluation.

Baselines. Prompt w/ constraints emphasizes the
relation between the summary and the input doc-
ument in the prompt. Inference w/ constraints
adopts the constraint verifier to rerank multiple
sampled summaries, which is shown to outperform
some training-based methods in prior work (Cao
and Wang, 2021). Finetuning trains the LM with
human-written summaries on the same training in-
stances as ACT. Note that inference w/ constraints
is complementary to other approaches, so we also
apply it to ACT and finetuning.

Implementation Details. For ACT, we have two
variants, with and without model warmup on 100
human-labeled data. With only a small amount of
labeled data, the warm-up step enables the model to
generate reasonable responses for a relatively com-
plicated task, even though the model still achieves
relatively low performance. We use the enhanced
loss function, where lft is re-weighted and lrank
has a ranking margin. More details are in Appx. §C.

Results. As shown in Tab. 1, ACT with model
warmup achieves comparable results in compari-
son with finetuning, and even outperforms the lat-
ter in terms of BERTScore in automatic evaluation
and coherence in human evaluation. ACT with no
human-labeled data, also performs as well as fine-
tuning in terms of factual consistency. Both human
and automatic evaluation indicate that aligning the
model with the automatically verifiable relevance
constraint can enhance the model performance on
text summarization. Although model-generated
summaries still have a gap with ground-truth sum-
maries, it will not be difficult to scale up the size
of training data for ACT with the help of the auto-

Figure 7: Results on temporal QA with constraint of
f({xi, yi}) class. As the raw model cannot generate
reasonable answers, we use Finetuning (warmup) as the
base model. ACT can even improve the performance of
a finetuned model. Further Finetuning continually train
the base model on labeled data.4

matic constraint verifier. We further analyze model
CSR in Fig. 6. ACT with warmup also outperforms
finetuning from the perspective of constraint sat-
isfaction. Both ACT and finetuning significantly
outperforms the base model. This observation indi-
cates a positive correlation between the quality of
summaries and the adherence level to the summary-
document relevance constraint.

4.3 f({xi, yi}): Temporal QA

Task and Constraint. Temporal question answer-
ing seeks to answer questions about the temporal
relationship of events based on a given passage.
Due to the nature of time, the responses to several
interconnected questions should not have temporal
conflicts. For example, the answers to "what hap-
pens before event A" and "what happens after event
A" should have no overlap. Otherwise, an event
may occur both before and after event A, leading
to a time cycle. This constraint requires to compare
multiple question-answer pairs {xi, yi}. We define
a rule engine in Python as the constraint verifier,
which identifies conflicts in temporal relationships
among events.

Dataset and Metrics. We conduct experiments on
the TORQUE dataset (Ning et al., 2020), where
each passage is paired with multiple temporal ques-
tions. We focus on the default set of questions
which have clear logical relationships asking what
happens before/during/after an event according to
a given passage. We sample 1K group of ques-
tions from the official training set, leading to 3K
instances in total. We report the average macro-

4Since this experiment seeks to evaluate ACT on a specific
class of constraints, we do not consider other stronger con-
straints. The “no temporal conflict” constraint only provides
weak approximation of the answers. Thus, not supergisingly,
further finetuning achieves better performance.

5331

and micro-F1 of three runs on the official develop-
ment set.

Baselines. Due to the complexity of the task and
constraint, the raw model cannot generate reason-
able responses and simply integrating constraints
into the prompt or the inference process does not
make the situation better. Therefore, we mainly
compare our method with finetuning on human-
annotated QA pairs.

Implementation Details. Since the base model
fails to give reasonable answers, we apply model
warmup for all methods. Specifically, we use 1K
labeled data to warmup the model before ACT or
further finetuning.5 Then, ACT further tunes the
model on 1K unlabeled data with feedback from the
constraint verifier, while further finetuning adopts
additional 1K human-labeled data. When collect-
ing feedback from the constraint verifier, we sam-
ple 2 responses for each instance. Then, for all
the 2k response combinations of k related ques-
tions, we use the constraint verifier to find one with
no or the least conflicts as the preferred response
combination. We use the preference label of the re-
sponse combination as the preference label of each
response within this combination. For all methods,
we use the same three in-context examples. More
details are in Appx. B and C.

Results. As shown in Fig. 7, the base model to-
tally fails to give reasonable responses, revealing
the difficulty of the task. ACT improves the per-
formance of the warmuped model by 2.4 points in
terms of macro-F1 and 5.5 points in terms of micro-
F1. This indicates that ACT can even improve the
performance of a finetuned model.

5 Discussion

In this section, we delve into several topics about
the generality of ACT and outline directions for
future research.

5.1 Constraint Accessibility

We have demonstrated in §2 that informative con-
straints are prevalent across various NLP tasks.
Identifying constraints for a new task demands
significantly less effort than manually annotating
thousands of instances. The effort and expertise

5The warmup step helps to mitigate the “garbage in,
garbage out" problem, ensuring the availability of relatively
good responses to facilitate informative feedback, particularly
for complex tasks.

Source Task CSR on Target Task (T3)

- 58.8

Slot Extraction (T1) 67.7
Entity Extraction (T2) 73.9
Both (T1+T2) 76.2

Table 2: CSR of extractiveness constraint on event trig-
ger extraction (T3). Learning the constraint from other
tasks (T1 & T2) can improve the CSR on the target task.

needed to define constraints and implement veri-
fiers in ACT are comparable to those required for
designing guidelines and setting up quality control
pipelines for human annotation. In human annota-
tion, annotators also must be aware of the task con-
straints, such as label options, beforehand. Without
this knowledge, collecting high-quality data for
learning purposes would be impossible. We posit
that specifying constraints is a prerequisite for tasks
requiring them, as humans must first understand
the task constraints before annotation begins.

Constraints are prevalent in NLP tasks, and
the extensive literature on these tasks serves as a
valuable resource for identifying well-defined con-
straints (Roth and Yih, 2004; Minervini and Riedel,
2018; Li et al., 2019; Wang et al., 2020b; Parikh
et al., 2020). At present, our approach relies on hu-
man efforts for constraint identification and verifier
implementation. However, we envision the possi-
bility of modularizing this process in the future. By
combining different units, such as rule checkers
and scorers, intelligent agents could potentially au-
tomate the creation of constraint verifiers, reducing
the dependency on human intervention. This mod-
ular approach could streamline the workflow and
expand the applicability of ACT to a broader range
of tasks.

5.2 Constraint Transfer across Tasks
To verify the transferability of constraint-following
capability, we apply ACT to train and test the LM
on different tasks with the same type of constraint.
We conduct experiments on the extractiveness con-
straint, where the model response must be extracted
from the input, and the relevance constraint intro-
duced in §4.2. For the former, we evaluate con-
straint transfer among entity extraction, event trig-
ger extraction, and slot extraction, while for the
latter, we evaluate constraint transfer between text
summarization and table-to-text generation. The
results in Tab. 2 and Tab. 4 consistently show that
under both settings, the learned constraint knowl-

5332

Human Pref. Constraint Pref.
RM Prompt Acc Margin Acc Margin

Base w/o cons. 26.3 0.3 17.3 0.5
w/ cons. 42.1 0.1 35.0 0.2

ACT w/o cons. 82.0 7.0 86.4 4.9
w/ cons. 80.0 8.1 88.1 5.7

Human annot. w/o cons. 87.5 7.2 79.4 5.0
w/ cons. 86.0 6.7 80.8 3.8

Table 3: Accuracy of response preference and average
margin (between chose and rejected responses) of dif-
ferent reward models. We use ground-truth human pref-
erence and constraint-based preference as gold labels
for evaluation. We evaluate reward models trained with
human annotation and ACT. For each reward model,
we have two variants, with and without verbalized con-
straints as input.

edge is transferable across tasks. More discussion
can be found in Appx. §D.

5.3 Customizing Reward Models with ACT
While in this paper we focus on the standard fine-
tuning process, which is the common practice of
task adaptation for LMs, some recent studies have
also adapted LMs with task-specific reward models
(Wu et al., 2024; Stiennon et al., 2020). Our work
does not use reward models as the main testbed be-
cause their training cost and stability hinder them
from being widely adopted in LM services. The
standard finetuning process effectively enables us
to formulate the concept of ACT and prove its ef-
fectiveness on various tasks. Nonetheless, one can
definitely customizing reward models with ACT.
In Tab. 3, the experimental results show that ACT
can also customize reward models achieving per-
formance close to that of training with task-specific
human preference. Although ACT is not originally
proposed for adapting reward models, it can dis-
till task constraint knowledge into reward models
when human preference is unavailable. More dis-
cussion can be found in Appx. §E.

5.4 ACT as a Service
ACT presents a lightweight alternative to standard
finetuning. With a predefined list of constraints,
future LM services could offer APIs for LM cus-
tomization based on ACT. In previous subsections,
we have demonstrated that constraints are generally
accessible and transferable. This enables service
providers to store reusable constraints, constraint
verifiers, and constraint-integrated adapters. Fur-
thermore, future efforts can automate the selec-

tion of constraints and realization of verifiers. One
potential approach involves retrieving constraints
based on user instructions and then constructing
verifiers by filling in templates.

6 Conclusion

In this paper, we propose an unified and efficient
LM customization framework, ACT, aligning LMs
to constraints for task adaptation. ACT leverages
automatic constraint verifiers, which are typically
easy to implement, to provide CSR as supervision
signals. ACT can effectively enhance LMs’ capa-
bility to adhere to task-specific constraints, thereby
fulfilling the user intent for downstream applica-
tion. We investigate common constraints in NLP
tasks, categorize them into three classes based on
the types of their arguments, and verify the effec-
tiveness of ACT on all classes of constraints.

Limitations

Due to license and accessibility restrictions, we can-
not verify the effectiveness of ACT across a wide
range of LMs. Despite the similarities in model
structures and training processes among these LMs,
variations in their implementation details may re-
sult in slightly different performance gains when
applying ACT. Furthermore, while ACT notably
reduces the cost of data collection for custom tasks,
the steps involving constraint selection and verifier
realization still require human effort. Automating
these steps would contribute to further improve-
ments. Finally, while our work demonstrates the
potential of training various constraint-following
adapters and general constraint-following models,
we acknowledge that there is ample room for fur-
ther exploration in this expansive area, providing
opportunities for future research.

Acknowledgements

We would like to thank Miguel Ballesteros and
Muhao Chen for their valuable discussions and
insights, which helped improve this paper.

References
Marah I Abdin, Suriya Gunasekar, Varun Chan-

drasekaran, Jerry Li, Mert Yuksekgonul, Ra-
hee Ghosh Peshawaria, Ranjita Naik, and Besmira
Nushi. 2023. Kitab: Evaluating llms on constraint
satisfaction for information retrieval. arXiv preprint
arXiv:2310.15511.

5333

Vaibhav Adlakha, Parishad BehnamGhader, Xing Han
Lu, Nicholas Meade, and Siva Reddy. 2023. Eval-
uating correctness and faithfulness of instruction-
following models for question answering. arXiv
preprint arXiv:2307.16877.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Stein-
hardt. 2022. Discovering latent knowledge in lan-
guage models without supervision. In The Eleventh
International Conference on Learning Representa-
tions.

Shuyang Cao and Lu Wang. 2021. CLIFF: Contrastive
learning for improving faithfulness and factuality in
abstractive summarization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 6633–6649, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. 2007.
Guiding semi-supervision with constraint-driven
learning. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics,
pages 280–287, Prague, Czech Republic. Association
for Computational Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Tanay Dixit, Fei Wang, and Muhao Chen. 2023. Improv-
ing factuality of abstractive summarization without
sacrificing summary quality. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
902–913, Toronto, Canada. Association for Compu-
tational Linguistics.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao
Jiang, and Graham Neubig. 2021. GSum: A gen-
eral framework for guided neural abstractive summa-
rization. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4830–4842, Online. Association for
Computational Linguistics.

Alexander R Fabbri, Wojciech Kryściński, Bryan Mc-
Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. Summeval: Re-evaluating summariza-
tion evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Hossein Rajaby Faghihi, Aliakbar Nafar, Chen Zheng,
Roshanak Mirzaee, Yue Zhang, Andrzej Uszok,
Alexander Wan, Tanawan Premsri, Dan Roth, and
Parisa Kordjamshidi. 2023. Gluecons: A generic
benchmark for learning under constraints. AAAI
2023.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa Singh,

et al. 2022. Massive: A 1m-example multilin-
gual natural language understanding dataset with
51 typologically-diverse languages. arXiv preprint
arXiv:2204.08582.

Shivanshu Gupta, Sameer Singh, and Matt Gardner.
2023. Coverage-based example selection for in-
context learning. arXiv preprint arXiv:2305.14907.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–1546,
Vancouver, Canada. Association for Computational
Linguistics.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin
Jiang, Qun Liu, and Wei Wang. 2023. Follow-
bench: A multi-level fine-grained constraints follow-
ing benchmark for large language models. arXiv
preprint arXiv:2310.20410.

Di Jin, Shikib Mehri, Devamanyu Hazarika, Aishwarya
Padmakumar, SUNGJIN LEE, Yang Liu, and Mahdi
Namazifar. 2023. Data-efficient alignment of large
language models with human feedback through natu-
ral language. In NeurIPS 2023 Workshop on Instruc-
tion Tuning and Instruction Following.

Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brah-
man, Chandra Bhagavatula, Ronan Le Bras, and
Yejin Choi. 2022. Maieutic prompting: Logically
consistent reasoning with recursive explanations. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
1266–1279, Abu Dhabi, United Arab Emirates. Asso-
ciation for Computational Linguistics.

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Sriku-
mar. 2019. A logic-driven framework for consistency
of neural models. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3924–3935, Hong Kong, China. Association
for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Haowei Lin, Baizhou Huang, Haotian Ye, Qinyu Chen,
Zihao Wang, Sujian Li, Jianzhu Ma, Xiaojun Wan,
James Zou, and Yitao Liang. 2024. Selecting large
language model to fine-tune via rectified scaling law.
arXiv preprint arXiv:2402.02314.

5334

https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://doi.org/10.18653/v1/2021.emnlp-main.532
https://aclanthology.org/P07-1036
https://aclanthology.org/P07-1036
https://doi.org/10.18653/v1/2023.acl-short.78
https://doi.org/10.18653/v1/2023.acl-short.78
https://doi.org/10.18653/v1/2023.acl-short.78
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/2022.emnlp-main.82
https://doi.org/10.18653/v1/2022.emnlp-main.82
https://doi.org/10.18653/v1/D19-1405
https://doi.org/10.18653/v1/D19-1405
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013

Zizheng Lin, Hongming Zhang, and Yangqiu Song.
2023. Global constraints with prompting for zero-
shot event argument classification. In Findings of the
Association for Computational Linguistics: EACL
2023, pages 2527–2538, Dubrovnik, Croatia. Associ-
ation for Computational Linguistics.

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng,
Can Zheng, Junxiang Wang, Tanmoy Chowdhury,
Yun Li, Hejie Cui, Tianjiao Zhao, et al. 2023. Be-
yond one-model-fits-all: A survey of domain special-
ization for large language models. arXiv preprint
arXiv:2305.18703.

Xiao Ling and Daniel Weld. 2012. Fine-grained entity
recognition. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 26, pages 94–100.

Yixin Liu, Pengfei Liu, Dragomir Radev, and Graham
Neubig. 2022. BRIO: Bringing order to abstractive
summarization. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2890–2903,
Dublin, Ireland. Association for Computational Lin-
guistics.

Pasquale Minervini and Sebastian Riedel. 2018. Adver-
sarially regularising neural NLI models to integrate
logical background knowledge. In Proceedings of
the 22nd Conference on Computational Natural Lan-
guage Learning, pages 65–74, Brussels, Belgium.
Association for Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

Eric Mitchell, Joseph Noh, Siyan Li, Will Arm-
strong, Ananth Agarwal, Patrick Liu, Chelsea Finn,
and Christopher Manning. 2022. Enhancing self-
consistency and performance of pre-trained language
models through natural language inference. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1754–
1768, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1027–1037, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth. 2018.
Joint reasoning for temporal and causal relations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2278–2288, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Qiang Ning, Hao Wu, Rujun Han, Nanyun Peng, Matt
Gardner, and Dan Roth. 2020. TORQUE: A reading
comprehension dataset of temporal ordering ques-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1158–1172, Online. Association for
Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Di-
panjan Das. 2020. Totto: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The RefinedWeb dataset
for Falcon LLM: outperforming curated corpora
with web data, and web data only. arXiv preprint
arXiv:2306.01116.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi
Jia, Prateek Mittal, and Peter Henderson. 2023. Fine-
tuning aligned language models compromises safety,
even when users do not intend to! In The Twelfth In-
ternational Conference on Learning Representations.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin
Choi. 2022. Cold decoding: Energy-based con-
strained text generation with langevin dynamics. Ad-
vances in Neural Information Processing Systems,
35:9538–9551.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao,
Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei
Liu, Pengfei Liu, and Dong Yu. 2024. Infobench:
Evaluating instruction following ability in large lan-
guage models. arXiv preprint arXiv:2401.03601.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and
Stefanie Jegelka. 2021. Contrastive learning with
hard negative samples. In International Conference
on Learning Representations (ICLR).

5335

https://doi.org/10.18653/v1/2023.findings-eacl.191
https://doi.org/10.18653/v1/2023.findings-eacl.191
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/2022.acl-long.207
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.emnlp-main.115
https://doi.org/10.18653/v1/2022.emnlp-main.115
https://doi.org/10.18653/v1/2022.emnlp-main.115
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/P18-1212
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116
http://arxiv.org/abs/2306.01116

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the eighth conference
on computational natural language learning (CoNLL-
2004) at HLT-NAACL 2004, pages 1–8.

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz,
Mohit Bansal, Jason Weston, and Xian Li.
2023. Branch-solve-merge improves large language
model evaluation and generation. arXiv preprint
arXiv:2310.15123.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–
3021.

Jiao Sun, Yufei Tian, Wangchunshu Zhou, Nan Xu, Qian
Hu, Rahul Gupta, John Frederick Wieting, Nanyun
Peng, and Xuezhe Ma. 2023. Evaluating large lan-
guage models on controlled generation tasks. arXiv
preprint arXiv:2310.14542.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Alpaca: A
strong, replicable instruction-following model. Stan-
ford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html,
3(6):7.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath
Selvaraju, Qing Sun, Stefan Lee, David Crandall,
and Dhruv Batra. 2018. Diverse beam search for
improved description of complex scenes. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 32.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57:45.

Fei Wang, Kaiqiang Song, Hongming Zhang, Lifeng Jin,
Sangwoo Cho, Wenlin Yao, Xiaoyang Wang, Muhao
Chen, and Dong Yu. 2022. Salience allocation as
guidance for abstractive summarization. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 6094–6106,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Haoyu Wang, Muhao Chen, Hongming Zhang, and Dan
Roth. 2020a. Joint constrained learning for event-
event relation extraction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 696–706, Online.
Association for Computational Linguistics.

Haoyu Wang, Muhao Chen, Hongming Zhang, and Dan
Roth. 2020b. Joint constrained learning for event-
event relation extraction. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 696–706.

Kaifu Wang, Hangfeng He, Tin D Nguyen, Piyush Ku-
mar, and Dan Roth. 2023. On regularization and
inference with label constraints. Proceedings of the
40 th International Conference on Machine Learning.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane
Suhr, Prithviraj Ammanabrolu, Noah A Smith, Mari
Ostendorf, and Hannaneh Hajishirzi. 2024. Fine-
grained human feedback gives better rewards for lan-
guage model training. Advances in Neural Informa-
tion Processing Systems, 36.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi,
Huseyin A Inan, Gautam Kamath, Janardhan Kulka-
rni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz,
et al. 2021. Differentially private fine-tuning of lan-
guage models. In International Conference on Learn-
ing Representations.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. Rrhf:
Rank responses to align language models with
human feedback without tears. arXiv preprint
arXiv:2304.05302.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan
Firat. 2024. When scaling meets llm finetuning: The
effect of data, model and finetuning method. In The
Twelfth International Conference on Learning Repre-
sentations.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023a. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy
Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. 2023b. Benchmarking large language
models for news summarization. arXiv preprint
arXiv:2301.13848.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen,
and Hoifung Poon. 2024. Universalner: Targeted dis-
tillation from large language models for open named
entity recognition. In The Twelfth International Con-
ference on Learning Representations.

Chenguang Zhu, William Hinthorn, Ruochen Xu,
Qingkai Zeng, Michael Zeng, Xuedong Huang, and
Meng Jiang. 2021. Enhancing factual consistency
of abstractive summarization. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 718–733, Online.
Association for Computational Linguistics.

5336

https://doi.org/10.18653/v1/2022.emnlp-main.409
https://doi.org/10.18653/v1/2022.emnlp-main.409
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2021.naacl-main.58
https://doi.org/10.18653/v1/2021.naacl-main.58

A Constraint Verifiers

We present the constraint verifiers in pseudo code
of Python style.

Label Option and Hierarchy.

OPTIONS is a fixed list of valid options
FINE2COARSE is a map from each
fine-grained entity type to its
corresponding coarse-grained entity type

def label_option(answers):
for x in answers:

if x not in OPTIONS:
return 0

return 1

def label_hierarchy(answers):
for x in answers:

if x not in FINE2COARSE:
continue

if FINE2COARSE[x] not in answers:
return 0

return 1

def constraint_verifier(response):
answers = response.split(", ")
first_cons = label_option(answers)
second_cons = label_hierarchy(answers)
return min(first_cons, second_cons)

Extractiveness.

def constraint_verifier(inputx, response):
csr = int(response in inputx)
return csr

B Prompt Template

We follow the prompt template of Taori et al. (2023)
for all experiments:

TEMPLATE

Below is an instruction that describes a
task. Write a response that appropriately
completes the request.
Instruction:
{$INSTRUCTION}

Input:
{$INPUT}

Response:
{$RESPONSE}

Fine-Grained Entity Typing.

INSTRUCTION

List all entity types of an entity in a given
sentence.
Options: {$OPTIONS}.
If the entity is any of {$FINETYPES}, it is
also {$COARSETYPE}.

INPUT

In the sentence {$SENTENCE}, what are the
types of the entity {$ENTITY}?

Abstractive Summarization.

INSTRUCTION

Please generate a one-sentence summary for
the given document.

INPUT

{$DOCUMENT}

Temporal QA.

INSTRUCTION

Select the best options to answer the ques-
tion according to the passage.

INPUT

Passage: {$PASSAGE}
Question: {$QUESTION}
Options: {$OPTIONS}

Constraint Transfer.

INSTRUCTION

Identify the [entity / slot / event trigger] in
the given sentence.
Your response must directly indicate the tar-
get information.
You must extract the answer from the input
sentence.

INPUT

Which words indicate {$TYPE} in the sen-
tence {$SENTENCE}.

5337

Source Task Target Task R-L BS

- Summarization 13.6 58.9
Table-to-Text Summarization 15.6 62.3

- Table-to-Text 21.1 60.0
Summarization Table-to-Text 22.8 61.3

Table 4: ROUGE-L and BERTScore on summarization
and table-to-text with the relevance constraint. Learning
the constraint from one task can improve the perfor-
mance on the other task.

C Hyper-parameters

We use the same hyperparameters in all experi-
ments unless otherwise specified.

Training. We train the models for 10 epochs with
a batch size of 32 and a constant learning rate of
1e-5. We apply LoRA modules to the query, key,
and value projectors in the attention module of each
Transformer layer. The LoRA alpha, LoRA rank,
and LoRA dropout are set to 16, 64, and 0.1 re-
spectively. Following Yuan et al. (2023), we do
not adjust the coefficient between Lft and Lrank,
but simply add them. All inputs are left padded
to 1,024 tokens. Note that we sampled 10% of
the collected data for validation. For constraint
transfer, we enlarge the size of LoRA modules and
the learning rate to accommodate the shared con-
straint knowledge from different tasks. Specifically,
we set LoRA alpha to 32, LoRA rank to 64, and
constant learning rate to 2e-5.

Inference. During evaluation, we apply greedy
decoding. For response sampling, we apply diverse
beam search with four beams, four beam groups,
and a diversity penalty of 1.

D ACT for Constraint Transfer

Extractiveness Constraint. We select three tasks
with this constraint: entity extraction, slot extrac-
tion, and event trigger extraction. The pseudo code
of constraint verifier is in Appx. §A. We use FIGER
for entity extraction, MASSIVE (FitzGerald et al.,
2022) for slot extraction, and ACE 2005 (Walker
et al., 2006) for event trigger extraction. We sample
1K instances from each of MASSIVE and FIGER
for training and 2K instances from ACE 2005 for
evaluation. The CSR shows the model capabil-
ity of following the target constraint. Prompts for
all tasks adopt the same format with a constraint
“You must extract the answer from the input sen-
tence.” During training and inference, we use five

additional in-context examples. Detailed prompts
and hyper-parameters can be found in Appx. B
and C. Results in Tab. 2 show that the extractive-
ness constraint learned from entity extraction and
slot extraction can be transferred to event trigger
extraction, resulting in an improvement in CSR
ranging from 8.9% to 17.4%, respectively. This
indicates that the constraint-following capability
is transferable. Combining multiple source tasks
leads to better performance.

Relevance Constraint. We further evaluate con-
straint transfer with the task (T1: text summariza-
tion) and constraint (relevance) in §4.2. We pair
it with another task (T2: controlled table-to-text
generation) with the same constraint. For T2, we
use the ToTTo dataset (Parikh et al., 2020). The
experiment setting is the same as §4.2. Results
in Tab. 4 consistently show the transferability of
learned constraints.

E ACT for Reward Models

We conduct experiments on fine-grained entity typ-
ing (§4.1) with a widely adopted reward model
OpenAssistant/reward-model-deberta-v3-large-v2 in
the huggingface hub. We use reward models with
and without ACT to score and label the prefer-
ence between human-annotated gold responses and
model-generated incorrect responses. To show that
ACT can achieve task adaptation performance close
to methods with high-quality human annotation,
we further train a task-specific reward model with
task-specific human annotation for reference. We
use two prompt variants, one with verbalized con-
straints (w/ cons.) and one without (w/o cons.).
The results show that the general-purpose reward
model fails on giving reliable scores for the down-
stream task, achieving an accuracy below 50%. It
is also sensitive to the prompt, as adding verbal-
ized constraints into the prompt can even lead to a
15.8 point performance drop. ACT increases the
accuracy of preference labels to more than 80%
with little human annotation. This result is close to
training the reward model with task-specific human
annotation.

To investigate reward models’ ability of evalu-
ating constraint satisfaction, we use them to score
and label the preference between model responses
satisfying and not satisfying constraints. ACT even
outperforms the reward model finetuned with task-
specific human annotation by up to 7.3 points. This
highlights the effectiveness of ACT in incorporat-

5338

Figure 8: CSR distribution of entity typing.

Figure 9: CSR distribution of entity typing.

ing prior knowledge of task constraints into models.

F Distribution of Constraint Satisfaction
Rate

To understand the fine-grained behavior of ACT,
we present the constraint satisfaction rate distribu-
tion for entity typing and summarization in Fig. 8
and Fig. 9. The observation is that ACT and fine-
tuning exhibit similar distributions, while the origi-
nal model is significantly different.

G Human Evaluation

The interface including instructions for human eval-
uation is shown in Fig. 10.

5339

Figure 10: Human evaluation interface.

5340

