
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 5128–5154

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

CODESIM: Multi-Agent Code Generation and Problem Solving through
Simulation-Driven Planning and Debugging

Md. Ashraful Islam*1, Mohammed Eunus Ali1, Md Rizwan Parvez2
1Bangladesh University of Engineering and Technology (BUET)

2Qatar Computing Research Institute (QCRI)
{mdashrafulpramanic, mohammed.eunus.ali}@gmail.com, mparvez@hbku.edu.qa

Abstract

Large Language Models (LLMs) have made
significant strides in code generation and
problem solving. Current approaches employ
external tool-based iterative debuggers that use
compiler or other tool-based runtime feedback
to refine coarse programs generated by
various methods. However, the effectiveness
of these approaches heavily relies on
the quality of the initial code generation,
which remains an open challenge. In this
paper, we introduce CODESIM, a novel
multi-agent code generation framework
that comprehensively addresses the stages
of program synthesis—planning, coding,
and debugging—through a human-like
perception approach. As human verifies their
understanding of any algorithms through
visual simulation, CODESIM uniquely
features a method of plan verification and
internal debugging through the step-by-step
simulation of input/output. Extensive
experiments across seven challenging
competitive problem-solving and program
synthesis benchmarks demonstrate CODESIM’s
remarkable code generation capabilities. Our
framework achieves new state-of-the-art
(pass@1) results—(HumanEval 95.1%, MBPP
90.7%, APPS 22%, and CodeContests 29.1%).
Furthermore, our method shows potential for
even greater enhancement when cascaded
with external debuggers. To facilitate further
research and development in this area, we
have open-sourced our framework in this link
(https://kagnlp.github.io/codesim.github.io/).

1 Introduction

In recent years, the rise of Large Language Mod-
els (LLMs) has made significant advances in AI-
assisted coding and reshaped the domain of code
generation and problem-solving (Zhao et al., 2023).
Code generation assistants built on GPT-4 (Ope-
nAI, 2024), Mistral (Jiang et al., 2023a), and Llama

*Work done when working as a remote RA at QCRI.

(Dubey et al., 2024), inter alia, have demonstrated
unprecedented ability to understand, generate, and
manipulate code across various programming lan-
guages and problem domains. However, despite
these advancements, significant challenges persist
in generating code for complex programming tasks.

Current state-of-the-art approaches in code gen-
eration typically employ a dual-pass process (Shi
et al., 2024; Jin et al., 2024b; Zhong et al., 2024;
Levin et al., 2024). In the first pass, they use
LLMs to generate an initial, fully/partially cor-
rect version of the program. Then accordingly in
the second pass, they apply external tool-based it-
erative debuggers that leverage runtime compiler
feedback or other diagnostic tools to refine and cor-
rect the generated code. While this approach has
shown promise, it necessitates numerous iterations
of LLM-tool interactions, and importantly its ef-
fectiveness is heavily dependent on the quality of
the initial code generation—a process that contin-
ues to present substantial difficulties. Therefore, in
this paper, we present CODESIM, a novel multi-
agent code generation framework that seamlessly
synthesizes complex code solutions without exter-
nal resources, while offering potential for further
enhancement through minimal external debugging.

Synthesizing programs even in the first pass,
however, is fundamentally challenging, requiring a
deep understanding of natural language processing,
computer algorithms, data structures, and problem-
solving strategies. These challenges are further
compounded when attempting to generate code for
competitive programming problems or advanced
software engineering tasks, where adherence to spe-
cific constraints or passing unit tests are paramount
(Khan et al., 2023).

While earlier code generation methods em-
ployed direct approaches (Chen et al., 2021a),
chain-of-thought reasoning (Wei et al., 2022a), syn-
thesized test-case guidance (Chen et al., 2022a),
retrieval-augmented generation (Parvez et al.,

5128

https://kagnlp.github.io/codesim.github.io/

Problem

Check if in given list of numbers,
are any two numbers closer to
each other than given threshold.

Sample I/O
Passed?

No

Yes

Planning
Agent

Plans Coding
Agent Code Debugged

Code

Debugging
Agent

Try to debug
d times

If all d debugging steps fails
to pass sample I/O, loop back
to Planning Agent p times.

Plan

Plan
OK?

Yes

No

Generate
Exemplar

& Plan

Simulate
& Verify

Plan

Revise
Plan

Generate
Code

Prob
lem

Plan

Simulate on
Failed I/O
& Debug

TestingFeedback

Pl
anCo

de
Pr

ob
lem

CodeSim Pipeline

Planning Agent Coding Agent Debugging Agent

Figure 1: Overview of CODESIM: It consists of three agents—planning, coding, and debugging. The Planning Agent
first generates an exemplar problem-solution (i.e., via self-retrieval) and devises a plan, which is then verified and
refined through simulation. Next, the Coding Agent implements the plan. Finally, the Debugging Agent addresses
potential bugs through step-wise simulation across d trials. The entire process iterates p times.

2021), and various in-context exemplar-based
strategies (Shum et al., 2023; Zhang et al., 2022),
recent paradigms have shifted toward plan-based
(Jiang et al., 2023b), sampling or tree-searching
(Zhou et al., 2023), self-retrieval (Yasunaga et al.,
2023), and diverse agent-based approaches (Zhang
et al., 2024; Qian et al., 2024; Shinn et al., 2023;
Huang et al., 2023; Dong et al., 2023b).

Most recently, MapCoder (Islam et al., 2024a)
proposes a multi-agent framework that implements
agents emulating different stages of program syn-
thesis such as recalling relevant examples, design-
ing/planning, code generation, and testing/debug-
ging. While this approach mimics a real devel-
oper’s code generation cycle and shows improve-
ments, it focuses solely on expanding steps without
verifying the underlying hypotheses, with tests be-
ing performed only during the debugging phase.
Consequently, the resulting gains are limited and it
also requires larger number of iterations (i.e., LLM
API calls).

To address these limitations, CODESIM—built
upon planning, coding, and debugging
agents—introduces a novel verification approach
inspired by human problem-solving. By simulating
input/output step-by-step, CODESIM verifies
both the generated plans and performs internal
debugging, mirroring how humans understand,
visualize, and refine algorithms. This simulation-
driven planning and debugging process ensures
that each step is thoroughly evaluated, significantly
enhancing both solution quality and efficiency.
Figure 1 shows an overview of our proposed ap-
proach, CODESIM and in Figure 2, we demonstrate

how simulation assists in both plan verification
and debugging, highlighting its crucial role in
improving problem-solving accuracy.

We evaluate CODESIM on seven popular pro-
gramming synthesis benchmarks, including foun-
dational tasks like HumanEval and MBPP, as well
as challenging competitive problem-solving bench-
marks such as APPS, and CodeContest. Our ex-
periments leverage multiple LLMs, including Chat-
GPT, GPT-4, GPT-4o, LLaMa, Gemma, and Mix-
tral, showcasing significant improvements in their
program synthesis capabilities. CODESIM consis-
tently achieves state-of-the-art performances, often
surpassing strong baselines like MapCoder. Ad-
ditionally, our findings suggest that CODESIM’s
performance can be further improved when inte-
grated with external debugging tools, such as LDB
(Zhong et al., 2024), highlighting a promising di-
rection for future research in hybrid code gener-
ation and debugging systems. Through detailed
ablation studies, we provide valuable insights into
CODESIM’s functionality. We will open-source our
framework to support future research in AI-assisted
programming and problem-solving.

2 Related Work

Code Generation: Program synthesis has been a
fundamental challenge in AI for decades (Manna
and Waldinger, 1971). Early attempts with smaller
language models centered on code generation by
fine-tuning neural networks (Wang et al., 2021; Ah-
mad et al., 2021; Feng et al., 2020; Parvez et al.,
2018; Hellendoorn and Devanbu, 2017; Rabinovich
et al., 2017; Yin and Neubig, 2017; Hindle et al.,

5129

LLM

Loop from 2 to 3

Simulation of tri(3)

For n = 2: since it's even, use the formula
`tri(2) = 1 + 2 / 2 = 2`. Append `2` to the list: 3, 2

Initialize: 3

For n = 3: since it's odd, use the recursive formula
 `tri(3) = tri(2) + tri(1) + tri(4)`.
 - We have `tri(2) = 2` and `tri(1) = 3` (base case).
 - We need `tri(4)`, which is even, so `tri(4) = 1 + 4 / 2 = 3`.
 - Calculate `tri(3) = 2 + 3 + 3 = 8`.
 - Append `8` to the list: 3, 2, 8

The list should contain the first `n + 1` numbers, so we need to include `tri(0)`.
But `tri(0)` is not defined in the problem, but based on the example, it seems
to be `1`.

The simulation shows that the plan does not correctly handle the initialization and
calculation of `tri(0)`. So, Plan Modification Needed.

The plan needs modification because it does not account for `tri(0)`. We need to
start the list with `[1, 3]` to correctly generate the sequence starting from `tri(0)`.

Plan Evaluation

Tribonacci sequence is defined by the recurrence:
 tri(1) = 3
 tri(n) = 1 + n / 2, if n is even.
 tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.

Examples: tri(3) = [1, 3, 2, 8]

Problem

Initialize a List: Start with a list containing the base case: [3].
Iterate Over Range: Loop from 2 to `n` to calculate each number in the

 sequence
Calculate Even Numbers: For even `n`, use the formula

 `tri(n) = 1 + n / 2` and append the result to the list.
Calculate Odd Numbers: For odd `n`, use the recursive formula

 `tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1)`. Use memoization to store and
 retrieve previously calculated values to optimize performance.

Return the Sequence: Once the loop completes, return the list
 containing the first `n + 1` numbers of the Tribonacci sequence.

Plan

0

end = max(10, 14) = 14

 - `10 % 2 == 0` (even, added to list)
 - `11 % 2 != 0` (odd, not added)
 - `12 % 2 == 0` (even, added to list)
 - `13 % 2 != 0` (odd, not added)
 - `14 % 2 == 0` (even, added to list)

10

The list becomes . return this.

LLM

Given two positive integers a and b, return the even digits
between a and b, in ascending order.
For example:
 generate_integers(2, 8) => [2, 4, 6, 8]
 generate_integers(8, 2) => [2, 4, 6, 8]
 generate_integers(10, 14) => []

Problem

def generate_integers(a, b):
 start = min(a, b)
 end = max(a, b)
 even_numbers = []
 for number in range(start, end + 1):
 if number % 2 == 0:
 even_numbers.append(number)
 return even_numbers

Code

Plan Validation Using Simulation

Failed on test case:
generate_integers(10, 14) => []

Code
Execution

LLM

Simulation of generate_integers(10, 14)

Loop over 10, 11, 12, 13, 14

start = min(10, 14) = 10

even_numbers =

10, 12

10, 12, 14

10, 12, 14

The code does not account for the requirement that the even
digits themselves must be between `a` and `b`.

Debugging Note

def generate_integers(a, b):
 start = min(a, b)
 end = max(a, b)
 even_numbers = []
 for number in range(start, end + 1):
 # Check each digit in the number
 for digit in str(number):
 if int(digit) % 2 == 0 and start <= int(digit) <= end:
 even_numbers.append(int(digit))
 # Remove duplicates and sort the result
 return sorted(set(even_numbers))

Modified Code

C
ode

Execution

Passed on Sample I/O
Send it for final Evaluation

Private Test
 Passed

Debugging Using Simulation

Figure 2: Example of Plan Validation using Simulation (left) and Debugging using Simulation (right) on two
different problems using CODESIM.

2016), while others explored leveraging data flow
information or conversational intents to guide the
process (Andreas et al., 2020; Yu et al., 2019). Var-
ious prior approaches have also addressed code
generation tasks using techniques such as data flow
analysis and search-based methods (Li et al., 2022a;
Parisotto and Salakhutdinov, 2017; Polozov and
Gulwani, 2015; Gulwani, 2011).

LLMs for Code: Various LLMs have been de-
veloped for code synthesis (Austin et al., 2021;
Chen et al., 2021b; Nijkamp et al., 2022; Fried
et al., 2022; Allal et al., 2023; Li et al., 2022c). Re-
cent open-source LLMs include the Llama family
(Llama-2, CodeLlama, Llama3.1, etc.) (Roziere
et al., 2023; Touvron et al., 2023), the Mistral

family (Mistral, Mixtral, Codestral) (Jiang et al.,
2023a), the Deepseek family (Deepseek Coder,
Deepseek-V2, etc.) (Guo et al., 2024), MoTCoder
(Li et al., 2023), and the Qwen family (Qwen 1.5,
2.5, 2.5-coder, etc.) (Hui et al., 2024), all of which
are capable of solving many basic problems.

Prompting LLMs and Multi-Agent Code Gen-
eration: LLM prompting can be summarized into
three categories: retrieval (Yasunaga et al., 2023;
Parvez et al., 2021, 2023), planning (Jiang et al.,
2023b; Wei et al., 2022b), and debugging (Le et al.,
2022; Chen et al., 2022b, 2023; Ridnik et al., 2024),
in addition to direct code generation approaches.
In contrast, our work combines all these paradigms
and bridges their gaps (See Table 1). Recently, nu-

5130

Approach Exemplars Plan
Additional
test cases
generation

Debug Simulation

Reflexion ✗ ✗ ✔ ✔ ✗

Self-planning ✗ ✔ ✗ ✗ ✗

Analogical ✔ ✔ ✗ ✗ ✗

LATS ✗ ✔ ✔ ✔ ✗

MapCoder ✔ ✔ ✗ ✔ ✗

CodeSim ✔ ✔ ✗ ✔ ✔

Table 1: Comparison of code generation approaches.

merous works have explored multi-agent code gen-
eration and problem-solving, including (Kulesza
et al., 2004; Jin et al., 2024a; Phan et al., 2024),
as well as approaches highlighted in Section 1.
However, CODESIM uniquely features simulation-
driven planning and LLM-based debugging. More
recently, external debugging has emerged to fur-
ther boost performance, such as LDB (Zhong et al.,
2024), ChatDebug (Levin et al., 2024), and MGDe-
bugger (Shi et al., 2024), which serve as a second
pass after our generation.

3 CODESIM

Our goal is to develop a multi-agent code genera-
tion approach capable of complex problem solving.
Drawing inspiration from recent works like Map-
Coder and ChatDev (in a different context), we de-
vise the agents in CODESIM for planning, coding,
and debugging. While these existing approaches fo-
cus primarily on expanding steps without verifying
underlying hypotheses, we address this limitation
by introducing a novel verification approach. Our
approach simulates input/output step-by-step, veri-
fying generated plans and performing internal de-
bugging, mirroring how humans understand, visu-
alize, and refine in algorithm development. Below,
we present our proposed model.

3.1 Planning Agent

The first component of CODESIM is the Planning
Agent. Given a problem description, the Planning
Agent generates a single exemplar—a relevant prob-
lem along with its plan and solution. This mimics
the behavior of human programmers, who, when
faced with a new problem, first recall a similar
problem they’ve previously solved. This exemplar-
based recall is crucial as it provides a starting point
for constructing a solution plan. Instead of gener-
ating multiple ungrounded exemplars as in Map-
Coder, our agent focuses on only one at a time.
We then instruct the LLM to generate an appro-
priate plan. Once the plan is created, the LLM

simulates (step-by-step) the solution with a sample
input. If the simulation result does not match the
expected output, the agent prompts the LLM to re-
vise the plan. Otherwise, the plan is deemed valid.
In the case of failure, the Planning Agent refines
the plan. The complete prompts for the Planning
Agent—including plan generation, verification, and
refinement—are provided in the Appendix (Figure
5, 6, 7).

3.2 Coding Agent
Next component is the Coding Agent, which takes
the problem description and the plan generated
by the Planning Agent as input. The role of this
agent is to translate the plan into executable code
that solves the given problem. Once the code is
generated, CODESIM evaluates it using sample in-
put/output test cases. If the code passes all sample
tests, it is returned as the final solution. Otherwise,
the code is handed over to the next agent for further
refinement. Figure 8 in the Appendix provides the
complete prompt used by the Coding Agent.

3.3 Debugging Agent
The final component, the Debugging Agent, re-
ceives the original problem, the plan from the
Planning Agent, the code generated by the Coding
Agent, and the execution (unit testing) log as input
to debug the code. To identify bugs, instead of di-
rectly prompting the LLMs, we uniquely leverage
the simulation once again. The LLM is instructed
specifically to simulate the code on inputs where
it fails to produce the expected output, allowing it
to trace the execution step by step and locate the
error. Once the bug is identified, the LLM mod-
ifies the code to resolve the issue. The complete
prompt for the Debugging Agent is shown in the
Appendix (Figure 9). Unlike other approaches such
as LATS (Zhou et al., 2023), AgentCoder (Huang
et al., 2023), and Reflexion (Shinn et al., 2023), our
Debugging Agent does not require additional test
case generation. The rationale behind excluding
this phase is discussed in the Ablation Study 6.8.

3.4 Adaptive Iteration
CODESIM employs an adaptive iteration starting
with the Planning Agent, which generates plans for
the given problem. These plans are passed to the
Coding Agent, which translates them into code and
tests against sample I/Os. If all tests pass, the code
is returned; otherwise, it’s sent to the Debugging
Agent. The Debugging Agent attempts to fix the

5131

Basic Programming Problems
LL

M Approach HumanEval HumanEval
ET EvalPlus Avg

HumanEval MBPP MBPP-ET Avg
MBPP Avg

C
ha

tG
PT

Direct 71.3% 64.6% 67.1% 67.7% 75.8% 52.6% 64.2% 65.9%
CoT 70.7% 63.4% 68.3% 67.5% 78.3% 55.7% 67.0% 67.2%
Self-Planning 70.7% 61.0% 62.8% 64.8% 73.8% 51.1% 62.5% 63.6%
Analogical 67.1% 59.1% 59.1% 61.8% 69.3% 46.9% 58.1% 59.9%
Self-collaboration 74.4% 56.1% - 65.3% 68.2% 49.5% 58.9% 62.1%
LATS 83.8% - - - - - - -
MapCoder 80.5% 70.1% 71.3% 74.0% 78.3% 54.4% 66.4% 70.2%
CodeSim 86.0% 72.0% 73.2% 77.1% 86.4% 59.7% 73.1% 75.1%

G
PT

4

Direct 80.1% 73.8% 81.7% 78.5% 81.1% 54.7% 67.9% 73.2%
CoT 89.0% 61.6% - 75.3% 82.4% 56.2% 69.3% 72.3%
Self-Planning 85.4% 62.2% - 73.8% 75.8% 50.4% 63.1% 68.4%
Analogical 66.5% 48.8% 62.2% 59.1% 58.4% 40.3% 49.4% 54.3%
Reflexion 91.0% 78.7% 81.7% 83.8% 78.3% 51.9% 65.1% 74.4%
LATS 92.7% - - - - - - -
MapCoder 93.9% 82.9% 83.5% 86.8% 83.1% 57.7% 70.4% 78.6%
CodeSim 94.5% 81.7% 84.8% 87.0% 89.7% 61.5% 75.6% 81.3%

G
PT

4o

Direct 90.2% 81.1% 82.3% 84.5% 81.1% 55.9% 68.5% 76.5%
CoT 90.9% 82.3% 87.2% 86.8% 82.9% 57.9% 70.4% 78.6%
Self-Planning 89.0% 80.5% 84.1% 84.5% 82.60% 56.4% 69.50% 77.0%
Analogical 88.4% 80.5% 83.5% 84.1% 75.10% 50.9% 63.00% 73.6%
Reflexion 87.2% 81.1% 81.1% 83.1% 81.1% 56.7% 68.9% 76.0%
LATS 88.8% 81.2% - 85.0% - - - -
MapCoder 90.2% 80.5% 81.7% 84.1% 88.7% 59.2% 74.0% 79.0%
CodeSim 95.1% 86.0% 87.2% 89.4% 90.7% 61.2% 76.0% 82.7%

Table 2: Pass@1 results for different approaches on basic programming tasks.

code for up to d attempts. If unsuccessful after d
attempts, the process returns to the Planning Agent,
restarting the cycle. Once code passing all sample
I/Os is obtained, the cycle ends, returning the code
as the final output solution for evaluation against
hidden test cases. This entire process repeats for
a maximum of p cycles if needed. Algorithm 9
in the Appendix summarizes our adaptive agent
traversal. The algorithm’s complexity is O(pd).
Appendix 12 provides a comprehensive example of
how CODESIM solves a problem.

4 Experimental Setup

4.1 Datasets

Following MapCoder, we evaluate CODESIM on
five basic programming benchmarks i.e., Hu-
manEval (Chen et al., 2021a), HumanEval-
ET (Dong et al., 2023a), EvalPlus (Liu et al.,
2023), MBPP) (Austin et al., 2021), and MBPP-
ET (Dong et al., 2023a) and two competitive pro-
gramming datasets i.e., APPS (Hendrycks et al.,
2021), and CodeContest (Li et al., 2022b). For

fair comparison, we collect all the datasets from
the repository of the MapCoder.

4.2 Baselines and Metric

To evaluate CODESIM, we compare it against
state-of-the-art code generation approaches, includ-
ing MapCoder, as well as several notable meth-
ods: Direct, Chain of Thought (CoT) (Wei et al.,
2022b), Self-Planning (Jiang et al., 2023b), Ana-
logical Reasoning (Yasunaga et al., 2023), and
Self-collaboration (Dong et al., 2023b). For sim-
pler programming tasks, we include strong base-
lines such as Reflexion (Shinn et al., 2023) and
LATS (Zhou et al., 2023). We exclude AgentCoder
(Huang et al., 2023) due to reproducibility issues
(discussed in Appendix 10). For fair comparison,
our evaluation utilizes ChatGPT (gpt-3.5-turbo-
1106), GPT-4 (gpt-4-1106-preview) from OpenAI,
alongside open-source LLMs such as Gemma2-
9B, Mixtral8x7B, LLaMa3.1-8B, and LLaMa3.1-
70B. For basic programming tasks, we report next-
generation performance with additional evaluations
using GPT-4o (gpt-4o-2024-08-06). We adopt the

5132

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4o

widely used pass@1 metric, where a model is
deemed successful if its sole predicted solution
is correct.

4.3 Reproducibility

We aim to contribute to the NLP community by
open-sourcing all of our code along with result
logs, enabling others to reproduce our findings. For
simple programming, we set the maximum number
of planning tries to p = 5 and debugging tries to
d = 5. For the competitive problem solving, we
used p = 3 and d = 3 by default except for the
CodeContest with GPT-4 where p = 3, d = 5.

5 Results

5.1 Basic Code Generation

In Table 2, we evaluate the model performances
on simple code generation tasks. Overall,
CODESIM demonstrates consistently superior per-
formance compared to all other baselines across all
datasets and LLMs. Notably, CODESIM achieves
top scores with GPT-4o, reaching 95.1% on Hu-
manEval, 87.2% on EvalPlus, and 90.7% on
MBPP, resulting in an impressive 82.7% overall
average and their new state-of-the-art (SoTA) re-
sults. This represents a significant improvement
over the next best method, MapCoder, which scores
79.0% on average with GPT-4o. CODESIM’s effec-
tiveness is consistent across different model vari-
ants, outperforming other approaches with Chat-
GPT (75.1% avg) and GPT-4 (81.3% avg) as
well. The method’s robust performance across di-
verse datasets, including the challenging MBPP-
ET where it achieves 61.5% with GPT-4, under-
scores its versatility in handling various program-
ming tasks. These results strongly indicate that
CODESIM’s simulation-driven planning and debug-
ging approach marks a substantial advancement in
code generation and problem-solving capabilities,
as it consistently outperformed other baselines.

5.2 Competitive Problem Solving

In Table 3, we evaluate performance on complex,
contest-level code generation tasks. CODESIM de-
livers significant improvements over other base-
lines in solving complex contest-level code genera-
tion tasks. With GPT-4, CODESIM reaches a strong
29.1% on CodeContests and 22.0% on APPS,
marking a consistent edge over MapCoder’s 25.3%
average. The performance gains are even more pro-
nounced with ChatGPT, where CODESIM achieves

a 16.4% on CodeContests, and 12.0% on APPS re-
sulting 14.2% overall, outperforming MapCoder’s
12.0%. These results highlight CODESIM’s ability
to handle the complexity of contest-level problems
more effectively, especially through its simulation-
driven approach.

LL
M Contest-Level Problems

Approach CodeContest APPS Avg

C
ha

tG
PT

Direct 5.5% 8.0% 6.8%
CoT 6.1% 7.3% 6.7%
Self-Planning 6.1% 9.3% 7.7%
Analogical 7.3% 6.7% 7.0%
MapCoder 12.7% 11.3% 12.0%
CodeSim 16.4% 12.0% 14.2%

G
PT

4

Direct 12.1% 12.7% 12.4%
CoT 5.5% 11.3% 8.4%
Self-Planning 10.9% 14.7% 12.8%
Analogical 10.9% 12.0% 11.5%
MapCoder 28.5% 22.0% 25.3%
CodeSim 29.1% 22.0% 25.6%

Table 3: Pass@1 results for different approaches on
CodeContest and APPS dataset.

Open-Source LLMs

LLM Approach HumanEval HumanEval
ET EvalPlus Avg

Gemma2-9
B
Direct 64.0% 56.1% 56.1% 58.7%
CoT 31.7% 26.2% 27.4% 28.4%
Reflexion 62.2% 56.7% 55.5% 58.1%
CodeSim 82.9% 72.0% 72.6% 75.8%

Mixtra
l8x7B

Direct 20.7% 18.9% 18.9% 19.5%
CoT 46.3% 42.1% 39.0% 42.5%
Reflexion 34.1% 32.9% 29.9% 32.3%
CodeSim 75.0% 61.6% 61.0% 65.9%

LLaMa3.1-
8B Direct 42.1% 38.4% 39.0% 39.8%
CoT 48.8% 42.1% 43.3% 44.7%
Reflexion 43.9% 31.1% 29.9% 35.0%
CodeSim 79.9% 65.2% 61.2% 68.8%

LLaMa3.1-
70B Direct 57.3% 50.6% 52.4% 53.4%

CoT 75.6% 67.7% 70.1% 71.1%
Reflexion 73.8% 64.0% 68.3% 68.7%
CodeSim 90.2% 73.8% 76.2% 80.1%

Table 4: Pass@1 results for different approaches using
Open-source LLMs.

5.3 Performance Across Open-source LLMs
To further demonstrate CODESIM’s generaliza-
tion capability, we evaluate its performance with
open-source LLMs, including Gemma2-9B, Mix-
tral8x7B, LLaMa3.1-8B, and LLaMa3.1-70B. As
shown in Table 4, CODESIM consistently outper-
forms all other methods across these models. On
LLaMa3.1-70B, CODESIM achieves an accuracy

5133

of 90.2% on HumanEval and 76.2% on EvalPlus,
with an average of 80.1%, closely matching GPT-
4o’s performance. Due to the complex prompting
scheme of MapCoder, open-source LLMs often
struggle to generate output in the correct format.
Therefore, we exclude MapCoder from this experi-
ment. On the other hand, Reflexion shows minimal
improvement in accuracy. These results highlight
CODESIM’s strong generalization ability across
various LLM architectures, even on smaller mod-
els like Gemma2-9B that achieves a notable avg
accuracy of 75.8%.

6 Ablation Studies and Analyses

6.1 Impact of Different Agents

Our primary contributions are two folds: (i) the
simulation-guided plan verification step within the
Planning Agent and (ii) the bug fixing process
through simulation in Debugging Agent. To evalu-
ate the significance of these components, we ablate
these two parts of our approach and present the
results in Table 5. The findings confirm that both
components contribute significantly.

Simulation
Driven

Planning

Debugging
using

Simulation
Pass@1 Performance

Drop

✗ ✗ 92.1% 3.2%
✔ ✗ 93.3% 1.9%
✗ ✔ 93.3% 1.9%
✔ ✔ 95.1% -

Table 5: Pass@1 results for different versions of
CODESIM (by using GPT4o on HumanEval dataset).

6.2 Fine-grained Analysis of the Impact of
Simulation

Table 6 presents the impact of incorporating
Simulation in CODESIM. The results show
that CODESIM consistently outperforms other ap-
proaches across both simple and multi-agent set-
tings, demonstrating superior performance with
both open-source and proprietary LLMs. This high-
lights the effectiveness of Simulation in enhancing
problem-solving efficiency within our pipeline.

6.3 Impact of Varying Programming
Languages

To evaluate the performance of CODESIM across
various programming languages, we utilized the

LL
M Method Approach HumanEval

(Pass@1)
Impact of using

Simulation

G
PT

4o

Simpler

Direct 90.2% 5.4%
CoT 90.9% 4.6%
Self-Planning 89.0% 6.9%
Analogical 88.4% 7.6%
Reflexion 91.0% 4.5%
LATS 88.8% 7.1%

Multi-Agent
MapCoder 90.2% 5.4%
CodeSim 95.1% -

LL
aM

a3
.1-

70
B

Simpler

Direct 57.3% 57.4%

CoT 75.6% 19.3%

Reflexion 73.8% 22.2%

Multi-Agent CodeSim 90.2% -

Table 6: Impact of using Simulation.

xCodeEval (Khan et al., 2023) dataset. The ex-
perimental results, presented in Table 7, demon-
strate that CODESIM maintains strong performance
across different programming languages, highlight-
ing its versatility and effectiveness.

Dataset Language Direct MapCoder CodeSim

xC
od
eE
va
l Python 17.9% 27.4% 27.4%

C 9.4% 21.7% 24.5%
Rust 12.3% 21.7% 23.6%

Table 7: Pass@1 results for different programming lan-
guages from xCodeEval dataset by using ChatGPT.

6.4 Use of External Debugger

LLM LDB Reflexion MapCoder CodeSim

ChatGPT
without 88.0% 90.2% 95.1%
with 89.6% 92.1% 96.3%

GPT-4o
without 88.0% 90.2% 95.1%
with 94.5% 91.5% 97.6%

Table 8: Pass@1 results for different approaches using
an external debugger.

The performance of CODESIM can be further en-
hanced by incorporating an external debugger in
the second pass. We experiment with LDB as
the external debugger on HumanEval dataset in
Table 8. We use the output code from the most
competitive first-pass generation methods, includ-
ing CODESIM, Reflexion, and MapCoder, using
GPT-4o as the backbone. These seed programs are
then passed to LDB, which was tested with two
different LLMs: ChatGPT and GPT-4o. As can
be seen, CODESIM achieves 95.1% accuracy in

5134

the first pass with GPT-4o, surpassing Reflexion’s
second pass performance of 94.5%. By utilizing
LDB with GPT-4o, CODESIM achieves a second
pass accuracy of 97.6%, setting a new state-of-the-
art result for a dual-pass approach. In addition,
we note that the second pass with LDB consumes
39K more tokens in Reflexion compared to our
approach, highlighting the efficiency of CODESIM.

6.5 Qualitative Example

We also conduct a qualitative analysis to better
understand how CODESIM improves performance
across various datasets. Figure 2 demonstrates how
CODESIM enhances the plan through simulation
and assists in debugging the code using the same
technique. A complete example, including LLM
output, is provided in Appendix 12.

6.6 Impact of p and d

CODESIM includes two key hyperparameters: the
maximum number of planning steps (p) and the
maximum number of debugging steps (d). By vary-
ing these parameters, we plot the results in Figure
3, which shows a proportionate improvement in
performance. It is important to note that higher val-
ues of p and d lead to more API calls and increased
token consumption, allowing users to adjust these
parameters to balance between accuracy and cost.

Figure 3: Pass@1 results by varying maximum number
of planning, p and maximum number of debugging, d.

6.7 Impact of Number of Sample I/Os

The HumanEval dataset has an average of only
2.82 sample I/Os per example, which is a relatively
small number for deriving meaningful insights. In
this ablation, we augment the dataset by adding 5
more sample I/Os from the HumanEval-ET dataset.
This augmentation increases performance notably,

leading to 89% accuracy with ChatGPT, a 3.5%
improvement over previous results, 86%.

6.8 Impact of Synthesizing Additional I/O

Increasing the number of sample I/Os for testing
can enhance the overall performance of our ap-
proach, as indicated in 6.7. Based on this insight,
we use a self-consistency (Wang et al., 2023a)
method to generate additional test cases. We in-
struct the LLM to generate five more test cases
for each problem, covering both basic and edge
cases. The LLM is called twice, and we select the
test cases that are present in both responses. How-
ever, this approach results in a performance decline.
With ChatGPT we achieve 78% accuracy—a 9.3%
decrease from the original 86%. This indicates that
generating additional I/Os is a non-trivial task that
may negatively impact final outcomes.

6.9 API Call and Token Analysis

We compare the API calls and token consumption
of our approach with the previous state-of-the-art
method, MapCoder (Islam et al., 2024a), as shown
in Table 9. The results reveal that CODESIM not
only improves performance but also reduces token
consumption. On average, CODESIM uses 4.13
thousand fewer tokens while achieving a 7.1% in-
crease in accuracy, proving that CODESIM is more
efficient in both accuracy and token usage com-
pared to MapCoder.

6.10 Error Analysis and Challenges

Although CODESIM demonstrates strong
performance compared to other methods, it faces
challenges in specific algorithmic domains. The
APPS dataset (Hendrycks et al., 2021) includes
problems with three levels of difficulty: (i)
Introductory, (ii) Interview, and (iii) Competition.
Figure 4 illustrates the performance of different
approaches based on difficulty level. The results
indicate that for introductory and interview-level
problems, CODESIM does not surpass MapCoder
when using ChatGPT. Additionally, when using
GPT-4, CODESIM struggles to outperform
MapCoder on interview-level problems. Upon
manual review, we observe that for more complex
issues, such as dynamic programming (DP),
CODESIM encounters difficulties in constructing
the DP table.

5135

LLM Dataset
Average API Calls ↓ Average Token Consumption (K) ↓ Token Reduction over

MapCoder (k) ↑
Acc Gain over

MapCoder ↑MapCoder CodeSim MapCoder CodeSim

ChatG
PT

HumanEval 17 7 10.41 5.48 4.93 6.8%

MBPP 12 6 4.84 4.24 0.60 10.3%

APPS 21 15 26.57 19.20 7.37 6.2%

CodeContest 23 16 34.95 24.02 10.92 29.1%

GPT4

HumanEval 15 5 12.75 5.15 7.60 0.6%

MBPP 8 5 4.96 5.21 -0.26 7.9%

APPS 19 13 31.80 23.18 8.61 0.0%

CodeContest 19 17 38.70 41.66 -2.95 2.1%

GPT4o HumanEval 9 4 6.63 3.84 2.79 5.4%

MBPP 9 5 6.10 4.43 1.67 2.3%

Average 15.2 9.3 17.77 13.64 4.13 7.1%

Table 9: Comparison between MapCoder and CODESIM in terms of average number of API calls, average tokens
used (in thousands). Here the upward symbol (↑) refers that the higher value is better and opposite meaning for
downward symbol (↓).

Figure 4: Performance of different approaches across
different difficulty levels on the APPS dataset.

7 Conclusion and Future Work

In this paper, we introduce CODESIM, a novel
framework that leverages the multi-agent
prompting capabilities of LLMs for efficient
code generation in problem-solving tasks.
CODESIM integrates three agents—planning,
coding, and debugging—to effectively solve
programming problems. It harnesses the power
of simulation for plan verification and debugging,
significantly outperforming existing state-of-the-art
approaches by a wide margin. Future work will
focus on extending this approach to other domains
such as mathematical reasoning and question
answering broadening its scope and impact.

8 Limitations

In Section 6.4, we observe that utilizing an exter-
nal debugger can further enhance our results. Our
next research goal is to achieve the best perfor-

mance without relying on any external tools. Al-
though we have reduced token consumption com-
pared to the previous state-of-the-art method, Map-
Coder, it still remains high compared to the di-
rect prompting approach. Direct prompting con-
sumes an average of 560 tokens, while our method
consumes around 13,640 tokens. This indicates
room for enhancement in efficiency. While in this
work, we generate the exemplars with the LLMs
themselves, in general they are found from exter-
nal resource (Parvez and Chang, 2021). Although
this has its own challenges such as noisy retrievals
(Wang et al., 2023b), inconsistent generations (Is-
lam et al., 2024b; Parvez, 2024; Sadat et al., 2023)
this direction could also be a possible improvement.
Another limitation is the use of external tools for
assistance during simulation. We have not explored
this avenue in the current research, leaving it for
future work. Additionally, more sample I/Os could
potentially improve performance, and our future
research will focus on investigating methods for
generating accurate additional I/Os. Moreover, we
would like to note that in this work, we focus solely
on generated code’s correctness and did not study
its optimizations such as test-time, memory. Fi-
nally, it is advisable to run the machine generated
code inside a sandbox to avoid any potential risks.

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi

Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. arXiv
preprint arXiv:2103.06333.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Munoz

5136

Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby
Wray, Yuchen Zhang, and Alexander Zotov. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022a.
Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022b.
Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021b. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Yihong Dong, Jiazheng Ding, Xue Jiang, Zhuo Li,
Ge Li, and Zhi Jin. 2023a. Codescore: Evaluating
code generation by learning code execution. arXiv
preprint arXiv:2301.09043.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2023b.
Self-collaboration code generation via chatgpt.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and et al. 2024. The llama 3 herd of models.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1536–1547.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Sumit Gulwani. 2011. Automating string processing
in spreadsheets using input-output examples. ACM
Sigplan Notices, 46(1):317–330.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Vincent J. Hellendoorn and Premkumar Devanbu. 2017.
Are deep neural networks the best choice for model-
ing source code? In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2017, pages 763–773, New York,
NY, USA. ACM.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
arXiv preprint arXiv:2105.09938.

Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su,
and Premkumar Devanbu. 2016. On the naturalness
of software. Commun. ACM, 59(5):122–131.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck,
and Heming Cui. 2023. Agentcoder: Multi-agent-
based code generation with iterative testing and opti-
misation. arXiv preprint arXiv:2312.13010.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

5137

https://doi.org/10.1162/tacl_a_00333
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2304.07590
http://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362

Md. Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024a. MapCoder: Multi-agent
code generation for competitive problem solving. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 4912–4944, Bangkok, Thailand.
Association for Computational Linguistics.

Shayekh Bin Islam, Md Asib Rahman, K S M Tozammel
Hossain, Enamul Hoque, Shafiq Joty, and Md Rizwan
Parvez. 2024b. Open-RAG: Enhanced retrieval aug-
mented reasoning with open-source large language
models. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2024, pages 14231–
14244, Miami, Florida, USA. Association for Com-
putational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b.

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang,
and Ge Li. 2023b. Self-planning code genera-
tion with large language model. arXiv preprint
arXiv:2303.06689.

Dongming Jin, Zhi Jin, Xiaohong Chen, and Chun-
hui Wang. 2024a. Mare: Multi-agents collabora-
tion framework for requirements engineering. arXiv
preprint arXiv:2405.03256.

Haolin Jin, Zechao Sun, Yiheng Yang, and Huaming
Chen. 2024b. Rgd: Multi-llm based agent debug-
ger via refinement and generation guidance. arXiv
preprint arXiv:2410.01242.

Mohammad Abdullah Matin Khan, M Saiful Bari,
Xuan Long Do, Weishi Wang, Md Rizwan Parvez,
and Shafiq Joty. 2023. xcodeeval: A large scale multi-
lingual multitask benchmark for code understanding,
generation, translation and retrieval. arXiv preprint
arXiv:2303.03004.

Uirá Kulesza, Alessandro Garcia, Carlos Lucena, and
Paulo Alencar. 2004. A generative approach for
multi-agent system development. In International
Workshop on Software Engineering for Large-Scale
Multi-agent Systems, pages 52–69. Springer.

Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Sai-
ful Bari, Mizanur Rahman, Mohammad Abdul-
lah Matin Khan, Haidar Khan, Israt Jahan, Amran
Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, Enamul
Hoque, Shafiq Joty, and Jimmy Huang. 2024. A sys-
tematic survey and critical review on evaluating large
language models: Challenges, limitations, and recom-
mendations. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 13785–13816, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. Advances in Neural
Information Processing Systems, 35:21314–21328.

Kyla Levin, Nicolas van Kempen, Emery D Berger,
and Stephen N Freund. 2024. Chatdbg: An
ai-powered debugging assistant. arXiv preprint
arXiv:2403.16354.

Jingyao Li, Pengguang Chen, and Jiaya Jia. 2023. Mot-
coder: Elevating large language models with modular
of thought for challenging programming tasks. arXiv
preprint arXiv:2312.15960.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022a. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022b. Competition-level code generation with al-
phacode. Science, 378(6624):1092–1097.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel Mankowitz, Esme
Sutherland Robson, Pushmeet Kohli, Nando de Fre-
itas, Koray Kavukcuoglu, and Oriol Vinyals. 2022c.
Competition-level code generation with alphacode.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Zohar Manna and Richard J. Waldinger. 1971. To-
ward automatic program synthesis. Commun. ACM,
14(3):151–165.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

OpenAI. 2024. Gpt-4 technical report.

Emilio Parisotto and Ruslan Salakhutdinov. 2017. Neu-
ral map: Structured memory for deep reinforcement
learning. arXiv preprint arXiv:1702.08360.

5138

https://doi.org/10.18653/v1/2024.acl-long.269
https://doi.org/10.18653/v1/2024.acl-long.269
https://doi.org/10.18653/v1/2024.findings-emnlp.831
https://doi.org/10.18653/v1/2024.findings-emnlp.831
https://doi.org/10.18653/v1/2024.findings-emnlp.831
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2024.emnlp-main.764
https://doi.org/10.18653/v1/2024.emnlp-main.764
https://doi.org/10.18653/v1/2024.emnlp-main.764
https://doi.org/10.18653/v1/2024.emnlp-main.764
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568
http://arxiv.org/abs/2303.08774

Md Rizwan Parvez. 2024. Evidence to generate
(e2g): A single-agent two-step prompting for context
grounded and retrieval augmented reasoning. arXiv
preprint arXiv:2401.05787.

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat
Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Retrieval augmented code generation and sum-
marization. arXiv preprint arXiv:2108.11601.

Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2018. Building language mod-
els for text with named entities. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2373–2383, Melbourne, Australia. Association for
Computational Linguistics.

Md Rizwan Parvez and Kai-Wei Chang. 2021. Evalu-
ating the values of sources in transfer learning. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5084–5116, Online. Association for Computa-
tional Linguistics.

Md Rizwan Parvez, Jianfeng Chi, Wasi Uddin Ahmad,
Yuan Tian, and Kai-Wei Chang. 2023. Retrieval
enhanced data augmentation for question answer-
ing on privacy policies. In Proceedings of the 17th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 201–210,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Huy Nhat Phan, Phong X Nguyen, and Nghi DQ Bui.
2024. Hyperagent: Generalist software engineering
agents to solve coding tasks at scale. arXiv preprint
arXiv:2409.16299.

Oleksandr Polozov and Sumit Gulwani. 2015. Flash-
meta: A framework for inductive program synthesis.
In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 107–
126.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan
Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng
Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2024. ChatDev: Communicative
agents for software development. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15174–15186, Bangkok, Thailand. Association
for Computational Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. CoRR, abs/1704.07535.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. 2024.
Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint
arXiv:2401.08500.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Mobashir Sadat, Zhengyu Zhou, Lukas Lange, Jun
Araki, Arsalan Gundroo, Bingqing Wang, Rakesh
Menon, Md Parvez, and Zhe Feng. 2023. Delu-
cionQA: Detecting hallucinations in domain-specific
question answering. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
822–835, Singapore. Association for Computational
Linguistics.

Yuling Shi, Songsong Wang, Chengcheng Wan, and
Xiaodong Gu. 2024. From code to correctness: Clos-
ing the last mile of code generation with hierarchical
debugging. arXiv preprint arXiv:2410.01215.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Kashun Shum, Shizhe Diao, and Tong Zhang. 2023.
Automatic prompt augmentation and selection with
chain-of-thought from labeled data. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 12113–12139, Singapore. Asso-
ciation for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023a. Self-consistency improves
chain of thought reasoning in language models.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan
Parvez, and Graham Neubig. 2023b. Learning to fil-
ter context for retrieval-augmented generation. arXiv
preprint arXiv:2311.08377.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022a. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

5139

https://doi.org/10.18653/v1/P18-1221
https://doi.org/10.18653/v1/P18-1221
https://doi.org/10.18653/v1/2021.naacl-main.402
https://doi.org/10.18653/v1/2021.naacl-main.402
https://doi.org/10.18653/v1/2023.eacl-main.16
https://doi.org/10.18653/v1/2023.eacl-main.16
https://doi.org/10.18653/v1/2023.eacl-main.16
https://doi.org/10.18653/v1/2024.acl-long.810
https://doi.org/10.18653/v1/2024.acl-long.810
http://arxiv.org/abs/1704.07535
http://arxiv.org/abs/1704.07535
https://doi.org/10.18653/v1/2023.findings-emnlp.59
https://doi.org/10.18653/v1/2023.findings-emnlp.59
https://doi.org/10.18653/v1/2023.findings-emnlp.59
https://doi.org/10.18653/v1/2023.findings-emnlp.811
https://doi.org/10.18653/v1/2023.findings-emnlp.811
https://arxiv.org/pdf/2307.09288
https://arxiv.org/pdf/2307.09288
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong
Pasupat, Jure Leskovec, Percy Liang, Ed H Chi, and
Denny Zhou. 2023. Large language models as ana-
logical reasoners. arXiv preprint arXiv:2310.01714.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
CoRR, abs/1704.01696.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin.
2024. CodeAgent: Enhancing code generation with
tool-integrated agent systems for real-world repo-
level coding challenges. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13643–
13658, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022. Automatic chain of thought prompt-
ing in large language models. arXiv preprint
arXiv:2210.03493.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023.
A survey of large language models. arXiv preprint
arXiv:2303.18223.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. De-
bug like a human: A large language model debugger
via verifying runtime execution step by step. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2024, pages 851–870, Bangkok, Thailand.
Association for Computational Linguistics.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023. Lan-
guage agent tree search unifies reasoning acting
and planning in language models. arXiv preprint
arXiv:2310.04406.

5140

http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
http://arxiv.org/abs/2303.18223
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49

Appendix

9 Algorithm of CODESIM

Algorithm 1 shows the pseudo-code of our prompt-
ing technique.

Algorithm 1 CODESIM

1: p← maximum number of planning steps
2: d← maximum number of debugging steps
3:
4: for i← 1 to p do
5: # Start of Planning Agent
6: plan← GeneratePlan(problem)
7: feedback ← ValidatePlan(problem, plan)
8: if feedback is negative then
9: plan← RefinePlan(problem, plan, feedback)

10: end if
11: # End of Planning Agent
12:
13: # Start of Coding Agent
14: code← GenerateCode(problem, plan)
15: passed, log ← test(code, sample_io)
16: if passed then
17: Return code
18: else
19: # Start of Debugging Agent
20: for j ← 1 to d do
21: code← DebugCode(
22: problem,
23: plan,
24: code,
25: log
26:)
27:
28: passed, log ← test(code, sample_io)
29: if passed then
30: Return code
31: end if
32: end for
33: # End of Debugging Agent
34: end if
35: # End of Coding Agent
36:
37: end for
38: Return code

10 Exclusion of AgentCoder

We have not included AgentCoder (Huang et al.,
2023) in our comparison due to reproducibility is-
sues which undoubtedly plays a critical role in fair
comparison as indicted in Laskar et al. (2024), as
we were unable to replicate their results. In our at-
tempts to reproduce their work on the HumanEval
benchmark using ChatGPT, we achieved 56.7%
accuracy after four iterations, consuming 11.9 mil-
lion tokens. When using GPT-4, we attained only
17.7% accuracy after two iterations, with 10.4 mil-
lion tokens consumed. The token consumption in
both cases is significantly higher compared to Map-

Coder (1.7 million tokens with ChatGPT and 2.1
million with GPT-4) and CODESIM(0.89 million
tokens in ChatGPT and 0.85 million in GPT-4).
These two experiments resulted in a cost of ap-
proximately $500 USD, but we were still unable
to come close to AgentCoder’s reported claims of
79.9% accuracy with ChatGPT and 96.3% with
GPT-4.

Furthermore, we found unaddressed issues on
their GitHub page (link) related to reproducibility.
Additionally, for the MBPP dataset, they used all
test cases as public test cases (link), which deviates
from standard practices. As a result, we did not
consider those results in our comparison either.

11 Details Promptings of CODESIM

The Planning Agent interacts with the LLM three
times to generate a plan. In the first API call, it
instructs the LLM to comprehend the problem, gen-
erate an example problem, recommend a suitable
algorithm, and finally produce the plan (Figure 5).
In the second API call, the LLM is instructed to
verify the plan through simulation (Figure 6). If
the plan is satisfactory, it is returned by the agent.
Otherwise, the LLM is called again to refine the
plan based on the feedback from the simulation
(Figure 7).

The next step involves the Coding Agent, which
receives the plan from the Planning Agent and uses
the prompt outlined in Figure 8 to generate code.

If the code fails to pass the sample input/output,
CODESIM activates its final agent, the Debugging
Agent, using the prompt shown in Figure 9.

These figures also include the rationale behind
the inclusion of each sentence in the prompt.

12 Example Problem

We present a complete example of problem solving
using CODESIM below:

5141

https://github.com/huangd1999/AgentCoder/issues/8
https://github.com/huangd1999/AgentCoder/issues/3

You are a programmer tasked with generating appropriate plan to solve a given problem
using the **{language}** programming language.

Problem
{problem}

Expected Output:
Your response must be structured as follows:

Problem Understanding
- Think about the original problem. Develop an initial
 understanding about the problem.

Recall Example Problem
Recall a relevant and distinct problems (different from problem
mentioned above) and
- Describe it
- Generate {language} code step by step to solve that problem
- Discuss the algorithm to solve this problem
- Finally generate a planning to solve that problem

Algorithm to solve the original problem
- Write down the algorithm that is well suited for the original
 problem
- Give some tutorials to about the algorithm for example:
 - How to approach this type of algorithm
 - Important things to consider

Plan
- Write down a detailed, step-by-step plan to solve the
 original problem.

Important Instruction:
- Strictly follow the instructions.
- Do not generate code.

Coding Agent: Prompt for Plan Generation

Allow the LLM sufficient time and space to process and
comprehend the problem. Rather than providing

the LLM with a
predefined example,
we leverage its
inherent knowledge to
independently recall a
relevant problem that
can aid in solving the
original issue.

Guide the LLM to
determine the type of
algorithm suitable for
solving the problem,
and request a tutorial
or explanation on how
to apply it.

Lastly, instruct the LLM
to generate a detailed
plan to solve the
problem.

Force the LLM to
follow the instructions.

Figure 5: Planning Agent: Prompt for Plan Generation.

You are a programmer tasked with verifying a plan to solve a given problem using the
{language} programming language.

Problem
{problem}

Plan
{plan}

Expected Output:
Your response must be structured as follows:

Simulation
- Take a sample input and apply plan step by step to get the output.
- Compare the generated output with the sample output to verify if
 your plan works as expected.

Plan Evaluation
- If the simulation is successful write **No Need to Modify Plan**.
- Otherwise write **Plan Modification Needed**.

Coding Agent: Prompt for Plan Verification with Simulation

To validate a plan, a human programmer typically
simulates it with sample input, generates the
corresponding output, and compares the
generated output to the expected result. At this
stage, we instruct the LLM to perform this
process as well, ensuring it follows the same
steps like human programmer to confirm the
validity of the plan.

Finally, tell the LLM
to write done it's
decision in a
specific format.

Figure 6: Planning Agent: Prompt for Plan Verification with the help of Simulation.

5142

You are a programmer tasked with generating appropriate plan to solve a given problem
using the **{language}** programming language. You already have a wrong plan.
Correct it so that it can generate correct code.

Problem
{problem}

Plan
{plan}

Plan Critique

{plan_verifical_report_from_previous_step}

Expected Output:
Your response must be structured as follows:

New Plan
- Write down a detailed, step-by-step modified plan to solve the **original problem**.
- Ensure each step logically follows from the previous one.

Important Instruction:
- Your response must contain only the plan.
- Do not add any explanation.
- Do not generate code.

Coding Agent: Prompt for Plan Refinement

Provide all the details and instruct the LLM to
generate revised plan.

Figure 7: Planning Agent: Prompt for Plan Refinement.

You are a programmer tasked with solving a given problem using the **{language}**
programming language. See the plan to solve the plan and implement code to solve it.

Problem
{problem}

Plan
{plan}

Important Instruction:
- Do not add any explanation.
- The generated **{language}** code must be inside a triple backtick (```) code block.

Coding Agent: Prompt for Code Generation

Figure 8: Coding Agent: Prompt for Code Generation.

5143

An Example from HumanEval dataset for demonstrating how CODESIM works

Input for Planning: 1
You are a programmer tasked with generating appropriate plan to solve a given problem using the
Python3 programming language.

Problem

def generate_integers(a, b):
"""
Given two positive integers a and b, return the even digits between a
and b, in ascending order.

For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []
"""

Expected Output:

Your response must be structured as follows:

5144

You are a programmer who has received a solution of a problem written in **{language}**
that fails to pass certain test cases. Your task is to modify the code in such a way so
that it can pass all the test cases. Do not generate same code.

Problem
{problem}

Plan
{plan}

Buggy Code
{code}

Test Report
{test_log}

Expected Output:
Your response must be structured as follows:

Simulation with failed test case
To detect where is the bug:
- Take a sample test case where it fails.
- Take the input go through each step according to the plan
- You will get a output that must be different from the expected output.

Debugging Notes
- Based on this simulation detect any of the following cases:
 - Plan is wrong
 - Plan is correct but plan to code generation is wrong.
- Finally, discuss how to correct this code.

Modified Code
Your corrected code, with comments explaining each correction.

Important Instruction:
- Strictly follow the instructions.
- Do not add testing code for example assert statement in your code.
- Do not be overconfident that the generated code is correct. It is wrong.
- The modified **{language}** code must be enclosed within triple backticks (```).
- Your response must contain **Simulation with failed test case**, **Debugging Notes**,
 and **Modified Code** section.

Debugging Agent: Prompt for Debugging

To detect where a program fails, a human programmer typically selects a sample
test case, simulates it line by line, and observes the output at each step. This
process helps in identifying and debugging issues within the code. Similarly, we
have instructed the LLM to select a test case where the code fails, simulate it,
identify the bug through step-by-step analysis, and then debug the issue
accordingly.

Based on the
simulation
output we have
instruct the LLM
to write down
how to correct
the code.

Finally, instruct
the LLM to
generate the
modified code.

Figure 9: Debugging Agent: Prompt for Debugging.

Problem Understanding

- Think about the original problem. Develop an initial understanding about the prob-
lem.

Recall Example Problem

Recall a relevant and distinct problems (different from problem mentioned above) and
- Describe it
- Generate Python3 code step by step to solve that problem
- Discuss the algorithm to solve this problem
- Finally generate a planning to solve that problem

Algorithm to solve the original problem

- Write down the algorithm that is well suited for the original problem
- Give some tutorials to about the algorithm for example:

5145

- How to approach this type of algorithm
- Important things to consider

Plan

- Write down a detailed, step-by-step plan to solve the original problem.

——–
Important Instruction:
- Strictly follow the instructions.
- Do not generate code.

Response from Planning: 1

Problem Understanding
The problem requires generating a list of even integers between two given positive integers, a and
b, inclusive. The list should be in ascending order, regardless of whether a is less than or greater
than b. If there are no even integers in the range, the function should return an empty list.

Recall Example Problem
Example Problem:

Find all odd numbers between two given integers x and y, inclusive, and return them in descending
order.

Step-by-step Solution:

1. Determine the range between x and y.
2. Identify all odd numbers within this range.
3. Sort the odd numbers in descending order.
4. Return the sorted list.

Algorithm:

1. Check if x is greater than y. If so, swap them to ensure the range is correct.
2. Iterate through the range from x to y.
3. For each number, check if it is odd (i.e., number%2! = 0).
4. Collect all odd numbers in a list.
5. Sort the list in descending order.
6. Return the sorted list.

Planning:

- Define a function find_odd_numbers(x, y).
- Use a conditional to swap x and y if x > y.
- Use a loop to iterate through the range from x to y.
- Check each number for oddness and add it to a list if it is odd.

5146

- Sort the list in descending order.
- Return the list.

Algorithm to Solve the Original Problem

1. Determine the Range:
- Identify the start and end of the range by taking the minimum and maximum of a and b.

2. Iterate Through the Range:
- Loop through each number in the range from the minimum to the maximum of a and b.

3. Check for Even Numbers:
- For each number, check if it is even by using the condition number%2 == 0.

4. Collect Even Numbers:
- Add each even number to a list.

5. Return the List:
- Since the numbers are collected in ascending order, return the list directly.

Tutorials:

- Approach:
- Always ensure the range is correctly defined, especially when the order of inputs can vary.
- Use modulus operation to check for evenness or oddness.

- Important Considerations:
- Handle edge cases where there might be no even numbers in the range.
- Ensure the function is robust to handle any positive integer inputs.

Plan

1. Define the Function:
- Create a function generate_integers(a, b).

2. Determine the Range:
- Use min(a, b) and max(a, b) to define the start and end of the range.

3. Initialize an Empty List:
- Prepare an empty list to store even numbers.

4. Loop Through the Range:
- Use a for loop to iterate from the start to the end of the range.

5. Check for Evenness:
- Within the loop, use ifnumber%2 == 0 to check if a number is even.

6. Collect Even Numbers:
- Append even numbers to the list.

5147

7. Return the Result:
- Return the list of even numbers, which will be in ascending order.

By following this plan, the function will correctly generate a list of even integers between the
given numbers a and b.

Input for Simulation: 1
You are a programmer tasked with verifying a plan to solve a given problem using the Python3
programming language.

Problem:

def generate_integers(a, b):
"""
Given two positive integers a and b, return the even digits between a
and b, in ascending order.

For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []
"""

Plan

1. Define the Function:
- Create a function generate_integers(a, b).

2. Determine the Range:
- Use min(a, b) and max(a, b) to define the start and end of the range.v
3. Initialize an Empty List:
- Prepare an empty list to store even numbers.

4. Loop Through the Range:
- Use a for loop to iterate from the start to the end of the range.

5. Check for Evenness:
- Within the loop, use ifnumber%2 == 0 to check if a number is even.

6. Collect Even Numbers:
- Append even numbers to the list.

7. Return the Result:
- Return the list of even numbers, which will be in ascending order.

By following this plan, the function will correctly generate a list of even integers between the
given numbers a and b.

5148

Expected Output:

Your response must be structured as follows:

Simulation

- Take a sample input and apply plan step by step to get the output.
- Compare the generated output with the sample output to verify if your plan works as expected.

Plan Evaluation

- If the simulation is successful write No Need to Modify Plan.
- Otherwise write Plan Modification Needed.

Response from Simulation: 1
Simulation

Let’s apply the plan step by step using the sample input generate_integers(2, 8).

1. Define the Function:
- We define the function generate_integers(a, b).

2. Determine the Range:
- Calculate start = min(2, 8) = 2 and end = max(2, 8) = 8.

3. Initialize an Empty List:
- Create an empty list evennumbers = [].

4. Loop Through the Range:
- Iterate over the range from start to end (inclusive).

5. Check for Evenness:
- For each number in the range, check if it is even using ifnumber%2 == 0.

6. Collect Even Numbers:
- Append even numbers to the list evennumbers.

7. Return the Result:
- Return the list evennumbers.

Applying these steps:

- Range: 2 to 8
- Iteration:
- 2 is even, append to list: [2]
- 3 is not even
- 4 is even, append to list: [2, 4]
- 5 is not even

5149

- 6 is even, append to list: [2, 4, 6]
- 7 is not even
- 8 is even, append to list: [2, 4, 6, 8]

The output is [2, 4, 6, 8], which matches the expected output.

Plan Evaluation

No Need to Modify Plan

The plan works as expected for the given problem. The function correctly generates a list of even
integers between the given numbers a and b, regardless of their order.

Input for final code generation:

You are a programmer tasked with solving a given problem using the Python3 programming
language. See the plan to solve the plan and implement code to solve it.

Problem:

def generate_integers(a, b):
"""
Given two positive integers a and b, return the even digits between a
and b, in ascending order.

For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []
"""

Plan

1. Define the Function:
- Create a function generate_integers(a, b).

2. Determine the Range:
- Use min(a, b) and max(a, b) to define the start and end of the range.

3. Initialize an Empty List:
- Prepare an empty list to store even numbers.

4. Loop Through the Range:
- Use a for loop to iterate from the start to the end of the range.

5. Check for Evenness:
- Within the loop, use ifnumber%2 == 0 to check if a number is even.

5150

6. Collect Even Numbers:
- Append even numbers to the list.

7. Return the Result:
- Return the list of even numbers, which will be in ascending order.

By following this plan, the function will correctly generate a list of even integers be-
tween the given numbers a and b.

——–
Important Instructions:
- Do not add any explanation.
- The generated Python3 code must be inside a triple backtick ($$$) code block.

Response from final code generation:

def generate_integers(a, b):
start = min(a, b)
end = max(a, b)
even_numbers = []
for number in range(start, end + 1):

if number % 2 == 0:
even_numbers.append(number)

return even_numbers

Input for Improving code: 1, 1

You are a programmer who has received a solution of a problem written in Python3 that
fails to pass certain test cases. Your task is to modify the code in such a way so that it can pass all
the test cases. Do not generate same code.

Problem:

def generate_integers(a, b):
"""
Given two positive integers a and b, return the even digits between a
and b, in ascending order.

For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []
"""

Plan

5151

1. Define the Function:
- Create a function generate_integers(a, b).

2. Determine the Range:
- Use min(a, b) and max(a, b) to define the start and end of the range.

3. Initialize an Empty List:
- Prepare an empty list to store even numbers.

4. Loop Through the Range:
- Use a for loop to iterate from the start to the end of the range.

5. Check for Evenness:
- Within the loop, use ifnumber%2 == 0 to check if a number is even.

6. Collect Even Numbers:
- Append even numbers to the list.

7. Return the Result:
- Return the list of even numbers, which will be in ascending order.

By following this plan, the function will correctly generate a list of even integers between the
given numbers a and b.

Buggy Code

def generate_integers(a, b):
start = min(a, b)
end = max(a, b)
even_numbers = []
for number in range(start, end + 1):

if number % 2 == 0:
even_numbers.append(number)

return even_numbers

Test Report

Test Cases where the generated code failed to generate the expected output:
assertgenerateintegers(10, 14) == []

Expected Output:

Your response must be structured as follows:

Simulation with failed test case
To detect where is the bug:
- Take a sample test case where it fails.
- Take the input go through each step according to the plan
- You will get a output that must be different from the expected output.

5152

Debugging Notes
Based on this simulation detect any of the following cases:
- Plan is wrong
- Plan is correct but plan to code generation is wrong.

- Finally, discuss how to correct this code.

Modified Code

“‘Python3
Your corrected code, with comments explaining each correction.
“‘

——–
Important Instructions:
- Strictly follow the instructions.
- Do not add testing code for example assert statement in your code.
- Do not be overconfident that the generated code is correct. It is wrong.
- The modified Python3 code must be enclosed within triple backticks (“‘).
- Your response must contain Simulation with failed test case, Debugging Notes, and Modified
Code section.

Response from Improving code: 1, 1

Simulation with failed test case

Let’s take the test case generate_integers(10, 14):v
1. Determine the Range:
- start = min(10, 14) = 10
- end = max(10, 14) = 14

2. Loop Through the Range:
- The loop iterates over 10, 11, 12, 13, 14.

3. Check for Evenness:
- 10%2 == 0 (even, added to list)
- 11%2! = 0 (odd, not added)
- 12%2 == 0 (even, added to list)
- 13%2! = 0 (odd, not added)
- 14%2 == 0 (even, added to list)

4. Collect Even Numbers:
- The list becomes [10, 12, 14].

5. Return the Result:
- The function returns [10, 12, 14].

5153

Expected Output: []

Debugging Notes

- Plan is correct: The plan correctly identifies the need to find even numbers between a
and b.
- Plan to code generation is wrong: The code does not account for the requirement that the even
digits themselves must be between a and b. It incorrectly includes numbers like 10, 12, 14 when
the digits themselves (1, 2, 4) are not between 10 and 14.

Modified Code

def generate_integers(a, b):
start = min(a, b)
end = max(a, b)
even_numbers = []
for number in range(start, end + 1):

Check each digit in the number
for digit in str(number):

if int(digit) % 2 == 0 and start <= int(digit) <= end:
even_numbers.append(int(digit))

Remove duplicates and sort the result
return sorted(set(even_numbers))

Explanation of Corrections:

- Digit Check: The code now checks each digit of the numbers in the range to see if it is
even and within the specified range.
- Set for Uniqueness: A set is used to ensure that each even digit is only included once.
- Sorting: The final list is sorted to ensure ascending order.

5154

