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Abstract

Data attribution methods are used to measure
the contribution of training data towards model
outputs, and have several important applica-
tions in areas such as dataset curation and
model interpretability. However, many stan-
dard data attribution methods, such as influence
functions, utilize model gradients and are com-
putationally expensive. In our paper, we show
in-context probing (ICP) – prompting a LLM
– can serve as a fast proxy for gradient-based
data attribution for data selection under condi-
tions contingent on data similarity. We study
this connection empirically on standard NLP
tasks, and show that ICP and gradient-based
data attribution are well-correlated in identify-
ing influential training data for tasks that share
similar task type and content as the training
data. Additionally, fine-tuning models on influ-
ential data selected by both methods achieves
comparable downstream performance, further
emphasizing their similarities. We also exam-
ine the connection between ICP and gradient-
based data attribution using synthetic data on
linear regression tasks. Our synthetic data ex-
periments show similar results with those from
NLP tasks, suggesting that this connection can
be isolated in simpler settings, which offers a
pathway to bridging their differences.

1 Introduction

Data attribution methods aim to identify specific
training data that contribute to the outputs of a
model (Worledge et al., 2024). Methods for data
attribution have numerous useful applications; for
instance, dataset curation (Ilyas et al., 2022; Xia
et al., 2024; Yu et al., 2024), model interpretability
(Han and Tsvetkov, 2021; Akyurek et al., 2022;
Li et al., 2024a), and data valuation (Ghorbani
and Zou, 2019; Yang et al., 2024a; Zhang et al.,
2025). While data attribution methods are useful,
they can be computationally demanding. For in-
stance, influence functions (Koh and Liang, 2017)

are a classic tool for gradient-based data attribution
(i.e., methods that utilize model gradients in their
computation), but are challenging to scale for large
deep learning models with billions of parameters
(Grosse et al., 2023; Choe et al., 2024).

Recently, data selection using in-context prob-
ing (ICP) – prompting a LLM – to determine the
quality of a training data sample has become an
important avenue for curating high-quality training
datasets (Rubin et al., 2022; Nguyen and Wong,
2023; Wettig et al., 2024). Yet, it is unclear why
ICP is effective at training data selection since there
are multiple factors to consider for determining the
quality of training data, such as mixtures, utility,
and the quantity of data (Lee et al., 2022; Xie et al.,
2024; Goyal et al., 2024).

In this paper, we offer an explanation for this phe-
nomenon by drawing a connection between ICP
and gradient-based data attribution. To study the ro-
bustness of this connection, we empirically analyze
the agreement between both methods for identify-
ing influential training data for in-domain target
tasks (i.e., tasks that share similar task type and
content as the training data), and out-of-domain
target tasks. On standard NLP tasks (including
instruction-following and QA), our experiments re-
veal that ICP can approximate gradient-based data
attribution for identifying influential training data
in the in-domain setting. Further fine-tuning on the
influential training data selected by either method
— in particular, using data from the Alpaca Dataset
(Taori et al., 2023) — results in similar model per-
formance in instruction-following on Alpaca Eval
(Li et al., 2023; Dubois et al., 2024b). This is ad-
vantageous since, unlike gradient-based attribution
methods, ICP enables cost-effective data selection;
it requires no access to model parameters, and can
even be performed via API calls, making it ideal
for black-box models.

In addition to standard NLP tasks, we study the
connection between ICP and gradient-based data

5155



attribution in a controlled setting using synthetic
data, specifically linear regression tasks. In this
setting, the task type (i.e., the specifically linear
relation) and content (i.e., input distance) of the
training data and target task are clearly defined,
making them easy to adjust. Similar to standard
NLP tasks, our findings on synthetic data show that
ICP can approximate gradient-based data attribu-
tion in the in-domain setting. Furthermore, our
synthetic data results show that this connection can
be isolated, which paves way for future research
bridging the gap between the two methods. Our
contributions are summarized as follows:

1. We draw a connection between ICP and
gradient-based data attribution and show they
agree in identifying influential training data
for in-domain target tasks.

2. To further highlight ICP as an effective proxy
for gradient-based data attribution, we use
both methods for dataset curation, and show
that fine-tuning models on data highly-ranked
by either method leads to similar performance.

3. We explore the relationship between ICP and
gradient-based attribution using synthetic data
in a controlled setting. Our results show that
the connection between these two methods
can be isolated in toy settings, making it a
potential path to bridge their gaps.

2 Related Work

Obtaining high-quality training data is important
for efficient model training (Lee et al., 2022;
Sorscher et al., 2022; Ye et al., 2024; Albalak et al.,
2024). One class of data attribution methods is
gradient-based methods, such as influence func-
tions (Koh and Liang, 2017), which utilize model
gradients that estimate the influence of a training
sample on model predictions. Despite being com-
putationally expensive in LLM settings (Grosse
et al., 2023), gradient-based methods are effective
for curating subsets of high-quality training data
(Pruthi et al., 2020; Park et al., 2023; Han et al.,
2023; Xia et al., 2024; Engstrom, 2024).

Based on the phenomenon of transformers hav-
ing in-context learning capabilities (Min et al.,
2022; Han et al., 2023; Bhattamishra et al., 2023;
Liu et al., 2024), recent works have used ICP
for training data selection (Rubin et al., 2022;
Nguyen and Wong, 2023; Iter et al., 2023; Wet-
tig et al., 2024). These methods involve measuring

the model output likelihoods of the task given an
in-context train sample, or prompting an LLM with
questions to identity high-quality training data. For
example, Li et al. (2024b) demonstrated that train-
ing on subsets of high-quality data using ICP leads
to better performance than training on the entire
dataset.

Since both gradient-based data attribution meth-
ods and ICP can be used effectively for data selec-
tion, a key component to connecting these ideas
lies in a recent body of work which suggests that
in-context learning implicitly performs gradient de-
scent by constructing meta-gradients (Irie et al.,
2022; Dai et al., 2023; Von Oswald et al., 2023).
Specifically, these studies highlight the duality be-
tween a forward pass through a transformer atten-
tion head and linear layers trained by gradient de-
scent, but rely on major assumptions; including
linear attention, and limited analysis on this phe-
nomena on MLP layers. Despite these assump-
tions, transformer outputs for synthetic in-context
tasks, such as linear regression, mirror the predic-
tions of algorithms that implement gradient descent
(Akyürek et al., 2023; Garg et al., 2022; Mahankali
et al., 2024), making the relationship between ICP
and gradient descent an open research area.

3 Preliminaries

In order to draw a connection between ICP and
gradient-based data attribution, we first present
three methods for data selection: influence func-
tions (Koh and Liang, 2017), local datamodeling
(Iter et al., 2023; Yu et al., 2024) and ICP scoring
(Li et al., 2024b). We begin by defining some
notation: let Dtrain = {zi}Ni=1 be a set of training
samples, where a sample zi = (xi, yi) contains an
input and output. Similarly, let Dtest = {z′i}Mj=1

be a set of test samples.

Method 1: Influence Functions (Koh and Liang,
2017) approximate changes in model predictions
when samples are added/removed from the model’s
training data. To measure the influence of train sam-
ple z ∈ Dtrain, the change in model parameters θ∗

is approximated when z is up-weighting by a small
value ϵ. Thus, the empirical risk minimization is:

θ∗(ϵ) = argmin
θ

1

N

N∑

i=1

L(zi; θ) + ϵL(z; θ), (1)

which is also called the response function. We wish
to find the change in parameters ∆θ = θ∗(ϵ)− θ∗,
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which can be done via a first-order Taylor approx-
imation to the response function at ϵ = 0, which

yields θ∗(ϵ)− θ∗ ≈ ϵdθ
∗(ϵ)
dϵ

∣∣∣∣
ϵ=0

. Moreover, using

the Implicit Function theorem, we get the influence
of z on θ∗.

Iθ∗(z) =
dθ∗(ϵ)
dϵ

∣∣∣∣
ϵ=0

= −H−1∇θL(z; θ∗), (2)

where H = 1
N

∑N
i=1∇2

θL(zi; θ∗) and zi ∈ Dtrain.
To quantify the influence of z specifically on z′, we
can measure influence with respect to L(z′; θ), the
loss on z′, which via the chain rule results in:

Infl(z′, z) = ∇L(z′; θ)H−1∇L(z; θ). (3)

Computing H−1 expensive and unstable in non-
convex loss function settings, such as for large deep
learning models (Basu et al., 2021). A simpler and
more cost effective alternative (Pruthi et al., 2020;
Xia et al., 2024) is to drop the Hessian and only
keep the inner product:

InflIP(z
′, z) = ∇L(z′; θ) · ∇L(z; θ). (4)

In particular, (Yang et al., 2024b) showed that
despite dropping the Hessian, InflIP exhibits good
order-consistency with Infl.

Method 2: Local Data Influence. The influence
of training sample z ∈ Dtrain towards a test sample
z′ = (x′, y′) can also be measured using a one-step
training score (Pruthi et al., 2020; Iter et al., 2023;
Yu et al., 2024). Formally, this score is defined as:

InflLoc(z, z
′) = szs(z

′; θ̂)− szs(z
′; θ). (5)

where θ̂ = θ − η∇L(θ, z) denotes the parameters
of a model trained on z for single step with learning
rate η. We denote szs(z

′; θ) = log p(y′|x′; θ) as the
zero-shot score (i.e., the model likelihood for the
test sample output). Alternatively, the contribution
of train sample z towards an entire test set Dtest

can be aggregated as:

InflLoc(z,Dtest) =
1

M

M∑

j=1

1[szs(z
′
j ; θ̂) > szs(z

′
j ; θ)]. (6)

InflLoc performs local datamodeling since the
influence of z is measured by a single training step
on an existing pre-trained model, rather than fully
re-training the model with z.

Method 3: In-Context Probing Score. Leverag-
ing the in-context learning abilities of LLMs, the
importance of training sample z can also be mea-
sured using a one-shot quality score introduced in
Li et al. (2024b). Formally, the ICP score is:

ICP(z,Dtest) =
1

M

M∑

j=1

1[sos(z
′
j |z; θ) > szs(z

′
j ; θ)], (7)

where for a test sample z′ = (x′, y′), the one-shot
score is defined as sos(z

′, z; θ) = log p(y′|z, x′; θ),
which is the model likelihood for the output of test
sample z′ with z as an in-context demonstration.

Connecting ICP, InflLoc, and InflIP. While all
three methods can be used to measure the impor-
tance of training samples for a test task, they differ
in computational efficiency. Notably, ICP is con-
venient since, unlike InflLoc, it requires no train-
ing, and, unlike InflIP, it does not access model
gradients. Given the advantages of using ICP, we
note the connection between ICP and InflIP through
InflLoc, which shows how ICP can be an efficient
proxy for gradient-based data attribution.

First, we draw a connection between ICP and
InflLoc from recent works (Irie et al., 2022; Dai
et al., 2023; Von Oswald et al., 2023) which show
that a linear attention head performs an implicit
gradient descent update on in-context demonstra-
tions. We present this construction below (details
in Appendix B):

Attn(K,V, q) ≈ (Wz′ +∆Wz)q, (8)

where Wz′ represents the attention head weights
for a test query z′. Notably, ∆Wz is the update for
an in-context demonstration z, which is applied to
attention head weights Wz′ . Given the update of z
onto Wz′ , this construction shares similarities with
performing an actual gradient descent update of z
onto the model parameters. A resulting hypothesis
is that for a model parameterized by θ, we have:

sos(z
′|z; θ) ∝ szs(z

′; θ̂), (9)

where θ̂ = θ−η∇L(z; θ). That is, taking a training
step on z has similar effects on the model output
likelihoods for z′ as using it as an in-context demon-
stration. Thus, if equation 9 holds, then we have
ICP(z′, z) ∝ InflLoc(z

′, z). Moreover, connecting
ICP and InflIP is straightforward since InflIP(z

′, z)
is an approximation of InflLoc(z

′, z), as noted in
Pruthi et al. (2020). As a result, we have:

ICP(z′, z) ∝ InflLoc(z
′, z) ≈ InflIP(z

′, z). (10)
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The full derivation of this result is in Appendix A.
An implication of equation 10 is that we expect pos-
itive correlation between ICP and InflIP scores with
respect to how they rank training data for test sam-
ples. In the next sections, we empirically explore
this correlation.

4 Experiments on NLP Datasets

Given the connection between ICP and InflIP, we
describe our experimental setup to analyze how
well these two methods correlate in their rankings
of influential training data. As noted in the previous
section, a key component in connecting ICP(z′, z)
with InflIP(z

′, z) is the hypothesis that ICP per-
forms a process akin to a gradient descent step on a
train sample z (i.e., ICP(z, z′) ∝ InflLoc(z

′, z)). A
key question is whether this process occurs for any
arbitrary z and z′, since this would affect the corre-
lation between ICP(z′, z) and InflIP(z

′, z) rankings.
To investigate this empirically, we vary z and z′ to
be “in-domain" and “out-of-domain", and examine
the correlation step-by-step between ICP, InflLoc,
and InflIP. Although “in-domain" is loosely de-
fined in NLP, two features that commonly define
whether z is in the same domain as z′ involve task
and content similarity (Ramponi and Plank, 2020).

Formally, we define a set of tasks {ti}Ti=1 ∈
T . Each task maps an input x ∈ X into a output
y ∈ Y (i.e., t : X → Y) to create a data sample
z = (x, y). We consider a set of train samples for
task t, which we denote as Dt

train, and a set of test
samples for task t′, which we denote as Dt′

test. We
are interested in how the correlation between ICP
and InflIP changes as the following features vary
between Dt

train and Dt′
test:

1. Task Similarity: as the train task t and test
task t′ change. In our experiments, we heuris-
tically define the train and test tasks to be stan-
dard NLP tasks. In particular, we fix the test
task be to instruction-following, and vary the
train tasks to be instruction-following, QA/-
DocQA, and pretrain tasks, which we describe
in detail in Section 4.1.

2. Content Similarity: as the semantic similar-
ity between train sample z and test sample z′

change. In our experiments, we fix the train
task t and test task t′ to be the same, and
vary the content using BertScore (Zhang et al.,
2020), a popular evaluation metric which mea-
sures similarity between two sequences using
pretrained BERT embeddings.

Next, given Dt
train and Dt′

test, we measure the
Spearman correlation between ICP and InflIP rank-
ings. First, we obtain ICP and InflIP scores of the
all samples in Dt

train for test set Dt′
test, which we

denote as:

SICP(Dt
train,Dt′

test)

= {ICP(zi,Dt′
test)|zi ∈ Dt

train}Ni=1, (11)

SInflIP(Dt
train,Dt′

test)

= {InflIP(zi,Dt′
test)|zi ∈ Dt

train}Ni=1. (12)

Finally, we calculate the Spearman correlation be-
tween the ICP and InflIP scores:

Spearman(SICP(Dt
train,Dt′

test),SInflIP(Dt
train,Dt′

test)). (13)

4.1 Datasets and Models
In this section, we define a set of NLP tasks used
in our experiments, which differ in objective and
structure. We describe the datasets used for each
task (see Table 3 in Appendix C for examples),
and also describe our models.

Instruction Tasks: Instruction-following requires
a language model to generate an appropriate
response by following an instruction (e.g., "Write
a poem about the Autumn"), making it a key
component in LLM research and real-world
applications (Ouyang et al., 2022; Zhang et al.,
2024). For instruction tasks, we use the Alpaca
dataset (Taori et al., 2023), which contains 52K
instruction demonstrations generated by GPT-4
following the Self-Instruct method (Wang et al.,
2023a).

QA/DocQA Tasks: QA tasks are simple question-
answering tasks without any context in the input
(e.g., "What is the capital city of the U.S?").
They differ from instruction tasks since they may
not explicitly provide an instruction in the task.
DocQA tasks are question-answering tasks with
additional context in the input (e.g., "Read follow-
ing movie review and rate it: ..."). We sourced
QA and DocQA tasks from PromptSource (Bach
et al., 2022) dataset, which contains human-written
prompts. We split the dataset into QA and DocQA
datasets, using 9K and 8K examples, respectively.

Pretrain Tasks: Unlike the previous tasks,
pretrain data is unstructured and does not contain
any explicit questions or instructions. We sourced
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Table 1: Spearman correlation between ICP, InflLoc, and InflIP using test samples from the Alpaca dataset and train
samples from Alpaca, UltraChat, QA, DocQA, and pretrain datasets. All p-values are < .05.

Alpaca QA DocQA Pretrain

Pythia-1b Llama-3.2-3B Pythia-1b Llama-3.2-3B Pythia-1b Llama-3.2-3B Pythia-1b Llama-3.2-3B

ICP/InflIP 0.73 0.54 0.10 0.10 0.21 0.13 0.07 0.12
ICP/InflLoc 0.61 0.36 0.10 0.13 0.17 0.26 0.03 0.05
InflLoc/InflIP 0.78 0.57 0.78 0.87 0.86 0.88 0.65 0.63

(1a) Alpaca (Pythia) (1b) Alpaca (Llama) (1c) QA (Pythia) (1d) DocQA (Pythia)

Figure 1: Correlation analysis between ICP, InflLoc, and InflIP (aggregated across groups of 500 samples) with
respect to content similarity (BertScore) using test and train samples from the same task.

(2a) DocQA (Pythia) (2b) DocQA (Llama) (2c) Pretrain (Pythia) (2d) Pretrain (Llama)

Figure 2: Correlation analysis between ICP, InflLoc, and InflIP (aggregated across groups of 500 samples) with
respect to content similarity (BertScore) using test samples from Alpaca and training samples from DocQA/Pretrain
datasets. Additional analysis in Appendix C.

pretrain data from Minipile (Kaddour, 2023),
which is a subset of the Pile (Gao et al., 2020)
dataset curated for data diversity. We split the
Minipile dataset into sequences of 256 tokens, and
take a subset of 25K pretrain sequences.

Train and Test Set Splits: For each task, we use
each dataset as the train set and take 100 samples
from each dataset to form their respective test sets.

Models: Across all experiments, we calculate ICP,
InflLoc, and InflIP scores using Pythia-1b-deduped
(Biderman et al., 2023) and Llama-3.2-3B. For cal-
culating InflLoc, we set the learning rate to 2e-5.

4.2 Task Similarity Results

Table 1 shows that ICP/InflIP correlation is high
when the task types of the train and test datasets are

the same. This correlation decreases significantly
when the task type of the train and test datasets
differ. Note that InflLoc/InflIP correlation remains
high overall regardless of task difference between
the train and test datasets. This suggests that InflLoc
is a close approximation for InflIP, and that the
breaking point lies between ICP and InflLoc. Thus,
the hypothesis introduced in section 3 that ICP
performs a gradient descent-like step does not hold
when the train and test task types differ.

4.3 Content Similarity Results

Figure 1 shows that ICP/InflIP correlation decreases
as the content similarity (i.e., BertScore) decreases
between the train and test samples. Moreoever,
InflLoc/InflIP correlation remains high overall, and
does not change much as content similarity de-
creases, which implies that that InflLoc is a robust
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(3a) ICP/InflIP scores. (3b) ICP/InflLoc scores. (3c) InflIP/InflLoc scores. (3d) ICP/InflIP overlaps.

Figure 3: Correlation analysis between rankings on the instructions from the Alpaca dataset assigned by ICP, InflLoc,
and InflIP. All p-values are < .05.

Table 2: Results (winrates) evaluated on the Alpaca Eval dataset after being finetuned on data selected by ICP and
InflIP. The highest winrate in each column is marked with ∗ for ICP and † for InflIP.

Score Bin Method Helpful Base Koala Self Instruct Oasst Vicunna Overall

≤ 0.5 ICP 54.26 62.99 56.04 56.15 51.25 56.65
InflIP 51.56 62.18 54.76 54.55 43.75 54.54

> 0.5 ICP 57.03 62.99 61.35 63.10 68.75 62.12
InflIP 60.94 65.16 65.08† 60.42 52.50 62.09

> 0.8 ICP 61.42 59.35 58.73 64.17∗ 67.50 61.42
InflIP 62.79 68.18† 62.3 61.70 68.75† 64.02†

> 0.85 ICP 62.79∗ 62.58∗ 60.16 61.17 70.00∗ 62.26∗

InflIP 65.12† 67.95 56.35 65.42† 65.00 62.98

> 0.9 ICP 52.34 60.13 49.79 49.46 46.25 51.77
InflIP 61.24 57.14 53.60 55.08 55.00 56.00

approximation for InflIP regardless of content simi-
larity. Similar to task type, the breaking point again
lies between ICP and InflLoc when the content sim-
ilarity between the train and test samples differ.

4.4 Task vs. Content Similarity Results
Since both task type and content affects ICP/InflIP
correlation, we vary both features simultaneously
and observe its impact. In Figure 2, we examine
ICP/InflIP correlation as the BertScore decreases
between the Alpaca test samples and train samples
from the other previously defined tasks. Figure
2 shows no increase in ICP/InflIP correlation as
BertScore increases. Therefore, if the test and train
tasks are different, then increasing content similar-
ity does not result in better ICP/InflIP correlation.

5 ICP for Data Selection

In the previous section, we showed that ICP and
InflIP correlate well in how they rank influential
training data when the train set shares the same task
type as the test set. This is is strongly reflected in
the Alpaca instruction-following dataset (see Table
1 and Figure 3). In this case, it is possible that ICP

can serve as a proxy for InflIP. This has promising
implications: compute costs for ICP is significantly
cheaper than InflIP. For instance, to score the entire
Alpaca dataset with Pythia-1b, ICP incurred a total
of 10 GPU hours while InflIP incurred 90 hours.

However, since ICP and InflIP rankings are
not entirely aligned, we further compare them
by using both methods to curate datasets for
instruction-tuning. Following the same setup
as Li et al. (2024b), we first we obtained ICP
scores (and in our case, InflIP scores as well)
for all training samples in the Alpaca dataset
using the K-Means-100 dataset (a subset of 100
diverse instructions from the Alpaca dataset
created by Li et al. (2024b)) as the test set. We
use the ICP and InflIP scored training samples
for instruction-tuning according the following
procedure:

Finetuning Datasets: After obtaining ICP and
InflIP scores (reminder: ICP ∈ [0, 1]) for the
Alpaca dataset, we create ICP score bins of
≤ 0.5, > 0.5, > 0.8, > 0.85, > 0.9. We used
the number of samples in each score bin as
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threshold cutoffs for InflIP. For example, if the
> 0.9 ICP score bin had k training samples, then
we also treated the top k samples from InflIP as
the equivalent bin. We treat all bins as separate
datasets, and randomly sample 700 demonstrations
from each dataset for fine-tuning.

Training: We use the Adam optimizer with a
batch size of 64 and lr=2e-7 to fine-tune Pythia-1b-
deduped for 3 epochs. This is done separately for
ICP and InflIP for each score bin.

Evaluation: We use the Alpaca Eval dataset (Li
et al., 2023; Dubois et al., 2024b), which has 805
instruction demonstrations (details in Appendix C).
The evaluation metric for the Alpaca Eval dataset
is winrate (Li et al., 2023), which is the expected
preference of a human (or LLM) annotator
for a model’s response compared to a baseline
model’s response. We follow the same setup as
Li et al. (2024b), and use GPT-4 Turbo as the
annotator. Winrates are calculated by comparing
our fine-tuned models to Pythia-1b-deduped.

Results: First, we note that Figure 3d shows good
overlap between instructions selected by both meth-
ods across different score bins, which suggests that
ICP and InflIP have high agreement on instruction
quality and valuation. Next, our results in Table 2
shows that fine-tuning on instruction data selected
by ICP and InflIP result in similar model perfor-
mance among different score ranking bins, and
overall performance for ICP and InflIP both peaked
around similar score bins (i.e., > 0.8 and > 0.85).
Examples of top-ranked instructions selected by
ICP and InflIP are shown in Table 5 in Appendix
C. Overall, our findings highlight the consistency
between ICP and InflIP in selecting high-quality
instructions for when task type between the train-
ing data and target task are similar, which shows
that bridging the gap between ICP and InflIP has
promising implications.

6 Synthetic Study

While the results in Section 4 show that task and
content similarity affects how well ICP approxi-
mates InflIP for NLP tasks, in this section, we fur-
ther study the correlation between ICP and InflIP in
a constrained and well-defined setting using linear
regression tasks. Studying the correlation between
ICP and InflIP in this setting offers a significant

(4a) Task Similarity (4b) Content Similarity

Figure 4: Correlation analysis between ICP and InflIP
as the task/content similarity of a single training demon-
stration vary with respect to the test query.

advantage: unlike standard NLP tasks, we can eas-
ily isolate and control both the task and content
similarity of a linear regression task, allowing for a
more granular examination of the correlation.

In this setup, we first sample a function
parameter w ∈ Rd and an input x ∈ Rd sepa-
rately from an isotropic Gaussian distribution
N (0, Id). The output y = f(x) = wTx. Thus,
the function parameter w is the task since it
defines the relationship between the input and
output. Given k in-context demonstrations
{(x1, y1), ..., (xk, yk)} ∈ Dw

train and a test sample
(x′, y′) ∈ Dw′

test, we prompt the model to predict
y′ = f(x′) = w

′Tx′ using input prompt sequence
(x1, y1..., xk, yk, x

′). Next, we describe our
experiments where we isolate and vary task type
and content to examine how well ICP rankings
correlate with InflIP rankings.

Task Similarity Experiment: Given a test
sample (x′, y′) with function parameter w′, we
randomly draw sets of k in-context demonstrations
{(x1, y1), ..., (xk, yk)} where yi = wTxi and
cos_sim(w,w′) = c for i = 1, ..., k. We vary c
from 0 to 9 with increments of 0.1, and also set
c = 0.99 and c = 0.999 to examine cases where
the training inputs are very close to the test input.

Content Similarity Experiment: Given a test
sample (x′, y′) with function parameter w′, we
randomly draw sets of k in-context demonstrations
{(x1, y1), ..., (xk, yk)} where yi = w′Txi and
cos_sim(xi, x

′) = c for i = 1, ..., k. We test for
the same values of c, and use the same dataset
generation process as mentioned above.

Dataset Generation: For both task and content
similarity, we generate datasets using the following
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process: we first create 10 test inputs and 10
test function parameters. Using each test input
and parameter pairing, we generate 1200 prompt
sequences with k demonstrations with varying task
or content similarity with respect to the test query.
This is repeated for each k ∈ {1, 5, 10, 20, 40}.

Model: We use the model provided by Garg et al.
(2022), a decoder-only Transformer architecture
(9.5M parameters), which is pre-trained on linear
function classes. The model was trained for
500k steps and batch size of 64, where prompts
sequences were randomly sampled for each step.

Evaluation: Given a test sample z′ = (x′, y′) and
train sample z = (x, y), we evaluate the model out-
put ŷ′ against y′ using mean squared error (MSE)
loss. For the synthetic data experiments, we set
ICP(z′, z) = MSE(ŷ′; θ) − MSE(ŷ′|y; θ), where
θ denotes the model parameters. Similarity, for
InflIP we set the loss function to be MSE such that
InflIP(z

′, z) = ∇θMSE(ŷ′; θ) · ∇θMSE(ŷ; θ).

Results: We observe the effects of task and con-
tent similarity and ICP/InflIP correlation in Figure
4. When the train and test function parameters (i.e.,
task) are the same, ICP/InflIP correlation is high,
given that the content similarity is not low (Fig.
4b). However, when the train and test tasks are
different, ICP/InflIP correlation is low (Fig. 4a). In
the case where both task and content similarity are
varied (Fig. 5), having greater content similarity
can offset task disparity between the train and test
samples. In addition, we note that as the number of
in-context demonstrations in the prompt sequences
increases (see Fig. 7 in Appendix C), the connec-
tion between ICP and InflIP breaks. This can be
due to group effects, where ICP and InflIP provide
different rankings for a group of training samples
versus individual training samples.

Overall, our synthetic experiments show that ICP
correlates well with InflIP when the train and test
samples share the same task (i.e., function param-
eter), which is similar to our observation for NLP
tasks in Section 4. Given that this trend appears
in both standard NLP and synthetic data settings,
this highlights that the relationship between ICP
and InflIP can be studied from different angles. For
instance, future work can explore additional cases
for when connection between ICP and InflIP breaks
using more complex function classes, from both
theoretical and empirical perspectives.

Figure 5: Correlation analysis between ICP and InflIP as
both the task and content similarity of a single training
demonstration vary with respect to the test query.

7 Conclusion

In this paper we have examined the connection
between ICP and gradient-based data attribution.
Empirically, we have shown that ICP can serve as
a proxy for influence functions in an in-domain
data setting, where the train and target data have
similar task type and content. As a result, this
offers a possible explanation for why in-context
probing is effective for data selection. We show
that fine-tuning on influential data selected by both
methods lead to similar downstream performance
on instruction-following, which highlights a use
case of ICP as a proxy for gradient-based data attri-
bution. We furthermore explore their connection in
a synthetic data setting, and observe similar results
as the standard NLP data setting, paving the way
for future work to explore this connection from
theoretical angles. There are several lines of work
that can further explore this phenomenon. For in-
stance, finding methods to check whether ICP ap-
proximates gradient-based data attribution methods
for black-box models. In addition, an important
problem is how these two methods compare for
selecting groups of training samples.

8 Ethics and Limitations

First, we highlight limitations to our work. Our ex-
periments are conducted using Pythia-1b deduped
and LlaMa-3.2 3B. As model sizes change, the
question of whether one data selection method tri-
umphs over the other is an area for exploration.
We also note our evaluation metric (winrate) for
our instruction-tuning experiments rely on LLM
annotation, and may be subject to LLM bias as
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mentioned in Dubois et al. (2024a). Since our work
involves understanding data valuation in language
models, we note that language models themselves
can be susceptible to biases. We hope that this work
can lead to future work in understanding the mech-
anisms of LLMs. Further insight in that realm may
be beneficial in understanding model predictions,
especially when considering LLM safety, toxicity,
and biases.
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Appendix

The appendix covers supporting information for our paper. In Section A we provide details for the
connection between ICP and InflIP. In Section C provide all additional tables or figures referred to
throughout the paper.

A Connecting ICP, InflLoc and InflIP

In this section, we provide the full details for how ICP connects to InflIP. As described in section 3, for a
train sample z and test sample z′, we assume the the hypothesis sos(z′|z; θ) ∝ szs(z

′; θ̂) holds, where
θ̂ − θ − η∇L(z; θ). As a result of this hypothesis, we have:

ICP(z′, z) ∝ InflLoc(z
′, z) ≈ InflIP(z

′, z) (14)

The first step is to show ICP(z′, z) ∝ InflLoc(z
′, z). As noted in section 3, given train sample z and test

sample z′, we assume that sos(z′|z; θ) ∝ szs(z
′; θ̂), where θ̂ − θ − η∇L(z; θ). As a result, we have

ICP(z′, z) = sos(z
′|z; θ)− szs(z; θ)

∝ szs(z
′; θ̂)− szs(z

′; θ) by sos(z
′|z; θ) ∝ szs(z

′; θ̂)

= InflLoc(z
′, z) (15)

Next, to connect InflLoc(z
′, z) with InflIP(z

′, z), we begin by noting a derivation from Pruthi et al. (2020):

Lemma 1. (Pruthi et al., 2020) Suppose we have a LLM with parameters θ. We perform a gradient
descent step with training sample z with learning rate η such that θ̂ = θ − η∇L(z; θ). Then,

L(z′; θ)− L(z′; θ̂) ≈ ∇L(z′; θ) · ∇L(z; θ) (16)

Proof: First, we consider the change in loss of z′ using a first-order approximation:

L(z′; θ̂) = L(z′; θ) +∇L(z′; θ)(̇θ̂ − θ) +O(||θ̂ − θ||2) (17)

L(z′; θ)− L(z′; θ̂) = −∇L(z′; θ)(̇θ̂ − θ) +O(||θ̂ − θ||2) (18)

Next, suppose a gradient descent step is taken on training sample z, and the model parameters are updated
as: θ̂ = θ − η∇L(z; θ). Thus, we have θ̂ − θ = −η∇L(z; θ), and the change in loss can be written as

L(z′; θ)− L(z′; θ̂) ≈ η∇L(z′; θ) · ∇L(z; θ) ∝ ∇L(z′; θ) · ∇L(z; θ) (19)

Given that η is a constant.

Next, to connect InflLoc(z
′, z) with InflIP(z

′, z), we have:

InflLoc(z
′, z) = szs(z

′; θ̂)− szs(z
′; θ)

= L(z′; θ)− L(z′; θ̂)
≈ ∇L(z′; θ) · ∇L(z; θ) by Lemma 1

= InflIP(z
′, z) (20)

Finally, putting together equations 15 and 20, we have ICP(z′, z) ∝ InflLoc(z
′, z) ≈ InflIP(z

′, z) as
desired.
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B ICP as Implicit Gradient Descent

This section outlines the construction in Irie et al. (2022) and (Dai et al., 2023), which connects the
transformer attention head to an implicit update step on the in-context demonstration. Let Xz, Xz′ ∈ Rdin

be the input representations of a training sample z and test sample z’. Furthermore, let [Xz, Xz′ ] denote
the concatenation of Xz and Xz′ . Then, the transformer attention mechanism can be expressed as

Attention(K,V, q) = Wv[Xz, Xz′ ]Softmax

(
(Wk[Xz, Xz′ ])

T q√
din

)

≈ Wv[Xz, Xz′ ](Wk[Xz, Xz′ ])
T q (i.e., linear attention)

= [WvXz,WvXz′ ][WkXz,WkXz′ ]
T q

= (WvXz(WkXz)
T +WvXz′(WkXz′)

T )q

= WvXz′(WkXz′)
T q +WvXz(WkXz)

T q (21)

Note that the attention head weights for Xz (i.e., WvXz(WkXz)
T q) in line 21 can be re-written as:

LinearAttn(WvXz, (WkXz)
T , q) = WvXz(WkXz)

T q (22)

Furthermore, let Wz′ = WvXz′(WkXz′)
T q denote the zero-shot “attention head" weights that are

obtained when we pass Xz′ through the model. We can now write Attention(K, V, q) as:

Attention(K,V, q) ≈ Wz′q + LinearAttn(WvXz, (WkXz)
T , q) (23)

Next, Irie et al. (2023) showed the duality between linear attention and linear layers optimized by gradient
descent, such that:

LinearAttn(WvXz, (WkXz)
T , q) ≈ ∆Wzq (24)

where ∆Wz is the weight update after taking gradient descent step on Xz . Hence, we have:

Attention(K,V, q) ≈ (Wz′ +∆Wz)q (25)
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C Additional Tables and Figures

Dataset Example

Alpaca Instruction: Create an array containing the first 10 prime numbers. Response: Here is an array
containing the first 10 prime numbers: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

QA Question: How old is the female main protagonist of Catching Fire? Answer: 16-years-old

DocQA Question: What monarch like accessory did he wear? Context:: When he became First Consul and
later Emperor, Napoleon eschewed his general’s uniform and habitually wore the simple green colonel
uniform (non-Hussar) ... Answer: Iron Crown decorations

Pretrain A blog about my adventures as a professional garden writer, radio show host and obsessive veggie
gardener! My first book, the award-winning, The Year Round Vegetable Gardener, was published in
2012 and Groundbreaking Food Gardens hit shelves in March 2014!

Table 3: Demonstrations from the Alpaca, DocQA, QA, and pretrain datasets.

Subset Number of Examples

Helpful Base (Bai et al., 2022) 129
Koala (Geng et al., 2023) 156

Self-Instruct (Wang et al., 2023b) 252
Oasst 188

Vicuna (Chiang et al., 2023) 80

Table 4: Breakdown of the subsets in the Alpaca Eval (Li et al., 2023; Dubois et al., 2024b) dataset.

(6a) QA (Pythia) (6b) QA (Llama)

Figure 6: Correlation analysis between ICP, InflLoc, and InflIP with respect to content similarity (BertScore) using
test samples from Alpaca and training samples from QA dataset.
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ICP InflIP

Instruction: Create an array containing the first 10 prime
numbers. Response: Here is an array containing the first
10 prime numbers: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Instruction: Create an array containing the first 10 prime
numbers. Response: Here is an array containing the first
10 prime numbers: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

Instruction: Write an algorithm for printing all prime
numbers between 0 and 100. Response: Here is an al-
gorithm for printing all prime numbers between 0 and
100: 1. Start with a variable ‘n‘ at 2, since 2 is the first
prime number. 2. Create a loop that will iterate until ‘n‘ is
greater than 100. 3. At each iteration of the loop, check if
‘n‘ is prime ...

Instruction: Given an array of integers and a target num-
ber, find a triplet which adds up to the target number. Input:
Array: [2, 5, 3, 6, 9], Target: 12 Response: One possible
solution is to sort the array and then use two pointers to
check for possible triplets. Here is the step-by-step pro-
cess: 1. Sort the array in ascending order. In this case, it
will be [2, 3, 5, 6, 9]. 2. Initialize a pointer ‘i‘ to the first
element ...

Instruction: Generate a random string of 5 lowercase
letters. Response: Here is a randomly generated string of
5 lowercase letters: "kdjyr"

Instruction: Create an algorithm to sort a given array of
numbers. Input: [7, 1, 3, 5, 9] Response: There are many
algorithms to sort a given array of numbers. Below is one
such algorithm using the Bubble Sort method: 1. Begin
by comparing the first two elements of the array ... citep

Instruction: Generate a random password with 8 charac-
ters, consisting of lower and upper-case letters and num-
bers. Response: Here is a randomly generated password
with 8 characters, consisting of lower and upper-case let-
ters and numbers: "aB3dE6fG"

Instruction: Create an algorithm in pseudocode that sorts
an array of numbers using the selection sort method. Input:
Array: [3, 1, 4, 7, 8, 2] Response: Here is a pseudocode
that sorts an array of numbers using the selection sort
method: Procedure selection_sort(Array: list of sortable
items) BEGIN Declare index_min, temporary ...

Instruction: Create an algorithm to find the maximum
value in an array of numbers. Input: [3, 5, 7, 2] Response:
Here is an algorithm to find the maximum value in an array
of numbers: 1. Initialize the first element of the array as
the maximum value. 2. Loop through the rest of the array,
comparing each element with the current maximum value.
3. If the current element is ... citep

Instruction: Create a PHP script to detect whether a string
contains a number. Response: Here is one way to create
a PHP script to detect whether a string contains a number:
“‘ <?php function containsNumber($str) { // check if the
input string contains any digits if (preg_match(’//.’, $str))
return true; else return false; } // test ...

Table 5: The top-5 demonstrations selected by ICP and InflIP for the test task: Instruction: Create an array containing
the first 10 prime numbers.

(7a) Task similarity (7b) Content similarity

Figure 7: Correlation analysis between ICP and InflIP as the task and content similarity of the ICL training
demonstrations vary with respect to the test query. IC is the number of in-context training demonstrations used.
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