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Abstract

Audio descriptions (ADs) function as acoustic
commentaries designed to assist blind persons
and persons with visual impairments in access-
ing digital media content on television and in
movies, among other settings. As an acces-
sibility service typically provided by trained
AD professionals, the generation of ADs de-
mands significant human effort, making the
process both time-consuming and costly. Re-
cent advancements in natural language process-
ing (NLP) and computer vision (CV), partic-
ularly in large language models (LLMs) and
vision-language models (VLMs), have allowed
for getting a step closer to automatic AD gen-
eration. This paper reviews the technologies
pertinent to AD generation in the era of LLMs
and VLMs: we discuss how state-of-the-art
NLP and CV technologies can be applied to
generate ADs and identify essential research
directions for the future.

1 Introduction

1.1 Background
The formalization of AD as a public service can be
traced back only to the early 1980s in the United
States (Mazur, 2020). Initially introduced in the
theater, AD services have expanded to a wide range
of contexts, including television programs, movies,
art galleries, and museums, in order to mitigate the
information loss experienced by blind individuals
and individuals with visual impairments. A sig-
nificant milestone in the development of ADs was
achieved in 2010, when the European Parliament
included the provision of “accessible audiovisual
media services” in its directives for that year (Re-
viers, 2016). Since then, AD research has garnered
widespread interest.

ADs are traditionally produced by professional
audio describers. The production process begins
with acquiring the broadcast material, ideally com-
plemented with time codes. Audio describers then

Figure 1: Domain contributions of AD-generation-
related publications reviewed in this survey. DVC, APE,
and ADE represent the three main steps of AD gen-
eration systems: Dense Video Captioning, AD Post-
Editing, and Audio Description Evaluation, respectively.
The figure illustrates the varying contributions to AD
generation research across different domains. For ADE,
“other” represents non-AI-related research disciplines
such as psychology.

review the material and create AD scripts (ideally
in cooperation with blind audio describers or au-
dio describers with visual impairments) tailored
to the broadcast content. The final step involves
recording the AD scripts in a studio, potentially
with the involvement of a blind prooflistener, or
synthesizing the speech and subsequently mixing
the acoustic ADs with the original broadcast au-
dio (Fryer, 2016). Producing ADs for a 90-minute
movie can take approximately 35 to 40 working
hours1, underscoring the vast amount of informa-
tion that remains inaccessible to blind and visually
impaired individuals without these ADs. This high-
lights the significant value and necessity of the
work carried out by professional audio describers.

However, training professional audio describers
is a time-intensive process (Matamala and Orero,
2007; Jankowska, 2017; Colmenero et al., 2019;

1Experience shared by audio describers we work with.
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Figure 2: Components of modern AD generation systems with LLM/VLM participation. (a) Dense Video
Captioning: the task of generating AD scripts from the given video clips; (b) AD Post-editing: the task of
polishing the generated AD scripts; (c) AD Script Creation Guidelines: used as guidance for Post-editing; (d) AD
Evaluation: Quality assessment of generated ADs. Example taken from the Swiss TV show 1 gegen 100.

Mazur and Chmiel, 2021; Yan and Luo, 2023). In
addition, depending on the provider, AD scripts are
sometimes required in multiple languages. Conse-
quently, a shortage of qualified describers exists,
leading to high service costs and unmet demand for
accessible media.

1.2 Motivation
As the demand for AD generation continues to
grow due to reinforced legal requirements (Braun
and Starr, 2022), both the NLP and CV community
have dedicated efforts to solve this problem. In
recent years, generative AI technologies such as
LLMs (Brown et al., 2020; Touvron et al., 2023)
and VLMs (Radford et al., 2021; Ramesh et al.,
2022; Li et al., 2023; Zhang et al., 2023a) have
demonstrated remarkable capabilities in addressing
numerous real-world challenges, including text and
image generation. These advancements pave the
way for the (semi-)automation of AD generation,
as the crucial steps of generating ADs can be of-
floaded to these large models with significantly less
human involvement. Figure 2 depicts the compo-
nents of a typical modern AD generation system
with three crucial steps:

Dense Video Captioning (DVC) Given a video,
the task is to generate AD scripts that consist of in-

formative descriptions. This inherently multimodal
task requires integrating both visual and textual
features to create coherent and contextually appro-
priate AD scripts.

AD Post-editing (APE) After generating the ini-
tial ADs, refine them according to a set of pre-
defined principles. This post-editing process en-
sures that the ADs meet specific quality standards
and accurately convey the intended information.
Note that given sufficient performance of the pre-
ceding DVC step, this step would not be necessary;
however, the state-of-the-art is such that the APE
stage is not yet dispensable.

AD Evaluation (ADE) The generated ADs must
undergo both quantitative and qualitative assess-
ments, ideally with the involvement of the target
groups. This evaluation process measures the ef-
fectiveness, accuracy, and overall quality of the
ADs, ensuring they meet the necessary criteria for
accessibility and usability.

Audio captioning (or audio understanding), a
task focused on summarizing or describing audi-
tory information (such as voice effects and envi-
ronmental sounds), is often misconstrued as part of
AD generation. The primary target group for AD
generation comprises blind persons and persons
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with visual impairments, who do not necessarily
have hearing impairments. We therefore exclude
the discussion of audio captioning.

In this survey, we investigate generative AI
technologies for developing AD generation sys-
tems, with a special focus on the participation
of LLMs/VLMs. Specifically, we concentrate on
the latest research outcomes in NLP and CV (i.e.
papers published from 2020 onward, signifying the
release of GPT-3 by OpenAI).

This survey is structured as follows: Section 2
provides a brief review of works on DVC; Sec-
tion 3 offers an overview of post-editing techniques
for AD generation (APE); Section 4 discusses the
evaluation of AD generation systems (ADE); Sec-
tion 5 summarizes the challenges of integrating
LLMs/VLMs to real-time AD generation; Section 6
explores future research directions for developing
automatic AD generation systems; and Section 7
summarizes the main takeaways of this survey.

2 Dense Video Captioning for AD Script
Generation

Dense video captioning (DVC) addresses the chal-
lenge of establishing connections between clips
in videos and their natural language descriptions
(Qasim et al., 2023). The term dense in DVC sig-
nifies the aim to capture as much information as
possible to fit the description requirements, which
makes DVC a necessary step for AD generation.
Typically, DVC outputs multiple sentences as de-
scriptions (Liu and Wan, 2021).

Figure 3: Process of DVC: it is often composed of
two sub-tasks, i.e., visual feature extraction (VFE)—
where a visual encoder decides whom and what to
describe, and dense caption generation (DCG)—where
a text decoder works on how to describe. Film taken as
example: Baghdad in My Shadow (2019).

For the purpose of automatic AD generation, two

sub-tasks of DVC are of particular importance:

• Visual Feature Extraction (VFE), which in-
volves extracting visual features with a visual
encoder within videos that are of interest for
DVC. When specialized for AD generation,
it means identifying characters (whom) and
events (what) that are important for ADs.

• Dense Caption Generation (DCG), which
pertains to the methods of automatically gen-
erating ADs in the form of natural language
scripts derived from the detected event pro-
posals (how).

In this survey, we include works on identifying
actions, events, and scenes within the context of
DVC, as they are all commonly represented in ADs
produced by professionals. While actions refer to
specific movements (e.g., eating, running, leaving)
performed by a subject, typically classified into
predefined classes and extracted as bounding boxes
within video frames, events can be understood as a
series of actions occurring within a temporal range
in the video. Scenes, correspondingly, refer to co-
herent segments of a video that depict a specific
event or sequence of actions happening in a contin-
uous time frame, often within a particular setting.

Since ADs are typically inserted during silent
moments between dialogues to avoid interference
with the ongoing narration—a task that is rela-
tively straightforward—this survey does not delve
deeply into techniques for identifying specific
video frames for AD insertion. Instead, we fo-
cus on reviewing VFE and DCG methodologies to
improve AD generation quality, particularly with
the integration of LLMs/VLMs.

Next, in Section 2.1 and 2.2, we provide a sum-
mary of the relevant VFE and DCG methodologies
that can be applied to AD generation. We list rele-
vant studies in Table 1.

2.1 Visual Feature Extraction
Convolution-based visual feature extractors
(Krizhevsky et al., 2012; Simonyan, 2014; He
et al., 2016) were the mainstream of computer
vision research for a long time. In recent years,
the Vision Transformer (ViT; Dosovitskiy et al.
(2020)) has emerged as a central component in
modern VFE systems and has been integrated
into numerous multimodal VLMs such as CLIP
(Radford et al., 2021). Although not being the first
work that tries to apply Transformers for CV tasks,
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Research Venue Task Video Encoder Text Decoder Method | Dataset

Yun and Ro (2024) CVPR’24 VFE Vanilla ViT not applicable SHViT
Hassani et al. (2023) CVPR’23 VFE Swin Transformer not applicable NAT
Chen et al. (2023) ICCV’23 VFE Vanilla ViT not applicable EVAD
Liu et al. (2023) CVPR’23 VFE EfficientViT not applicable EfficientViT
Zhao et al. (2022) CVPR’22 VFE Vanilla ViT not applicable TubeR
Liu et al. (2022) CVPR’22 VFE Swin Transformer not applicable Video Swin Transformer
Yang et al. (2022) CVPR’22 VFE Vanilla ViT not applicable Lite Vision Transformer
Wu et al. (2022b) AAAI’22 VFE Vanilla VFE not applicable Pale Transformer
Korbar and Zisserman (2022) BMVC’22 VFE CLIP-ViT-B/32 not applicable CLIP-PAD | CiA
Yin et al. (2022) CVPR’22 VFE DeiT not applicable A-ViT
Wu et al. (2022a) CVPR’22 VFE MViT-v2 not applicable MeMViT
Brown et al. (2021b) ICCV’21 VFE ResNet50 not applicable MuHPC | VPCD
Huang et al. (2021) arXiv’21 VFE Swin Transformer not applicable Shuffle Transformer
Liu et al. (2021) ICCV’21 VFE Hierarchical ViT not applicable Swin Transformer
Rao et al. (2021) NeurIPS’21 VFE ViT/DeiT/LV-ViT not applicable DynamicViT
Wu et al. (2020) ECCV’20 VFE ResNet50-FPN not applicable Context-Aware RCNN
Huang et al. (2020b) ECCV’20 VFE not applicable not applicable MovieNet
Kukleva et al. (2020) CVPR’20 VFE NesNeXt-101 not applicable LIReC

Research Venue Task Video Encoder Text Decoder Method | Dataset

Lin et al. (2024) ECCV’24 DCG CLIP-ViT-B/16 LlaMA-2 MovieSeq
Chu et al. (2024) arXiv’24 DCG GPT-4V GPT-4 LLM-AD
He et al. (2024) CVPR’24 DCG CLIP-ViT-G/14 + Q-Former Vicuna-v1.5 MA-LLM
Luo et al. (2024) arXiv’24 DCG TinyLlaVA (SigLIP) TinyLlaVA (TinyLlama/Phi-2) Shotluck Holmes
Maaz et al. (2024) arXiv’24 DCG CLIP-ViT-L/14 + InternVideo-v2 Vicuna-v1.5/LlaMA-3/Phi3-Mini VideoGPT+ | VCGBench-Diverse
Ye et al. (2024) COLING’24 DCG Video-LlaVA-v0 LlaMA-2 MMAD
Yue et al. (2024) arXiv’24 DCG VideoChat-2/Qwen-VL GPT-4V Movie101v2-(zh/en)
Zhou et al. (2024) CVPR’24 DCG CLIP-ViT-L/14 T5-Base Streaming DVC
Blanco-Fernández et al. (2024) arXiv’24 DCG Deformable Transformer Deformable Transformer LVC
Xie et al. (2024) arXiv’24 DCG VideoLlaMA-(2) LlaMA-3/Gemma-2 AutoAD-Zero | TV-AD
Han et al. (2024) CVPR’24 DCG Q-Former OPT/LlaMA-2 AutoAD III | (CMD/HowTo)-AD
Yue et al. (2023) ACL’23 DCG Transformer Transformer MNScore | Movie101-zh
Jung et al. (2023) ACL’23 DCG LXMERT EMT + PDVC KOFCL
Han et al. (2023b) ICCV’23 DCG CLIP-ViT-B/32 GPT-2 AutoAD II | MAD-(t-eval/L-char)
Han et al. (2023c) CVPR’23 DCG CLIP-ViT-B/32 GPT-2 AutoAD | MAD-v2/AudioVault
Shen et al. (2023) ICCV’23 DCG CLIP-ViT-L/14 Multimodal Transformer CoCap
Yang et al. (2023a) ACL’23 DCG CLIP-ViT-B/16 Vanilla Transformer MultiCapClip
Lin et al. (2023a) arXiv’23 DCG GPT-4V GPT-4 MM-VID
Han et al. (2023a) arXiv’23 DCG CLIP-ViT-L/14 + Q-Former MiniGPT-4/GPT-4 Shot2Story20K
Soldan et al. (2022) CVPR’22 DCG CLIP-ViT-B/32 not applicable MAD
Zhang et al. (2022) EMNLP’22 DCG CLIP-ViT-B/32 Vanilla Transformer MMN/RMN/RNL | MovieUN
Zhu et al. (2022) COLING’22 DCG CNN T5 Seg+Cap
Deng et al. (2021) CVPR’21 DCG CNN Vanilla Transformer SRG
Wang et al. (2021) ICCV’21 DCG Deformable Transformer Vanilla Transformer + LSTM PDVC
Liu and Wan (2021) ACL’21 DCG BMN BERT + Vanilla Transformer VPCSum
Zhu and Yang (2020) CVPR’20 DCG CNN + Faster R-CNN Tangled Transformer ActBERT
Lei et al. (2020) ECCV’20 DCG XML not applicable XML | TVR
Fang et al. (2020) EMNLP’20 DCG CNN + LSTM Vanilla Transformer V2C-Transformer | V2C
Gurari et al. (2020) ECCV’20 DCG not applicable not applicable VizWiz-Captions
Lin et al. (2020) EMNLP’20 DCG ECO Vanilla Transformer SC-SSL
Shigeto et al. (2020) LREC’20 DCG ResNet-152 + ResNeXt-101 GRU STAIR Actions
Huang et al. (2020a) AACL’20 DCG Multimodal Transformer Vanilla Transformer ViTT

Table 1: A collection of studies related to dense video captioning (DVC). We denote works that introduce a new
dataset in yellow, works that propose a new method in blue, and works that deliver both in green.

ViT gained its popularity due to its simple design
and scalability.

ViT preserves the foundational architecture of
the standard Transformer by mapping an image
into a sequence of patches, analogous to text to-
kens in NLP tasks. These patches are then pro-
cessed to produce linear embeddings, which serve
as the inputs to the standard Transformer encoder.
In comparison to convolutional kernels, the self-
attention mechanism in ViT can be viewed as a soft
convolutional inductive bias, while being capable
of effectively capturing global dependencies within
the input patches (d’Ascoli et al., 2021; Raghu
et al., 2021). This enables ViT models to exhibit

exceptional feature extraction capabilities, result-
ing in its outstanding performance across various
CV tasks (Chen et al., 2021; Bhojanapalli et al.,
2021; Li et al., 2022; Minderer et al., 2022).

Although ViT-based solutions offer significant
advantages, they are often constrained by the
high complexity associated with exhaustive self-
attention computations. To mitigate this challenge,
recent research has concentrated on improving effi-
ciency through the development of advanced self-
attention computation techniques (Huang et al.,
2021; Liu et al., 2021; Yang et al., 2022; Liu et al.,
2022; Wu et al., 2022b; Hassani et al., 2023), dy-
namic feature selection methods (Rao et al., 2021;

474



Figure 4: Datasets for AD generation/video captioning.
The numbers are visualized in log scale. Red color
indicates more recent datasets.

Yin et al., 2022; Chen et al., 2023), and optimized
memory scheduling strategies (Wu et al., 2022a;
Liu et al., 2023; Yun and Ro, 2024). These ap-
proaches are typically evaluated using video action
recognition benchmarks, where the system’s output
is categorized into predefined action classes. AD
generation systems often utilize these identified ac-
tions as part of the events (what) that need to be
described.

A crucial additional step for VFE in the context
of AD generation is the identification of characters
involved in events (Kukleva et al., 2020; Brown
et al., 2021b). This process usually involves com-
paring the extracted features against stored charac-
ter profiles in an external database (Brown et al.,
2021a; Han et al., 2023b), which is essentially an
information retrieval task. However, creating and
indexing large databases for streaming media con-
tent is both costly and often impractical due to
copyright concerns. Consequently, by utilizing
knowledge encoded in pre-trained VLMs, zero-
shot character identification has emerged as a more
economical and feasible solution (Bhat and Jain,
2023; Patrício and Neves, 2023; Xie et al., 2024).

2.2 Dense Caption Generation

To generate dense video captions from extracted
visual features, advanced VLMs are employed to
learn the alignment between the generated text to-
kens and the corresponding visual tokens. For this
purpose, multimodal DCG datasets are needed for
LLMs to learn the alignment.

Creating large-scale datasets for training is a
resource-intensive endeavor. To reduce the work-
load, researchers often augment existing video

datasets with text captions (Lei et al., 2020; Huang
et al., 2020a; Gurari et al., 2020; Shigeto et al.,
2020; Huang et al., 2020b; Oncescu et al., 2021;
Yue et al., 2023; Han et al., 2023a; Yue et al.,
2024), or retrieve video counterparts for text anno-
tations (Rohrbach et al., 2017; Soldan et al., 2022;
Zhang et al., 2022). Regardless of the annotation
approach, subtitles play a crucial role in creating
these video-text alignments, often transcribed us-
ing automatic speech recognition (ASR) models
such as Whisper-based models (Bain et al., 2023;
Radford et al., 2023).

In recent years, DCG research has increasingly
focused on zero-shot caption generation (Yang
et al., 2023a), representing video context as mul-
timodal sequences (Lin et al., 2024), contextualiz-
ing visual features using separate image and video
encoders (Maaz et al., 2024), developing end-to-
end captioning models (Zhu and Yang, 2020; Deng
et al., 2021; Wang et al., 2021; Zhu et al., 2022), en-
hancing model efficiency through memory storage
(He et al., 2024; Zhou et al., 2024), and fine-tuning
models on well-curated data (Luo et al., 2024). Ad-
ditionally, efforts have been made to augment ADs
with detailed environmental and object information
(Fang et al., 2020; Jung et al., 2023; Ye et al., 2024).
While these efforts have achieved remarkable per-
formance in generating video captions, they have
rarely been fully dedicated to the specific task of
AD generation.

Generating high-quality ADs requires the inte-
gration of both local context (features within the
current video frame) and global context (features
from past or future frames). The typical length of
movies and other streaming media has caused a
trade-off between inference speed, which is par-
ticularly critical for live video captioning (Blanco-
Fernández et al., 2024), and the quality of the ADs.

To tackle the challenges of curating supervised
data and generating high-quality ADs, researchers
at the University of Oxford introduced a series of
cutting-edge models. In their initial work, Han et al.
(2023c) bridge foundation LLM (GPT) and VLM
(CLIP) models to perform vision-conditioned AD
generation, optimizing the following loss function:

LNLL = − log pΘ (Txi |hxi ,hAD,hSub) ,

where the model leverages representations of con-
text frame (hxi from CLIP with xi being the cur-
rent video clip), subtitles (hSub), and previous ADs
(hAD) to enhance the generated AD (Txi). Thanks
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to its modular design, the model can be pre-trained
even with limited large-scale data for one modality
(i.e., visual-only or text-only pre-training). Their
AutoAD model demonstrated significant qualita-
tive and quantitative improvements in AD genera-
tion.

In their subsequent work (Han et al., 2023b), the
authors addressed the character naming issue in
AutoAD by introducing a database containing char-
acter names, actor profiles, and CLIP face features.
Additionally, the authors explored various methods
for predicting AD temporal proposals, specifically
identifying movie pauses suitable for AD insertion.
With these enhancements, their AutoAD-II model
achieved further improvements in AD generation
quality.

Recently, the authors extended their research
with the publication of AutoAD-III (Han et al.,
2024), introducing two new AD datasets created
from raw videos with soundtracks, a novel Q-
Former-based architecture for AD generation, and
two new AD evaluation metrics. This work under-
scores the advancement of LLM/VLM participa-
tion in AD generation.

In their latest work (Xie et al., 2024), the authors
explore a two-stage zero-shot approach to AD gen-
eration. Initially, a VLM is prompted with key
information, such as character identities and their
interactions, to generate dense captions. These cap-
tions are then further summarized into ADs by an
LLM. The authors evaluated their AutoAD-Zero
model on a custom dataset, TV-AD, achieving com-
petitive results even when compared to supervised
models trained on gold-standard ADs.

The AutoAD series of papers illustrate the ef-
fectiveness of utilizing LLMs and VLMs for AD
generation. Recently, prompt-based pipelines em-
ploying GPT-4V as the video encoder and GPT-4
as the text decoder have shown significant potential
in producing ADs that align with human produc-
tion standards (Lin et al., 2023a; Chu et al., 2024).
However, further enhancements in generation qual-
ity may require the integration of expert knowledge
to achieve more coherent and contextually accurate
AD narrations.

3 AD Post-editing

While a simple video player and a Word editor may
be enough for audio describers to edit AD scripts
(Minutella, 2022), a variety of specialized profes-
sional AD software is available to enhance the qual-

ity and efficiency of this process. These tools in-
clude options such as CaptioningStar, VDManager
(Gagnon et al., 2010), LiveDescribe (Branje and
Fels, 2012), YouDescribe, 3Play Media, LiveVoice,
Fingertext, Rescribe (Pavel et al., 2020), Frazier,
Stellar, and Audible Sight. These platforms offer
advanced features tailored specifically for creat-
ing, editing, and managing human- or machine-
generated ADs, thus providing significant advan-
tages over more general-purpose tools.

Machine-generated ADs often contain grammat-
ical errors and other undesirable elements. To
address this issue, text editing models are de-
veloped and trained to improve the quality of
these texts. These models typically utilize train-
ing data that includes human-simplified or cor-
rected texts (Faltings et al., 2021; Kim et al., 2022;
Zhang et al., 2023b). Among these, many LLM-
based models are fine-tuned with instructions (Ra-
heja et al., 2023, 2024; Shu et al., 2024; Ki and
Carpuat, 2024), while others are trained using
semi-autoregressive or non-autoregressive decod-
ing techniques (Mallinson et al., 2022; Agrawal
and Carpuat, 2022; Zhang et al., 2023b).

Currently, post-editing is still crucial for ensur-
ing adherence to AD production principles (e.g.,
Figure 2 (c)). However, we contend that future
research should focus on the automation of AD
generation, thereby eliminating the need for human
post-editing.

4 AD Evaluation

4.1 Automatic Evaluation

Automatic evaluation of ADs typically involves
comparing the generated ADs to the gold standards.
Classic text generation metrics are employed to
assess: 1) textual relevance through N-gram over-
laps (e.g., BLEU (Papineni et al., 2002), ROUGE-L
(Lin, 2004), METEOR (Banerjee and Lavie, 2005),
and CHRF (Popović, 2015)); or 2) embedding-
based semantic similarity between the generated
and ground-truth ADs (e.g., MoverScore (Zhao
et al., 2019), BERTScore (Zhang et al., 2020),
BARTScore (Yuan et al., 2021), (Ref)CLIPScore
(Hessel et al., 2021), EMScore (Shi et al., 2022),
and (Ref)PAC-S (Sarto et al., 2023)).

Given the multimodal nature of AD generation,
image and video captioning metrics are also widely
employed to evaluate the quality of generated ADs.
Unlike those traditional text generation metrics,
CIDEr (Vedantam et al., 2015) assesses N-gram
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overlaps between generated captions and a set of
reference captions, under the assumption that ef-
fective machine-generated captions should resem-
ble those produced by a diverse group of humans.
SPICE (Anderson et al., 2016) evaluates captions
by converting them into graph structures and com-
paring their semantic propositions. SPIDEr (Liu
et al., 2017), a linear combination of SPICE and
CIDEr, measures both semantic accuracy and syn-
tactic fluency in generated captions. Fujita et al.
(2020) introduced SODA, a metric designed to eval-
uate machine-generated captions based on their ef-
fectiveness in describing the video narrative, with
particular emphasis on maintaining temporal order
and textual coherence of the captions. BERTHA
(Lebron et al., 2022), a BERT-based model trained
on human-evaluated captions, is designed to max-
imize the correlation between automatic evalua-
tion and human judgment. Recently, new image
captioning metrics based on multimodal language
models have been introduced to enhance scoring
explainability (Hu et al., 2023; Chan et al., 2023;
Lee et al., 2024), further highlighting the growing
role of LLMs and VLMs in evaluating machine-
generated AD scripts.

Specialized AD evaluation metrics were also
explored. Yue et al. (2023) proposed MNScore,
which evaluates the AD quality by accounting for
both semantic similarity and character name gener-
ation. Han et al. (2024) introduced two additional
metrics: CRITIC, a coreference-based approach for
measuring character recognition performance, and
LLM-AD-Eval, a metric based on LLM-prompting
that assesses the overall AD quality.

4.2 Human Evaluation
Many human evaluation works focus on how AD
end users in different countries perceive ADs in
terms of their usefulness.

Lopez et al. (2018) explored the usefulness of
film and television ADs in the UK. The authors
noted that while ADs are useful, there is still room
for improvement, particularly in terms of person-
alization and the integration of sound design tech-
niques (which are proven to be effective in their
later work (Lopez et al., 2021)), which could po-
tentially create a more immersive experience for
AD end users. Reviers (2018) analyzed Dutch films
conducted in Flanders and the Netherlands and con-
firmed the found of idiosyncratic language patterns.
Ferziger et al. (2020) examined the reception of
ADs in cultural events in Israel, such as theater

patrons, where participants reported high levels of
overall satisfaction with the AD services provided.
Bausells-Espín (2022) explored the reception of
ADs in a pedagogical setting for foreign language
(Spanish) teaching. Their study found that, depend-
ing on the students’ perceived level of difficulty,
ADs can be highly helpful in developing transfer-
able and communicative skills such as summarizing
and narrating. Arias-Badia and Matamala (2023)
found that AD scripts in Catalan adhere to charac-
teristics of “easy-to-understand” language, utiliz-
ing simple syntax and lexicon. Yang et al. (2023b)
conducted a systematic study on the availability
and reception of AD services in mainland China,
revealing that, despite significant challenges such
as a shortage of AD professionals, limited foun-
dational research, and copyright constraints, AD
end users expressed satisfaction with the quality of
services even though their comprehension of the
movies remained low. Leong et al. (2023) inves-
tigated the effectiveness of ADs in aiding blind
and visually impaired individuals to interact within
3D virtual environments. The authors concluded
that ADs alone are insufficient for facilitating nav-
igation and orientation in such environments and
recommended the integration of additional auditory
cues such as sound landmarks.

Other relevant studies focus on evaluating the na-
ture of ADs themselves, rather than their functions
and effects. For example, Jekat and Carrer (2018)
compare the reception of two distinct AD styles:
descriptive and interpretative, among German-
speaking AD end users. The study found that,
contrary to expectations, users reported a more
immersive movie experience with interpretative
ADs. This finding challenges the traditional prefer-
ence for descriptive ADs, which have long been the
standard among many German public broadcasters.
Gallego (2020) investigated the extent to which sub-
jective ADs in art museums are preferred by blind
and visually impaired individuals. Their methodol-
ogy, which integrates cognitive linguistics and art
theory, offers valuable insights into how subjective
ADs can effectively enhance guided tours in art mu-
seum settings. By contrast, Muñoz (2023) focused
on analyzing objectivity in the ADs of Spanish Net-
flix videos. The results indicate that these ADs
are neither purely objective nor entirely subjective.
Wang et al. (2022) proposed six distinct methods
for assessing the emotional responses of AD users
during museum tours.

Human evaluation of ADs often spans multiple
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research domains, including psychology, pedagogy,
and cognitive science, employing methodologies
that range from traditional questionnaire-based ap-
proaches to measuring neural activities such as
EEG signals. However, these interdisciplinary in-
sights have yet to be integrated into the AD gener-
ation process using LLM and VLM models. We
therefore advocate for multidisciplinary collabo-
rations between AI and non-AI communities to
jointly address the challenges in AD generation,
reduce technical barriers, and adhere more closely
to user-centered principles.

5 Challenges of LLM/VLM Integration

5.1 Real-time AD Generation

State-of-the-art LLMs and VLMs are practically
expensive as they often require either large on-
site computing power or stable cloud deployment
(Zhang et al., 2024; Qu et al., 2025), making AD
generation difficult to achieve real-time perfor-
mance, especially for high-resolution video streams
(Chang et al., 2024) or live events (Di Giovanni
et al., 2018; Wilt and Farbood, 2019).

Research in Parameter-efficient Transfer Learn-
ing (Houlsby et al., 2019) such as Adapters (Hu
et al., 2021; Dettmers et al., 2024) and Prefix-
tuning (Li and Liang, 2021) have significantly
lower the barrier of fine-tuning LLMs/VLMs under
resource-constrained scenarios (Cai et al., 2024).
In theaters and sports events, where high respon-
siveness and precise vision-text alignments are es-
sential, deploying LLMs/VLMs on edge devices
such as smartphones remains a significant technical
challenge (Qin et al., 2024). These challenges arise
primarily due to the limited memory, computational
power, and bandwidth of edge devices, as they
are difficult to manage the substantial overhead of
LLMs/VLMs, even when parameter-efficient tech-
niques are applied (Lin et al., 2023b).

5.2 Real-time User Feedback

User feedback is crucial for adjusting the speed,
style, level of detail, language, voice, and genre
(e.g., movie, sports, lecture, etc.) to maximize
user experience. While generating of high-quality
ADs has been a prominent focus of research, the
development of effective human-computer interac-
tion (HCI) for collecting real-time user feedback
remains relatively understudied.

Obtaining meaningful user feedback in real-time
from blind persons and persons with visual im-

pairments introduces technical challenges. Tradi-
tionally, keyboard-based interaction is a primary
mechanism for gathering user input in many sce-
narios. For example, Natalie et al. (2024) proposed
CustomAD, an interface leveraging keyboard navi-
gation to enable users to customize AD generation
settings. Similarly, Ning et al. (2024) developed
SPICA, an AI-powered system designed to facili-
tate video exploration using arrow keys for blind
persons and persons with visual impairment.

Nevertheless, relying on keyboard interaction
is less practical for collecting user feedback on
edge devices such as smartphones, where alterna-
tive input methods such as voice control may be
more suitable and efficient (Szarkowska, 2011; Ya-
mamoto et al., 2024).

AD research related to HCI design must ensure
the accessibility of the feedback mechanism itself,
addressing diverse user needs and preferences, and
managing potential cognitive load during real-time
interactions. Addressing these challenges is critical
to advancing adaptive AD systems that can enhance
user satisfaction and inclusiveness in real-world
applications.

6 Future Research

AD generation is a complex task that extends far
beyond the mere application of LLMs and VLMs.
Building on the research reviewed above, we out-
line the following future research directions.

6.1 AD Generation with Human Preferences
Although general international AD standards, such
as ISO/IEC TS 20071-21:20152, have already ex-
isted for a long time, individual nations and audio
describers often follow their own inclusive guide-
lines for AD production (Mazur, 2024). These
specific rules have not been incorporated into the
tuning process of LLMs/VLMs. Consequently,
tuning AD generation systems with these human-
crafted guidelines would be beneficial. This could
be achieved through LLM alignment techniques
(Ouyang et al., 2022; Rafailov et al., 2024; Meng
et al., 2024; Ethayarajh et al., 2024), where AD gen-
eration models are optimized to produce outputs
that align with human preferences.

6.2 Personalized AD Generation
Recent research indicates that varying degrees of
visual impairment can significantly influence per-

2https://www.iso.org/standard/63061.
html
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ception of ADs (Sève and Horst, 2024), which un-
derscores the importance of personalizing AD gen-
eration according to individual requirements of end
users (Natalie et al., 2024; Cheema et al., 2024).
In addition, AD generation systems for movies
and TV episodes should differ from those for art
galleries and museums. Moreover, AD generation
systems tailored for individuals without intellectual
disabilities should be distinct from those intended
for persons with intellectual disabilities. Combin-
ing AD generation with text simplification could
further enhance accessibility for diverse audiences
(Braun and Starr, 2021).

Last but not least, AD generation systems should
also prioritize scenarios such as higher education,
where ADs are crucial in supporting blind students
and students with visual impairments for better
learning experience.

6.3 Machine Translation of AD Scripts
Given that ADs are often available in only one
language, research has focused on utilizing ma-
chine translation models to translate ADs from
one language to another (Matamala and Ortiz-Boix,
2016). This approach aims to facilitate the produc-
tion of ADs in situations where multilingual audio
describers are not available. Fernández-Torné and
Matamala (2016) tested machine translation mod-
els on English-Catalan AD script pairs, while Ver-
cauteren et al. (2021) conducted similar research
with AD script pairs of English-Dutch. Matamala
and Villegas (2016) built a multilingual multimodal
corpus for ADs. Torné (2016) presented an evalua-
tion of five English-Catalan AD translation sys-
tems, employing both automatic and subjective
post-editing metrics to assess their performance.
These studies not only confirmed the potential of
machine translation models for AD translation but
also highlighted the significant human post-editing
efforts required to achieve satisfactory quality.

The most relevant research in AD translation
with LLMs/VLMs is SwissADT, proposed by Fis-
cher et al. (2024), the first multilingual and multi-
modal AD translation system designed specifically
for translating AD scripts in Switzerland’s three
main languages by utilizing LLMs and incorporat-
ing visual inputs from video clips. Their system
uses data collected from Swiss national television
and synthetic ADs generated with DeepL, demon-
strating improved translation quality through both
automatic and human evaluations.

However, while promising strides have been

made in AD translation research, it remains under-
explored and not yet fully integrated into AD pro-
duction pipelines. More research is needed to refine
these models and establish their role in practical
applications, ensuring they meet the high standards
required for AD production.

7 Conclusions

As an inclusive product, ADs have greatly en-
hanced access to information for blind persons and
persons with visual impairments. However, tradi-
tional AD production, which relies on human audio
describers, is often both costly and time-consuming.
In contrast, generative AI technologies, such as
LLMs and VLMs, have shown significant potential
in automating the AD generation process. In this
survey, we reviewed the technologies that are ap-
plicable to AD generation, including dense video
captioning, (automatic) post-editing, and AD eval-
uation. As emphasized by Hirvonen et al. (2023),
AD production should adhere to user-centric prin-
ciples, and we believe that LLMs and VLMs can
play a crucial role in supporting this requirement.

Limitations

Our study has two main limitations: 1) We did not
explore other DVC sub-tasks, such as video tempo-
ral grounding, which involves associating a natural
language query with a specific temporal video seg-
ment. This omission is because ADs are meant to
serve as the final output of AD generation systems,
not as queries for retrieving content in videos that
blind individuals or individuals with visual impair-
ment cannot perceive. However, we acknowledge
that blind individuals and individuals with visual
impairment may have information retrieval needs,
such as revisiting previous clips in a video, poten-
tially using voice commands. Unfortunately, we
found no relevant literature addressing this prob-
lem; 2) Given that generated ADs are typically
inserted during silent moments between dialogues
to avoid interfering with the ongoing narration, this
survey does not thoroughly examine techniques for
identifying suitable pauses for AD insertion.
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A Mathematical Details of Automatic
Evaluation Metrics

A.1 Metrics Based-on N-gram Matching
Text generation metrics can be used to evaluate
N-gram overlaps between the ground truth and the
generated ADs.

BLEU BLEU (Papineni et al., 2002) calculates
the precision of unigram, bigram, trigram, and 4-
gram matches between the generated text and ref-
erence texts.

BLEU = BP · exp
(

N∑

n=1

wn log pn

)
,

here pn represents the N-gram precisions, wn the
weight for each N-gram order, and BP the brevity
penalty. As one of the most widely used evalua-
tion metric for machine translation, BLEU however
sometimes favors shorter, generic ADs, even when
longer and more detailed ADs would be more in-
formative for the target group.

METEOR METEOR (Banerjee and Lavie,
2005) enhances BLEU by incorporating flexible
N-gram matching, including paraphrasing, stem-
ming, and synonym recognition.

METEOR = Fmean · (1− Penalty),
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here Fmean is a harmonic mean of matching pre-
cision and recall (which is usually weighted 9
times more than precision), and Penalty is a chunk
penalty to account for fluency by penalizing scat-
tered word alignments.

ROUGE-L ROUGE-L (Lin, 2004) is a recall-
focused evaluation metric that measures the longest
common subsequence (L) between a generated text
and a reference text. Unlike BLEU which relies on
N-gram precision, ROUGE-L captures sentence-
level fluency and structure by evaluating how well
a machine-generated output aligns in order with
the reference.

Rouge− L =
(1 + β2)PLRL

PL + β2RL
,

here β is a weight factor assigned to precision PL

and recall RL of the longest common subsequence
and is usually set to 1. ROUGE-L is commonly
used to evaluate machine-generated text summa-
rizations. Since it prioritizes the longest common
subsequences, it may overemphasize longer texts
at the expense of conciseness and correctness, in
contrast to BLEU.

CHRF CHRF (Popović, 2015) computes the F-
score of character-level N-gram matches.

CHRF =
(1 + β2)PR

β2P +R
,

here β is a weight factor usually set to 1. CHRF is
more robust to evaluate machine-generated texts of
morphologically rich languages. However, CHRF
is a surface metric that ignores the contextualized
semantics between the candidate and reference text.
Valid candidate AD like “A person wearing a crim-
son jacket crosses the road.” will receive a low
CHRF score compared to the reference “A man in
a red coat walks across the street.”.

CIDEr CIDEr (Vedantam et al., 2015) measures
how well a generated caption ci aligns with a set
of multiple human-annotated reference captions
Si = {si1, . . . , sim}, emphasizing consensus and
informativeness.

CIDEr(ci, Si) =

N∑

n=1

wn · CIDErn(ci, Si),

where

CIDErn(ci, Si) =
1

m

∑

j

gn(ci) · gn(sij)

||gn(ci)|| · ||gn(sij)||
,

with gn(·) being the TF-IDF weightening vector.

SPICE Differs from N-gram overlap metrics,
SPICE (Anderson et al., 2016) parses both can-
didate caption c and reference caption S into struc-
tured meaning representations (i.e., scene graphs)
and count the matching tuples.

SPICE(c, S) =
2 · P (c, S) ·R(c, S)

P (c, S) +R(c, S)
,

which is essentially F1 measure between precision
and recall of matched graph tuples.

A.2 Metrics Based-on Semantic Matching

A second family of metrics leverages text embed-
dings to assess the semantic relevance between the
candidate and reference texts. These metrics offer
the advantage of capturing contextualized meaning,
aligning more closely with human judgments, and
are therefore commonly used in image and video
captioning tasks.

MoverScore MoverScore (Zhao et al., 2019) ex-
tends the idea of Word Mover’s Distance (Kusner
et al., 2015) by computing the minimum cost of
transforming the candidate text into the reference
text using word embeddings. As an optimal trans-
port problem, MoverScore can be formulated as

MoverScore(xn, yn) : = min
F∈R|xn|×|yn|

⟨C,F ⟩,

s.t. F1 = fxn , F⊤1 = fyn .

where F is the transportation flow matrix denot-
ing the amount of flow transporting from N-grams
in candidate text to the reference text. C is the
transportation cost matrix with entries being the Eu-
clidean distances between the contextualized word
embeddings.

BERTScore BERTScore (Zhang et al., 2020)
compares contextualized word embeddings be-
tween the reference and candidate texts using the
pre-trained language model BERT (Devlin et al.,
2019) and produce F1 measure from greedily com-
puted precision and recall.

RBERT =
1

|x|
∑

xi∈x
max
x̂j∈x̂

x⊤
i x̂j ,

PBERT =
1

|x̂|
∑

x̂j∈x̂
max
xi∈x

x⊤
i x̂j ,

FBERT = 2 · PBERT ·RBERT

PBERT +RBERT
.
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Here x and x̂ represent sequence of reference and
candidate tokens. However, using an encoder-
only model as the evaluation backbone for de-
coded texts may introduce application mismatches,
as it does not account for fluency, coherence, or
decoding-specific artifacts present in generative
outputs (Deutsch et al., 2022).

BARTScore Unlike BERTScore which relies on
embedding-based similarity matching using pre-
trained text encoders, BARTScore (Yuan et al.,
2021) evaluates text generation based on the likeli-
hood under a pre-trained BART model (Lewis et al.,
2020), making it context-aware and fluent-focused.

BARTScore =
m∑

t=1

ωt log p(yt|y<t,x, θ),

here the weight wt can be initialized by inverse
document frequencies (IDF).

BERTHA Lebron et al. (2022) introduced
BERTHA, a BERT-based model equipped with
a scoring head trained on human evaluations of
machine-generated captions to enhance alignment
with human judgment. The model is optimized to
maximize the Pearson correlation coefficient with
human assessments, ensuring a more accurate and
human-aligned evaluation of generated captions.

A.3 Metrics Based-on Multimodal Alignment
Metrics based on N-gram overlap and semantic
relevance are text-only evaluation methods. When
applied to the assessment of generated ADs, they
fail to capture visual saliency and consistency with
the video content, limiting their effectiveness in
evaluating the alignment between ADs and visual
elements. Image and video captioning metrics are
therefore often applied to AD evaluation.

CLIPScore CLIPScore (Hessel et al., 2021) is a
metric to assess the alignment between texts and
images based on the VLM model CLIP (Radford
et al., 2021). Given an image embedding i and a
text embedding t computed by CLIP, the CLIP-
Score is defined as their cosine similarity

CLIPScore(t, i) = cos(t, i).

By including references, CLIPScore can be further
extended to include comparison with the references

RefCLIPScore(t,R, i) =

H-Mean(CLIPScore(t, i),max(max
r∈R

cos(t, r), 0)),

where R is the set of all reference embeddings,
and H-mean is the harmonic mean. CLIPScore
can be utilized in both reference-free and reference-
based evaluation settings, making it one of the most
widely used metrics for image captioning assess-
ment.

EMScore Similarly, EMScore (Shi et al., 2022)
is a video captioning metric on both coarse- and
fine-grained level.

EMScore(X,V ) =

1

2
(EMScore(X,V )c + EMScore(X,V )f ) ,

where the coarse-grained embedding matching c
assesses the overall alignment between the entire
video V and the caption X , and the fine-grained
embedding matching f evaluates the alignment at a
more detailed level by comparing individual frames
of the video with specific words or phrases in the
caption. Vision Transformer and Vanilla Trans-
former are used as video encoder and text encoder.

PAC-S Sarto et al. (2023) introduced a con-
trastive learning approach called PAC-S to assess
the alignment between visual content and gener-
ated textual descriptions by incorporating positive-
augmented samples during training. PAC-S aims
to enhance the evaluation’s sensitivity to the nu-
anced relationship between images or videos and
their corresponding captions. Similarly to CLIP-
Score, PAC-S can be used in both reference-based
(RefPAC-S) and reference-free scenario.

A.4 Specialized AD Evaluation Metrics

Specialized metrics for AD evaluation have been
proposed, often tailored to particular subtasks such
as character recognition.

MNScore Yue et al. (2023) introduced MNScore,
a metric designed to evaluate movie narrations with
a particular emphasis on character recognition.

MNScore =

1 · EMScore + 4 · BERTScore + 1 · Role-F1
6

.

By integrating BERTScore and EMScore, MN-
Score achieves the highest correlation with human
judgment, making it a reliable metric for assessing
movie understanding and narration quality.
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Dataset Language Use Pros Cons

AutoAD (Han et al., 2023c) English Benchmarking AD generation
Large-scale AD dataset for both
training and evaluation

Limited to movie ADs, no fine-
grained event segmentation

AutoAD-II (Han et al., 2023b) English Structured AD evaluation
Improved event alignment and
AD coherence compared to
AutoAD

Manual annotated character
names needed

MAD (Han et al., 2023a) English Training AD generation models
Dense, time-aligned ADs with
high quality

Limited to movies, extensive
annotation effort.

Movie101 (Yue et al., 2023) Multilingual Training and evaluation
Large-scale, rich narrative ADs
that cover diverse movie genres

Limited temporal structure, an-
notation bias affects consistency

AutoAD-III (Han et al., 2024) English Benchmarking VLM-based AD
One of the largest AD datasets
for VLM-based AD generation

Limited to English ADs only

TV-AD (Xie et al., 2024) English Evaluating TV-series AD
Captures real-world spoken
ADs in TV series

Relative small dataset size

MMAD (Zhou et al., 2024) Multilingual Training multimodal AD models
Covers movies, documentaries,
and real-world videos

Requires fine-tuning for AD-
specific tasks

LLM-AD (Chu et al., 2024) English LLM-based AD benchmarking
Evaluates ADs generated by
LLMs

May contains LLM-
hallucination

Table 2: Datasets play a critical role in training, fine-tuning, and evaluating AD generation models. We briefly
summarize key datasets used in recent AD generation research.

CRITIC CRITIC (Han et al., 2024) is designed
to evaluate the accuracy of character identification
in generated ADs. It employs a co-referencing
model to replace ambiguous pronouns (e.g., he and
she) in the ADs with official character names from
a pre-defined character bank. The metric then com-
pares the sets of character names in the generated
and ground truth ADs, calculating the intersection
over union (IoU) to assess accuracy. This approach
ensures that the generated ADs correctly identify
and reference characters, which is crucial for main-
taining narrative coherence in movie descriptions.

LLM-AD-eval Proposed in the same work by
Han et al. (2024), LLM-AD-eval utilizes LLMs to
assess the holistic semantic quality of generated
ADs. The evaluation focuses on the alignment
between the generated and ground truth ADs con-
cerning human actions, objects, and interactions.
LLM-AD-eval scores the generated ADs on a scale
from 1 (lowest) to 5 (highest), providing a accurate
assessment of their semantic fidelity. This metric
leverages the advanced language understanding ca-
pabilities of LLMs to evaluate the overall quality
and relevance of the ADs.

B Comparison of Models and Datasets

B.1 Models for AD Generation

State-of-the-art AD generation models can be cate-
gorized into two main classes:

1. End-to-end AD Generation with LLMs/VLMs

• Examples: Video-LLaVA (Ye et al., 2024),
GPT-4V (Chu et al., 2024), AutoAD (Han
et al., 2023c).

• Approach: These models directly generate
ADs by conditioning on visual and textual in-
puts, leveraging vision-language pre-training.

• Advantages: Ability to handle multimodal
understanding by utilizing the zero-shot power
of pre-trained LLMs/VLMs.

• Limitations: End-to-end approaches are nor-
mally computation-intensive and may lack
temporal coherence without explicit feature
modeling.

2. Prompt-based LLM for AD Generation

• Examples: AutoAD-Zero (Xie et al., 2024),
MovieSeq (Lin et al., 2024).

• Approach: LLMs are prompted with struc-
tured visual descriptions to generate coherent
ADs.

• Advantages: Text-only fine-tuning making it
scalable across different datasets

• Limitations: Lacks fine-grained multimodal
grounding which makes the models struggle
with visual-text misalignment.

B.2 Datasets for AD Generation
We summarize major AD generation datasets to-
gether with their pros and cons in Table 2.
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