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Abstract

Progress in AI is often demonstrated by new
models claiming improved performance on
tasks measuring model capabilities. Evaluating
language models can be particularly challeng-
ing, as choices of how a model is evaluated
on a task can lead to large changes in mea-
sured performance. There is no common stan-
dard setup, so different models are evaluated
on the same tasks in different ways, leading to
claims about which models perform best not
being reproducible. We propose OLMES, a
completely documented, practical, open stan-
dard for reproducible LLM evaluations. In
developing this standard, we identify and re-
view the varying factors in evaluation practices
adopted by the community – such as details
of prompt formatting, choice of in-context ex-
amples, probability normalizations, and task
formulation. In particular, OLMES supports
meaningful comparisons between smaller base
models that require the unnatural “cloze” for-
mulation of multiple-choice questions against
larger models that can utilize the original for-
mulation. OLMES includes well-considered,
documented recommendations guided by re-
sults from existing literature as well as new
experiments resolving open questions.1

1 Introduction

Scientific credibility in AI rests on reproducible
and well-considered comparisons between mod-
els. Many current AI models, such as pretrained
large language models (LLMs), are generalist mod-
els capable of performing downstream tasks they
were not specifically trained on (Brown et al., 2020;
Bommasani et al., 2022). When evaluating LLMs
on such tasks, there are many choices in how the
task is presented to the model and how the model
outputs are interpreted before scoring (Gao, 2021;
Biderman et al., 2024; Liang et al., 2023). There

1All prompts, examples, and code used for OLMES are
available at https://github.com/allenai/olmes.

Model↓ Ref1 Ref2 Ref3 Ref4 Ref5 Ref6 OLMES

MPT-7B 47.7 42.6 46.5 45.7
RPJ-Incite-7B 46.3 42.8 45.3
Falcon-7B 47.9 42.4 44.5 47.5 49.7
Mistral-7B 60.0 55.5 54.9 78.6†

Llama2-7B 53.1 45.9 43.2 45.9 48.5 53.7† 54.2
Llama2-13B 59.4 49.4 48.8 49.4 67.6† 67.3†

Llama3-8B 60.2 78.6† 79.3†

Num shots 25 0 0 0 0 25 5
Curated shots No No Yes
Formulation CF CF CF? CF CF MCF MCF/CF
Normalization char char ? char? pmi none none/pmi

Ref Reference citation

Ref1 HF Open LLM Leaderboard (Beeching et al., 2023)
Ref2 Llama2 paper (Touvron et al., 2023a)
Ref3 Mistral 7B (Jiang et al., 2023)
Ref4 Falcon paper (Almazrouei et al., 2023)
Ref5 OLMo paper (Groeneveld et al., 2024)
Ref6 Llama3 model card (AI@Meta, 2024)

Table 1: Scores reported in different references for LLM
performances on ARC-CHALLENGE. Scores indicated
with † are using multiple-choice formulation (MCF)
rather than “cloze” formulation (CF) (see Section 2.1
for definitions). Entries with “?” denote either undoc-
umented or mixed approaches across models. Differ-
ent references use different evaluation setups, some of
which are not fully specified, so conclusions about per-
formances and relative strengths of models are not re-
producible.

is currently no standard way to decide on these
choices, and they can have significant impact on
model performance, with some recent papers claim-
ing as much as an 80% difference in accuracy on
a given task just from varying formatting and in-
context examples (Sclar et al., 2023).

These choices in evaluation setups are often not
reported with enough details to reproduce, so when
a team of ML practitioners releases a new model
it is often impossible for them to directly compare
against previously-reported results by others. Ef-
forts like the Holistic Evaluation of Language Mod-
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els (HELM) benchmark (Liang et al., 2023) and
the Hugging Face Open LLM Leaderboard (Beech-
ing et al., 2023) tackle the issue of reproducibility
by striving towards standardizing LM evaluations.
While the same setup is used to evaluate many mod-
els ensuring consistency and reproducibility, the ra-
tionale behind prompt formatting, use of in-content
examples, normalization techniques, and task for-
mulation are not always clearly documented and
thus not consistently followed by other researchers
in subsequent work (Touvron et al., 2023b; Bider-
man et al., 2023; Jiang et al., 2023; Groeneveld
et al., 2024; AI@Meta, 2024).

We highlight two problems in the field today. (1)
Releasing a new model and comparing it against
previously reported results is flawed unless the pre-
vious work explicitly described their full evaluation
setup, and then that setup is followed in the new
work. Currently, different references (like leader-
boards, papers) use different (and sometimes under-
specified) evaluation setups, leading to different
results and conclusions. For a particular dataset,
evaluating a specified language model, different
references can tell you very different stories. We
illustrate this phenomenon in Table 1, which shows
how several models’ published performance on the
ARC-CHALLENGE (Clark et al., 2018) task can vary
in the literature. For instance, looking at Ref1, we
would conclude that Llama2-13B and Llama3-8B
are performing similarly, but Ref6 reveals there
is likely a gap of over 10% between them. (2)
Despite current efforts to standardize model evalu-
ation (e.g., HF Open LLM Leaderboard, HELM),
the choices made are not justified and most model
creators do not use these setups for their evalu-
ations. We also see evidence of this in Table 1,
showing a variety of setups being used for the same
task, differing in choices such as number of shots,
source of in-context examples, task formulation,
and probability normalization. While these differ-
ent choices are made in implementing the evalu-
ations, to date, there is no documented standard
studying and/or justifying if one choice is better
than another, leading to the lack of a set of justified
choices that the community can adopt. Mai and
Liang (2024) also demonstrates how this might be
a community-wide problem in a recent effort (see
Figure 4 in Appendix).

To address these problems, we present OLMES
(Open Language Model Evaluation Standard), a
standard to improve the transparency and repro-
ducibility of language model evaluation from a

practical point of view, removing ambiguity in how
a final performance metric is obtained when evalu-
ating a model on a dataset. OLMES can be applied
to evaluation during the model development pro-
cess, and in published leaderboards and papers.
OLMES provides justified recommendations on
all aspects of task setups, such as data sampling,
how to format instances, the choice of in-context
examples, probability normalization, and task for-
mulation.

Importantly, OLMES is:

• Reproducible: OLMES specifies all details
of the evaluations, from processing datasets
to presenting the task to model, to processing
models’ outputs, so there are no ambiguities
in the evaluation procedure.

• Practical: OLMES makes practical decisions
in use of computation resources for easy adop-
tion by the community.

• Documented: Each decision in the standard
is documented with justifications by applying
principles from existing studies and perform-
ing experiments to resolve open questions.

• Open: We release all prompts and code, along
with the rationales behind the choices made in
OLMES, for subsequent work to follow and
build upon by extending the same principles
to any new task and model.

Since OLMES is a documented, practical, open
evaluation standard, it is straightforward to adopt
in publicly available, well-maintained evaluation
code bases like the Eleuther LM Evaluation Har-
ness (Gao et al., 2023; Biderman et al., 2024) and
HELM (Liang et al., 2023). When used by model
developers and other researchers, OLMES will help
unify evaluation practices in the field. We believe
this work is the first of its kind to unify practices
for evaluating base models throughout the full de-
velopment cycle, from small to large models as
well as early to late training stages. All prompts,
examples, and code used for OLMES can be found
at https://github.com/allenai/olmes.

2 Experimental setup

2.1 Multiple-choice QA and LLM evaluation

Multiple-choice question answering (MCQA) tasks
present a compelling way of evaluating models and
humans alike, due to the ease of scoring (whether
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the correct answer is chosen out of the given op-
tions) and the allowed flexibility in the domain
and complexity of the questions. One motivation
for multiple-choice tasks is that early in training,
and for smaller base models before instruction-
tuning, other tasks (generative tasks, math reason-
ing, coding, etc) tend to provide less useful signals.
Multiple-choice tasks are the most common type
of benchmarks for evaluating base LLMs (Beech-
ing et al., 2023; Touvron et al., 2023a; Jiang et al.,
2023; Groeneveld et al., 2024; AI@Meta, 2024),
where the evaluation seems straightforward (did
the model predict the right answer?), but in prac-
tice, a statement like “model X scores Y on ARC-

CHALLENGE” is generally uninterpretable (with un-
specified details and cannot be meaningfully com-
pared across references, see Table 1) without a clear
evaluation standard like OLMES.

We specifically focus on evaluation using these
tasks to provide useful guidance during and after
base model training, giving important insights into
the potential of such models before committing to
further tuning (e.g., instruction-tuning). Such tasks
form a large, essential part of LLM evaluations and
are the focus of OLMES. There are generally two
ways to formulate these tasks.

MCF (Multiple-choice formulation): present-
ing answer choices indicated by labels and scoring
prediction of answer labels, just like how MCQA
is posed to humans. Here is an example of MCQA
from ARC-EASY (Clark et al., 2018), a dataset of
real grade-school level science questions:
Question: Earth’s core is primarily composed of

which of the following materials?

A. basalt

B. iron

C. magma

D. quartz

Answer: B

CF (Completion/cloze formulation): scoring
each answer choice separately using LLM token
probabilities. The MCF format is not natural for the
pure language modeling task of generating the next
token. Therefore, the CF format was introduced
when evaluating the GPT-3 model (Brown et al.,
2020). They found that it was possible to elicit
much better performance using a “cloze” comple-
tion version of the task, where the model is shown
a prompt like:
Question: Earth’s core is primarily composed of

which of the following materials?

Answer: <answer>

Each answer choice is separately substituted in
for <answer>. Then the LLM probability of the an-
swer choice tokens are used to rank the choices and
predict an answer. This formulation has ambigu-
ities in how to normalize the probability, as well
as absolute limitations, such as not being able to
properly address cases where one answer choice is
“none of the above” or similar.

2.2 Targeted tasks
We select and implement standards for 10 popu-
lar benchmark MCQA tasks, see Table 2 for the
list. The list covers tasks that are frequently used
in the community’s evaluation practices, such as
the Hugging Face Open LLM Leaderboard (Beech-
ing et al., 2023), Llama papers (Touvron et al.,
2023a,b; AI@Meta, 2024), HELM (Liang et al.,
2023), and the OLMo evaluation suite (Groeneveld
et al., 2024). This selection includes questions on
science, various types of commonsense, factual
knowledge, and covers a range of topics (MMLU

alone covers 57 subjects), of varying difficulty.

2.3 Selection of models
We develop OLMES based on a selection of 15
diverse, openly available pretrained LLMs, fo-
cusing on base (not instruction-tuned) models,
covering a range of sizes from 1B to 70B –
Pythia-1B, Pythia-6.7B (Biderman et al., 2023),
OLMo-1B, OLMo-7B, OLMo-7B-0424 (Groen-
eveld et al., 2024), TinyLlama-1.1B (Zhang et al.,
2024), StableLM2-1.6B (Bellagente et al., 2024),
RPJ-INCITE-7B (Together Computer, 2023), MPT-
7b (MosaicML, 2023), Falcon-7B (Almazrouei
et al., 2023), Llama2-7B, Llama2-13B (Touvron
et al., 2023b), Mistral-7B-v0.1 (Jiang et al., 2023),
Llama3-8B, Llama3-70B (AI@Meta, 2024). This
reflects our goal of providing an evaluation stan-
dard that suits a range of model capabilities, with
the flexibility to apply the same methodology dur-
ing model development as well as when comparing
final powerful base models.

Assessing base models of different strengths is
important during the training of models and be-
fore it is used for further tuning (e.g., instruction-
tuning). This is critical for the community when
picking between alternate base models for further
training or tuning for their application. There is
limited established protocol in the community –
evaluation during training is often left underspec-
ified and understudied, and when evaluating final
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task split #C # inst (total) CF norm reference

ARC-CHALLENGE (ARC_C) Test 4† 1172 pmi (Clark et al., 2018)
ARC-EASY (ARC_E) Test 4† 1000 (2376) char (Clark et al., 2018)
BOOLQ Val 2 1000 (3270) none (Clark et al., 2019)
COMMONSENSEQA (CSQA) Val 5 1221 pmi (Talmor et al., 2019)
HELLASWAG (HSwag) Val 4 1000 (10042) char (Zellers et al., 2019)
MMLU Test 4 14042 char (Hendrycks et al., 2021)
OPENBOOKQA (OBQA) Test 4 500 pmi (Mihaylov et al., 2018)
PIQA Val 2 1000 (1838) char (Bisk et al., 2020)
SOCIAL IQA (SIQA) Val 3 1000 (1954) char (Sap et al., 2019)
WINOGRANDE (WinoG) Val 2 1267 none (Sakaguchi et al., 2020)

Table 2: OLMES details on tasks, with our standardized choices of dataset split, number of instances to use (along
with total number if sampling was used), and which CF normalization scheme to use (see Section 3.3). Column #C
shows the number of answer choices (ARC-CHALLENGE and ARC-EASY† have a few instances with 3 or 5 answer
choices). See Section 3 for details on instance formatting, choice of in-context examples and task formulation.

base models, researchers across the field use differ-
ent evaluation setups, leading to different results
and conclusions (Tables 1 and 14). We hope this
work will empower the community towards more
unified practices in benchmarking base models so
that further progress can be made on a stronger
foundation based on careful evaluation.

3 Standardizing variations in evaluation

To evaluate a model on a dataset, there are a variety
of decisions that have to be made to get a final score
of that model on that dataset. These include:

• How to format dataset instances? (Sec-
tion 3.1)

• Which few-shot examples to use? (Sec-
tion 3.2)

• How to normalize LLM probabilities for CF?
(Section 3.3)

• What task formulation to use, MCF or CF?
(Section 3.4)

• Other implementation choices impacting re-
sults (Section 3.5)

Below we enumerate key variations in these
steps, and justify the choices made in OLMES
(some of which are summarized in Table 2) to stan-
dardize these steps, leaving some of the details for
the Appendix.

3.1 How to format dataset instances?
Each MCQA dataset includes a set of fields used
to specify an instance, such as question, answer
choices, and perhaps a context for the question.
When formatting an instance as a prompt to an
LLM, many different choices have been made in

the literature. This includes simple choices like
"Question:" vs "Q:" as question prefix (varying
even within a paper, e.g., Brown et al. (2020)),
or formatting the answer labels (e.g., "A." (Tou-
vron et al., 2023a), "(A)" (Nori et al., 2023),
"<mc>A</mc>" (Anthropic, 2024), etc). There is
also a choice of whether or not to provide a general
instruction, e.g., common for MMLU (Hendrycks
et al., 2021), sometimes done for OPENBOOKQA (Al-
mazrouei et al., 2023).
Instance formatting. OLMES uses a consistent
"Question: <question>" prefix and "Answer:"
suffix in formatting the datasets. This clarifies the
question-answering task in a natural way, without
relying on verbose instruction understanding. The
three exceptions are listed and explained here. For
PIQA, we use "Goal: <goal>" as the prefix instead
to be consistent with the original semantics of the
dataset. In the case of MCF, for HELLASWAG, we
skip the question prefix and instead add "Choose
the best continuation:" before presenting the
continuation options, and for WINOGRANDE we use
the prefix "Fill in the blank:" to align with the
task. For HELLASWAG and WINOGRANDE, where the
CF answer string is simply a language continuation,
we remove such prefixes and suffixes for the CF
evaluation so that the task is closer to pure language
modeling.
MCQA label choice. For MCF answer choices,
OLMES uses the canonical letters A/B/C/. . . as
answer labels, presenting the multiple-choice op-
tions after simple letter labels, i.e., " A." for-
mat. We note that most tokenizers treat a let-
ter at the start of a line (or string) as a sepa-
rate token from the same letter following a space.
Therefore we add a prefix space in front of each
answer label "\n A. <choice>" (rather than
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"\nA. <choice>"), to work naturally with all cur-
rent tokenizers (so that the final answer token will
be identical to the answer choice token, see Ap-
pendix C.3 for details). All the exact OLMES
prompt formats are listed in Appendix H.
Sampling. Following existing LLM evaluation
standardization efforts (Liang et al., 2023; Beech-
ing et al., 2023), OLMES uses the test split of a
dataset if the labels are publicly available, other-
wise the validation split. If the dataset has more
than 1500 instances, we sample 1000 instances to
evaluate,2 similar to HELM (Liang et al., 2023)
which caps evaluation instances at 1000.3 Note
that the potential extra statistical signal from more
instances would generally be dominated by other
sources of score variations, like prompt formatting,
so this is a practical consideration to avoid unneces-
sary computation resources. See Table 2 for details
on splits and sampling used in OLMES.

3.2 Which few-shot examples to use?

Popularized by Brown et al. (2020), it is custom-
ary to provide examples of the task to the model
through few-shot examples, as this is an effective
and universal way to convey a task to an LLM. For
example, the MMLU task (Hendrycks et al., 2021)
originally came with a fixed 5-shot prompt which is
generally used in evaluation (Beeching et al., 2023;
Gemma Team et al., 2024; Jiang et al., 2023; Tou-
vron et al., 2023b; AI@Meta, 2024) resulting in
more reproducible results than many other tasks.4

For other tasks, both the number of shots and the
way in which they are sampled have varied in dif-
ferent evaluation setups. For example, to evalu-
ate on HELLASWAG, Beeching et al. (2023) sam-
pled 10-shot whereas HELM (Liang et al., 2023)
uses 0-shot; within Beeching et al. (2023), a range
of 25-shot, 10-shot, 5-shot was sampled for ARC-

CHALLENGE, HELLASWAG and WINOGRANDE respec-
tively.

OLMES standardizes a manually curated 5-
shots prompt for each task (from its training set),
ensuring that the examples are of good quality
and cover the label space in a balanced way (e.g.,

2Sampling uses a specific random seed in Python:
Random(1234).sample(all_instances, 1000)

3https://crfm-helm.readthedocs.io/en/latest/
reproducing_leaderboards/

4Sometimes sampled examples are used also for MMLU
(MosaicML, 2024). Even for MMLU, noticeable discrep-
ancies have been found, due to other differences in prompt
formatting (Mai and Liang, 2024).

avoiding 4 A’s and 1 B among the 5 answers).5

Restricting to 5 in-context examples helps limit
computational overhead, similar to HELM (Liang
et al., 2023). Analysis suggests that going beyond
5 shots generally does not provide meaningful dif-
ferences in scores (Brown et al., 2020; Barton,
2024). The manually curated shots for each task
can be downloaded from https://github.com/
allenai/olmes.

3.3 How to normalize LLM probabilities for
CF?

When using the completion/cloze formulation (CF)
for multiple-choice questions, the LLM returns
P (ai|q), the probability for an answer choice ai
given a question prompt q. Ranking solely based
on the probability may heavily favor shorter an-
swers with fewer tokens. To work around this issue,
different normalization methods have been used in
the literature, which we categorize below:

• none: ln(P (ai|q))
• token: ln(P (ai|q))/ num_tokens(ai), which

normalizes the log-probability by the number
of tokens in the answer (Brown et al., 2020).

• character: ln(P (ai|q))/ num_characters(ai),
which normalizes the log-probability by the
number of characters in the answer, used by
Llama models (Touvron et al., 2023a) and
Eleuther AI LM Harness (Gao et al., 2023; Bi-
derman et al., 2024).

• pmi: ln(P (ai|q)/P (ai|u)) where
u ="Answer:" is an unconditional prompt,
which normalizes by dividing by the LLM
probability of the same answer string without
the presence of the question. This can be con-
sidered a form of pointwise-mutual-information
(PMI) and was explored further in other works
(Holtzman et al., 2021).

Efforts like Liang et al. (2023); Gao et al. (2023);
Biderman et al. (2024) compare and support com-
parisons of different normalization approaches,
leaving it an open question as to how to make a
decision. See Appendix C.2 for further discussions
around different normalizations.

To choose a normalization scheme in OLMES,
we evaluate the models on each dataset, comparing

5More details on curating the examples can be found in
Appendix G.
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win percentage diff
task none char tok pmi oracle OLMES

ARC_C 0.0 33.3 0.0 66.7 0.2 pmi
ARC_E 6.7 86.7 6.7 0.0 0.1 char
BoolQ 46.7 46.7 0.0 6.7 1.1 none
CSQA 6.7 33.3 6.7 53.3 0.6 pmi
HSwag 0.0 100.0 0.0 0.0 0.0 char
MMLU 0.0 46.7 0.0 53.3 0.4 char
OBQA 0.0 0.0 0.0 100.0 0.0 pmi
PIQA 6.7 46.7 46.7 0.0 0.2 char
SIQA 0.0 86.7 6.7 6.7 0.1 char
WinoG 100.0 0.0 0.0 0.0 0.0 none

Table 3: Summary of CF normalization comparisons.
“win percentage” shows how often each normalization
was best across the 15 models. “diff oracle” (difference
between the OLMES recommendation and the empiri-
cally best normalization for each task and model) shows
that there is in general minimal difference between the
OLMES normalization and the oracle optimal normal-
ization for each task (difference out of 100%).

the effect of the 4 normalization techniques. Ta-
ble 3 shows for each task, how often each normal-
ization is empirically the best across the 15 models.
Detailed scores per model are in Appendix C.2.

OLMES specifies the “pmi” normalization
for ARC-CHALLENGE, COMMONSENSEQA, and OPEN-

BOOKQA. The answer choices in these datasets tend
to contain unexpected words or phrases that are less
likely for models to generate (e.g., “Whirlpool bath”
compared to “Bathtub”). The pmi normalization
adjusts for this by taking into account the a priori
likelihood of the answers. This is consistent with
other findings (Holtzman et al., 2021) and some
existing evaluation practices, e.g., Brown et al.
(2020) selectively uses this normalization for ARC

and OPENBOOKQA, and Touvron et al. (2023a,b)
for OPENBOOKQA. Computing the extra uncondi-
tional likelihood incurs some computation over-
head, thus OLMES avoids this normalization for
other datasets where there is no strong empirical or
theoretical reason to choose this approach.

OLMES specifies the “character” normaliza-
tion for ARC-EASY, HELLASWAG, PIQA, SOCIAL IQA

and MMLU. Based on our experiments, it is empiri-
cally the normalization technique that gives the best
scores6 for these datasets, and less computationally
expensive than the “pmi” normalization. It also
has the advantage (unlike the “token” normaliza-
tion) of already being implemented (as acc_norm)
in the Eleuther LM Evaluation Harness, where it is
generally available for multiple-choice tasks (Gao

6Tie for PIQA, and second-best for MMLU.

et al., 2023; Gao, 2021). It is also used in the Hug-
ging Face Open LLM Leaderboard (Beeching et al.,
2023) for ARC-CHALLENGE and HELLASWAG, in Tou-
vron et al. (2023a,b)’s evaluations as the default,
(with select datasets as exceptions), as well as re-
ported in various works like Biderman et al. (2023);
Almazrouei et al. (2023).

OLMES specifies the “none” normalization for
BOOLQ and WINOGRANDE. In BOOLQ the only an-
swer choices are “yes” or “no” which are single
tokens, therefore no length normalization is needed.
Note that for some models, the “character” normal-
ization has slightly better performance on BOOLQ

(see Table 10), an accidental side effect of “yes”
having one more character than “no”. One could
argue that the pmi normalization is appropriate as it
counters any existing bias in the model for “yes” vs
“no”, but we argue that models should be capable of
producing such common words (also indicated in
the 5-shot examples) without any such corrections.
Finally, WINOGRANDE is a special case in that the
continuations are identical (and the prompts vary),
so the choice of normalization does not matter and
we simply use the “none” normalization.

In general, we observe little difference between
the OLMES recommendation and the empirically
best (“oracle”) normalization for each task and
model, see “diff oracle” column in Table 3 (Table 9
in Appendix C.2 has more details).

3.4 What task formulation to use, MCF or
CF?

As LLMs have gotten stronger, the MCQA task
formats have gradually changed from CF to MCF.
For instance, ARC-CHALLENGE was often evaluated
using the CF approach (Touvron et al., 2023a,b;
Almazrouei et al., 2023; Beeching et al., 2023),
but has switched to MCF for stronger models like
OpenAI (2024); AI@Meta (2024), appearing with
identical names like “25-shot ARC-CHALLENGE”. As
an example, AI@Meta (2024) reports a 25-shot
MCF ARC-CHALLENGE score for the Llama-3 8B
model of 78.6% vs 60.2% for the 25-shot CF on
the Hugging Face Open LLM Leaderboard. As
performance on a multiple-choice task gets closer
to 100%, the CF approach lags behind due to its
inherent limitations, giving significantly less signal
about a model’s actual performance. On the other
hand, MMLU is almost exclusively evaluated using
the MCF approach, which often results in near-
random performance for weaker models (Beeching
et al., 2023).
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Figure 1: Performance on MMLU validation set during
the training of OLMo-7B-0424 model. During early
training, there is good signal from CF while MCF is
random. Around 400B tokens, the model starts gaining
the ability on the MCF format, becoming a stronger
signal than CF.

In OLMES, we argue that the CF formulation
provides a useful evaluation of task knowledge for
models that have not yet acquired the skill of an-
swering multiple-choice questions using MCF. On
the other hand, MCF is a more realistic formulation
for models that can “understand” this format, yield-
ing higher and more representative scores (Robin-
son et al., 2023; OpenAI, 2024). See Appendix C.1
for further discussion.

We can see an explicit example of a model ac-
quiring the “understanding” of MCF during train-
ing in Figure 1, showing the OLMo-7B-0424
model (Groeneveld et al., 2024; AI2 blog, 2024)
evaluated on the MMLU validation set in both CF
and MCF variations. The plot suggests that model
starts learning the MCF task format after about 400
billion training tokens, so in early training CF pro-
vides a better signal, while MCF is significantly
better in late training where CF levels off.

To further study this phenomenon, we evaluate
the CF and MCF versions for each task and model.7

Figure 2 shows for each task, the MCF and CF per-
formances for the 15 models ordered along the
x-axis by overall performance on all tasks. For in-
stance, on ARC-CHALLENGE, we see a clear distinc-
tion where the weakest 8 models have near-random
performance on the MCF version of the task, yet
above random when using CF which offers a better
signal to the relative strength of models. For the
stronger models, the MCF version clearly outscores
the CF version, and is a much better representation

7More detailed numbers can be found in Tables 6 and 7 in
the Appendix B.

of task performance compared to the flatter trends
using CF (for Llama3-70B the MCF score is 93.7%
(6.3% error) while the CF score is just 69.0% (31%
error), a nearly 5x difference in error rate!).

A similar pattern can be seen across other tasks
in Figure 2, where the stronger models show per-
formance using MCF either exceeding CF (like
ARC-EASY, OPENBOOKQA, MMLU, SOCIAL IQA, COM-

MONSENSEQA, and PIQA) or at least catching up to
it (HELLASWAG, WINOGRANDE, BOOLQ).8

In OLMES, we standardize to evaluate each
model using both the MCF and CF formulations,
and the best performing one is used. This allows
for meaningful comparison of task evaluation num-
bers over a range of models, from the smaller,
weaker base models which can only deal with the
CF (where MCF scores hovering around random
baseline), to the stronger models which can report
more accurate performance using the MCF (where
CF provides less clear signal).

3.5 Other implementation details

There are other important details that go into a fully
specified evaluation result, and we enumerate the
choices made in OLMES here:

• For MMLU: use macro average (over 57 tasks)
rather than micro average (over 14042 in-
stances), following AI@Meta (2024). This
better represents the diversity of fields in the
dataset, although in practice it does not gener-
ally make a big difference (see Figure 8).

• When a model requires it, make sure to add
the appropriate <bos> token at start of prompt
(e.g., Gemma (Gemma Team et al., 2024)).

• When using the “character” normalization for
CF, include the leading space in the calcula-
tion of answer length.

• Restrict all inputs (with completions) to 2048
tokens for consistency across models.9

• Use the default model precision when evalu-
ating (i.e., avoid options like load_in_8bit
unless it produces identical results).

• OLMES uses the standard approach of two
newlines to separate each in-context example.

• Other than the original instruction line for
MMLU (Hendrycks et al., 2021), we do not

8Appendix C.2.1 provides further discussion.
9For current tasks this is only exhausted for a few MMLU

instances.
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Figure 2: Comparing model performance on each task for MCF vs CF. The 15 models are ordered along the x-axis
by overall performance across all 10 tasks. In general, CF is needed to elicit a non-random signal from the weaker
models, while stronger models can take advantage of MCF for a more accurate assessment.

add any extra instructions. This is in view
of previous work finding the subject informa-
tion from instructions makes little changes to
model ranking (Alzahrani et al., 2024), and to
reduce additional sources of variation in the
prompt.

Note that computational details, like batch size
and type/state of GPU, can affect floating point
operations such that answer choice decisions can
flip if they are very close. This is hard to avoid
unless one considers “ties” when answers are suf-
ficiently close in confidence, we leave that for fu-
ture consideration. A reference implementation
of OLMES is released at https://github.com/
allenai/olmes under the Apache 2.0 license.

4 OLMES: Summary and results

OLMES includes the following elements, justified
in detail above:

• Use test set when available, otherwise vali-
dation. Sample 1000 instances if more than
1500 (Section 3.1)

• Use specified, exact prompt format (Sec-
tion 3.1)

• Use fixed, curated 5-shot examples (Sec-
tion 3.2)

• Use prescribed probability normalization for
CF (Section 3.3)

• Evaluate with both MCF and CF, use the best
result (Section 3.4)

• Follow recommendations for all other evalua-
tion details (in Section 3.5)

Table 4 reports the overall, fully reproducible,
OLMES scores for the 15 models across the bench-
marks. An extended table with a total of 40 models
is shown in Table 13 (Appendix D).

5 Related work

With model releases, performance on popular
datasets is used to gauge the progress achieved e.g.,
OpenAI (2024) showing superhuman performance
on benchmarks like MMLU. Such evaluation also
guides community efforts towards understanding
and sharing findings on what it takes to build a
strong model (Touvron et al. (2023a,b); Biderman
et al. (2023); Almazrouei et al. (2023); MosaicML
(2023); Jiang et al. (2023); Gemma Team et al.
(2024); Groeneveld et al. (2024) inter alia). How-
ever, given a model and a dataset, even for the
frequently used datasets, there are varied practices
in how accuracy on them is measured. Various
work has shown that model evaluations are vulner-
able to differences such as option position changes
in multiple-choice questions (Zheng et al., 2024; Li
et al., 2024), choice symbols, re-ordering of answer
options, changing number of answer options (Wang
et al., 2024), and task formulation (Alzahrani et al.,
2024; Robinson et al., 2023; Khatun and Brown,
2024; Wiegreffe et al., 2023). Even minor format-
ting changes can cause large, generally arbitrary,
score variations (Sclar et al., 2023).

The Holistic Evaluation of Language Models
(HELM) benchmark (Liang et al., 2023), the Hug-
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model ARC_C ARC_E BoolQ CSQA HSwag MMLU OBQA PIQA SIQA WinoG average

Pythia-1B 31.4 63.4 56.8† 50.9 48.0 31.1 40.4 68.9 46.4 52.7 49.0
OLMo-1B 38.6 68.3 51.3 62.2 65.2 33.4 47.6 74.1 51.5 59.3 55.1
TinyLlama-1.1B 38.1 69.5 63.6 61.1 60.8 33.6 45.0 71.7 50.4 60.1 55.4
Pythia-6.7B 44.6 72.6 68.7 62.1 66.1 37.7 50.4 74.9 51.7 62.3 59.1
RPJ-INCITE-7B 45.3 78.8 72.0 69.2 72.8 40.1 49.0 75.9 56.6 68.0 62.8
StableLM2-1.6B 50.6† 75.3 82.3 70.4† 70.3 40.4† 56.6† 75.6 64.3† 65.7 65.1
OLMo-7B 46.4 78.9 78.7 70.8 78.1 40.5 55.8 78.5 56.5 68.5 65.3
MPT-7b 45.7 78.0 82.4 70.9 79.6 40.6 52.4 79.2 57.4 70.2 65.6
Falcon-7B 49.7 80.6 78.2 73.4 79.0 42.1 55.2 79.0 60.1 71.3 66.9
Llama2-7B 54.2 84.0 86.1 74.2 78.9 46.2† 57.8 77.5 59.6 71.7 69.0
Llama2-13B 67.3† 85.9 86.7 74.0 83.9 55.8† 65.4† 80.2 65.9† 74.9 74.0
OLMo-7B-0424 66.9† 83.6† 85.9 85.8† 80.1 54.4† 68.6† 80.3 76.1† 73.6 75.5
Llama3-8B 79.3† 92.4† 87.5 73.9† 81.8 66.6† 77.2† 81.6 70.2† 76.2 78.7
Mistral-7B-v0.1 78.6† 90.8† 89.3 72.4† 83.0 64.0† 80.6† 82.8 71.3† 77.9 79.1
Llama3-70B 93.7† 97.7† 91.7† 83.2† 89.5 79.8† 93.4† 91.6† 78.9† 84.1 88.4

Table 4: Reproducible performance scores across models and tasks using OLMES, providing robust, meaningful
comparisons across a wide range of models and tasks. † indicates use of the MCF score.

ging Face Open LLM Leaderboard (Beeching
et al., 2023), Mosaic Eval Gauntlet (Barton, 2024),
Eleuther LM Evaluation Harness (Gao et al., 2023;
Biderman et al., 2024), and Unitxt (Bandel et al.,
2024) present efforts toward greater transparency
and reproducibility of LLM evaluations. These
frameworks generally describe and provide support
for various task setups, presenting them as open
choices to researchers and users. When specific
default setups are given, the rationale is not always
documented and thus not followed by others in
subsequent work (see Tables 1 and 14).

6 Discussion

By identifying and reviewing common evaluation
practices in the community, and performing ex-
periments to resolve open questions, we present
OLMES – an open, documented, reproducible, and
practical evaluation standard. OLMES provides
justified recommendations on decisions such as
how to format dataset instances, the choice of in-
context examples, task formulation, probability nor-
malization, as well as other implementation details.
The goal is for OLMES to be a useful guide for
model developers to obtain signals as to whether
their model is on track during training, and to com-
pare final powerful base models. The practical
choices encourage evaluations without unnecessary
computation resources. The reproducible nature
means that any evaluation done using OLMES can
be directly compared to existing OLMES evalua-
tions. We also document the rationales behind the
choices made, guiding the community toward more
justified evaluation practices. OLMES can be ap-
plied to current leaderboards and evaluation code

bases to unify evaluation practices in the field.
Future work and limitations. Future work in-

cludes adding more tasks to OLMES, covering
tasks beyond MCQA such as generative tasks and
chain-of-thought prompting. This will include stan-
dardizing how answers are extracted for evalua-
tion, and for chat models how to split the prompt
into messages. We welcome the community to
contribute to OLMES, extending the principles of
OLMES to new tasks.

OLMES is a step towards standardizing LLM
evaluations, ready to be incorporated into evalua-
tion code bases for broad usage. OLMES facilitates
robust and simplified comparisons of model perfor-
mances, both for researchers during model training
and development, and for developers in choosing
models to build upon.

Acknowledgments

In creating this evaluation standard, OLMES, we
build on top of the various previous efforts on lan-
guage model evaluation in the community – includ-
ing previous work on language model evaluation
standardization, the many open research reports dis-
closing how evaluation on LLMs have been done,
and the datasets that made OLMES possible, which
we explicitly cite and acknowledge in our paper.

Limitations

The current version of OLMES is focused on pro-
viding guidance useful for LLM evaluation dur-
ing the training stage and for comparing final base
models, which provides important insights into the
potential of such models before further tuning (e.g.,
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instruction-tuning, safety-tuning). Interesting di-
rections for future work include looking into eval-
uations targeted at accessing the effectiveness of
various kinds of model tuning, as well as evaluation
for multi-modal models.

This paper focuses on design choices in evalu-
ating language models with multiple-choice tasks.
While the suite of multiple-choice tasks used in
this work includes questions on science, various
types of commonsense, factual knowledge, and
covers a range of topics (MMLU alone covers 57
subjects), of varying difficulty, an important future
direction would be to apply the same principles in
OLMES (e.g., prompt formatting, curated few-shot
examples) to generative tasks and chain-of-thought
prompting.

While the recommendations in OLMES are well-
considered, justified and practical, they do not
cover all plausible variants of presenting a task.
See Appendix A for further discussion, showing
how performance measured using OLMES is sta-
ble and consistent when subject to small changes
in prompt wording or the selection of few-shot
examples, within the general recommendations.
Larger differences would be expected when diverg-
ing from OLMES recommendations such as by
using unnatural prompts e.g., using rare symbols
as answer labels, or randomly sampled few-shot
examples which could run into skewed label dis-
tribution covered in few-shot examples or include
noisy examples from train sets. We leave evalu-
ating the robustness of models under adversarial
setups as a topic for future work.

Ethical considerations

This study involves the use of large-scale language
models. We only use their outputs to obtain their
answers to questions in commonly used multiple-
choice datasets, therefore we do not foresee any
ethical issues with their use for the research pre-
sented in this work.
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A FAQs

Q: Are there existing established protocols that differ from the proposed ones? Will they cause
resistance from the research community in adopting the OLMES standard?

The lack of “established protocols” is precisely the issue that our work addresses. As discussed in
our Introduction and Related work sections, existing efforts either present different variations as
open choices to users or are underspecified or under-documented (e.g., the rationale behind
default choice is unexplained) and thus not followed by others in subsequent work. Therefore,
there is no existing established protocol in the community – researchers across the field use different
evaluation setups, with reasons behind their choices left unexplained, leading to different results and
conclusions. We illustrate this in Table 1, with Table 14 showing an extended version to include
score variations across different references on OPENBOOKQA in addition to ARC-CHALLENGE.

This is the main motivation for the standard, to reconcile the differences in practices so that scores
reported in papers can be meaningfully interpreted and compared (as we show, a statement like
“score on 25-shot ARC Challenge” is woefully underspecified, whereas “score on ARC Challenge
using OLMES” is a well-defined number without any ambiguity). We also justify each decision we
make so that the community can, for the first time, appreciate the rationale behind the setups and
thus encourage broad adoption.

Q: What is novel about OLMES?

Building on the many existing works that introduce new methodologies (e.g., new way of prompting,
probability normalization, etc), OLMES is the first work of its kind to provide a completely open,
practical, reproducible, and documented evaluation standard with justified choices so that
results across research work can be meaningfully compared. This fills an important gap in current
research on LLMs – the adoption of OLMES by model developers and other researchers will
help unify evaluation practices in the field for the first time, significantly shifting current research
paradigms.

Q: Why is OLMES more principled than trying a range of settings?

Rather than having to train a model from scratch to discover patterns in task formulation, run the
different settings to choose a normalization scheme, or delve into the same literature again to study
the variants, the community can now directly build upon the various choices in OLMES.

We hope to guide the community towards more well-documented and justifiable chosen evaluation
settings like OLMES without having to go through trying a mix of less informed choices (which
we argue should be avoided altogether). Through extensive literature review and experimentation,
we observe that some settings provide better signals than others, and document them in this work to
guide the community to use them, a few examples include:

– CF gives a clearer signal early in training, which is helpful for developers to cheaply make
modeling decisions. On the other hand, MCF is a better indicator of performance later on.
CF often works better for weaker models while MCF is at random, and MCF is a better
representation of task performance for stronger models.

– Few-shot prompting is an effective and universal way to convey a task to an LLM (more stable
learning curve than 0-shot) but going beyond 5 shots generally does not provide meaningful
differences in scores.

– For probability normalization, in BOOLQ the only answer choices are “yes” or “no” which
are single tokens, therefore no length normalization is needed. Even if for some models, the
“character” normalization has slightly better performance on BOOLQ (see Table 9), one should
note that this is an accidental side effect of “yes” having one more character than “no” and
indeed a normalization which changes the probability of “yes” vs “no” simply because the “no”
token has fewer characters seem problematic.
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Not only are recommendations in OLMES backed by both existing literature and new experimental
results, there is also little difference between the OLMES recommendation and the empirically
best (“oracle”) normalization for each task and model, see “diff oracle” column. We argue that
adopting such an approach is a better practice than blindly optimizing for the best performance e.g.,
problematically using “character” normalization for BOOLQ.

Q: Including a broader range of datasets?

The focus on multiple-choice datasets in OLMES is motivated by their frequent use in evaluating
base LLMs, where the evaluation seems straightforward (did the model predict the right answer?)
but in practice, a statement like “model X scores Y on ARC Challenge” is generally uninterpretable
(with unspecified details and cannot be meaningfully compared across references) without a clear
evaluation standard like OLMES. In this paper, we focused on datasets chosen to provide guidance
useful for the training stage and evaluation of base models, which provides important insights into
the potential of such models before further tuning (e.g., instruction-tuning).

Note that the fundamental principles of OLMES as introduced, generalize to any dataset of interest.
Rather than viewing what we have illustrated in our paper as a fixed set, our goal is to use that as an
illustration and empower researchers to move towards reproducible evaluation by applying OLMES
to any dataset of interest suited for their own work.

Q: Evaluating on more models? What are some valuable insights from extended experiments?

We provide additional results in Appendix D, Table 13 with additional models. Evaluating different
models using OLMES provides valuable insights for understanding LLMs and model development.
For instance, within each batch of model release by developers, models of bigger size perform
better than smaller ones (see average scores of Pythia-6.7B outperforms Pythia-1B, OLMo-7B
outperforms OLMo-1B, Llama2-13B outperforms Llama2-7B, Gemma2-9B outperforms Gemma2-
2B). However, size is not the only way to get to a stronger model, evaluating on OLMES also
allow the community meaningful comparison of models to witness the effect of model improvement
via better training data, model architecture, as well as other improved approaches as researchers
iterate on their models e.g., OLMo-7B-0424’s improvement over initial OLMo-7B; Llama3-8B’s
improvement over Llama2-7B and even Llama2-13B, Mixtral-8x7B-v0.1 outperforming the Mistral
model, aligning with the insights reported in these model releases documenting their improved
recipes and innovations for better models. Further, OLMES also gives meaningful comparison
of model performance as researchers experiment to reduce computational costs, e.g., our results
align with the original DeepSeekMoE paper where they “scale up DeepSeekMoE to 16B parameters
and show that it achieves comparable performance with LLaMA2 7B, with only about 40% of
computations”. All these underscore the applicability and value of OLMES in supporting unified
evaluation as the field progress towards better models, as an open, well-documented, practical and
reproducible evaluation standard. We make all prompts, examples, and code used for OLMES openly
available, and encourage researchers to try it for any model of their interest be it one they are studying
or building.

Q: How does OLMES stay relevant in the rapid evolution of AI and LLMs?

We have been continuously looking out for new LLMs and evaluating them using OLMES, showing
that the same guiding principles still apply as best practices providing a systematic, comparable
approach. See extended evaluation results in Table 13.

As the field moves forward, we look forward to applying the principles of OLMES to more bench-
marks and evaluating newer models using OLMES. While we are working on extending OLMES,
we do not anticipate revisions to the currently established recommendations in OLMES any time
soon as the guiding principles are built on top of a rich literature of existing work over the years and
will likely remain relevant in the community for a while in the near future.
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Q: Why not use prompting techniques such as CoT or self-reflection?

While these prompting strategies have shown to be useful for instruction-tuned models, they tend
to be much less effective on base models, which is a focus of this work. E.g., some experiments
we performed with MMLU showed that various CoT prompts (both zero-shot and few-shot) have a
positive boost on instruction-tuned models (like Llama-3.1-8B-Instruct), but tend to lower the scores
a bit for base models (like Llama-3.1-8B).

Q: How do you ensure that formatting settings are fair to all models?

Supported by reviewing common evaluation practices in the community and empirical evidence
across a wide range of models, the recommendations we make are at least as reasonable and fair as
the myriad of settings that have been used in the literature.

If a model is peculiar in any specific way (e.g., only able to do multiple choice questions with one
type of answer label like “1.” or “2.”), it is not the goal of OLMES to tailor to such peculiarities as
this standard is intended to be applied across a range of models and to encourage the development of
models that produce reasonable outputs given any reasonable input.

Q: What happens when there are minor variants to OLMES?

Through OLMES, we provide best practices to evaluate language models and justify our choices. Our
choices are mostly aligned with common practices in LLM evaluations, but with defining standards
in formatting, choice of in-context examples, probability normalizations, and task formulation. In the
process, we accounted for many factors, taking into consideration the robustness of OLMES under
minor variations. We discuss some of these considerations here.

[Part 1] Order of presenting the options A/B/C/D:

The order of presenting the multiple-choice options A/B/C/D does not apply to CF since each answer
is processed independently. For MCF it is indeed a confounder that some (especially weaker) models
might highly prefer a given label (like B). The benchmarks in OLMES are generally balanced such
that such a model would not be much better than random. Further, if this happens, CF would generally
get a better score in such cases and OLMES would use that score in its final output. Therefore,
having a setting where we use both CF (not affected by the order of options) and MCF (where the
order of options may matter) makes sure the final metric will not be hugely affected by such factors.
We considered applying more rigorous measures (like running all cyclic permutations of answer
choices) but decided for practical reasons, the extra processing time and complexity were not worth
the minor improvements in robustness (as one consideration of OLMES is also to be a practical
standard that does not take unnecessarily more compute than is needed).

[Part 2] Minor variations in prompt wording or few-shot examples:

To address potential concerns on minor variations in prompt wording or few-shot examples, we
evaluated under three additional settings, while adhering to the general principles in OLMES:

Variant 1 (minor variation in prompting):
3 changes to OLMES prompt format - (1) change the label and text separator from “.” to “)”, (2)
insert an additional new line before the answer descriptor, (3) change the “Answer” descriptor to
“Correct answer”
Variant 2 (varying few-shot examples):
Create a different set of curated few-shot examples by changing 3 out of the 5 in-context examples to
new ones that are different from those in OLMES. In picking the new few-shot examples, the same
recommendations were followed to ensure diversity in the examples and that they cover the label
space.
Variant 3 (minor variation in prompting + varying few-shot examples):
Apply changes in both Variants 1 and 2 together.
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model ARC_E orig var 1 var 2 var 3 avg diff std err

Pythia-1B 63.4 63.3 62.7 62.7 63.0 0.4 1.5
Llama2-7B 84.0 84.4 83.4 84.4 84.0 0.0 1.2
DeepSeek-7B 80.6 80.9 80.5 80.4 80.6 0.0 1.3
Gemma2-2B 84.3† 83.2† 83.9† 82.8† 83.5 0.8 1.2
Llama3-8B 92.4† 92.5† 92.3† 93.1† 92.6 0.2 0.8

model OBQA orig var 1 var 2 var 3 avg diff std err

Pythia-1B 40.4 38.6 39.4 37.6 39.0 1.4 2.2
Llama2-7B 57.8 57.2 55.2 57.4 56.9 0.9 2.2
DeepSeek-7B 62.2† 61.0† 61.6† 63.2† 62.0 0.2 2.2
Gemma2-2B 68.8† 67.2† 68.8† 67.0† 68.0 0.8 2.1
Llama3-8B 77.2† 76.8† 78.8† 77.8† 77.7 0.5 1.9

model PIQA orig var 1 var 2 var 3 avg diff std err

Pythia-1B 68.9 69.2 69.2 69.3 69.1 0.2 1.5
Llama2-7B 77.5 77.2 77.7 77.8 77.5 0.0 1.3
DeepSeek-7B 79.3 78.8 80.9 80.6 79.9 0.6 1.3
Gemma2-2B 78.5 77.8 79.3 78.5 78.5 0.0 1.3
Llama3-8B 81.6 80.7 82.4 82.8 81.9 0.3 1.2

Table 5: Extended results comparing using OLMES (orig) and when the setting is subjected to minor variations
in prompt wording (var1), few-shot examples (var2), or both (var3). † indicates the use of MCF. The “avg” score
obtained via averaging orig, var1, var2, and var3 results is often within 1% of that obtained by the original OLMES
setup (orig). We report the observed differences between averaging the 4 setups (“avg”) and directly using OLMES
(orig) in the “diff” column, illustrating the minor differences (often <1%) do not justify the 4 times more compute
needed, against the “practical” consideration in OLMES.

We report these additional results in Table 5. Following EleutherAI in calculat-
ing standard error (https://github.com/EleutherAI/lm-evaluation-harness/blob/
ebe7226ebfb8d11a9fb8d6b53eb65891f895c633/lm_eval/api/metrics.py#L288), in the
additional results, we also incorporated bounds on standard error in our evaluations using OLMES
(see “std err” column). This provides a statistical bound on the degree of variation in reported
numbers and illustrates that while any performance metric should be interpreted to have slight
variants (e.g., < 2.5%), the scenario where a model underperforms significantly due to minor variants
is unlikely statistically.

The additional results show that differences in performance between averaging variations vs. using
the OLMES setup directly were generally minimal, typically less than 1 percent (the largest difference
seen is 1.4%). This suggests that performance measured using OLMES is quite stable and consistent
when subject to small changes in prompt wording or the selection of few-shot examples, within the
general recommendations. Note that these variants still format the instances in natural ways and
are slight modifications of the original settings of OLMES, still adhering to the general principles
such as instance formatting that clarifies the task in a natural way and choice of in-context examples
to cover a range of examples and different answer labels. Larger differences would be expected
when diverging from OLMES recommendations such as by using unnatural prompts e.g., using rare
symbols as answer labels, or randomly sampled few-shot examples which could run into skewed label
distribution covered in few-shot examples or include noisy examples from train sets. We observe that
current successful language models are generally robust to the OLMES evaluation standard. OLMES
has been informed by prior efforts like HELM and Eleuther LM Evaluation Harness, therefore the
prompts are designed to be natural, and suitable for evaluating language models.
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B Detailed CF and MCF task scores

Tables 6 and 7 present detailed scores across all tasks, with both MCF and CF results (using the OLMES
recommendations for CF normalization).

C Further details on variations

In this appendix we discuss further details on how LLM evaluations can vary and the choices made in
OLMES.

C.1 Task formulation details

LLM evaluations started out using the CF approach for many tasks (Brown et al., 2020; Du et al., 2022;
Smith et al., 2022; Chowdhery et al., 2022; Lieber et al., 2021), which is a more reasonable option for
weaker models that struggle with the more natural MCF (Khatun and Brown, 2024). The task formulation
only very recently and gradually switched to the MCF approach when it became clear that the model
could utilize it, producing higher scores (Robinson et al., 2023; OpenAI, 2024; AI@Meta, 2024).

The HELM study (Liang et al., 2023) included comparisons between the MCF (“joint”) and CF
(“separate”) approaches, finding that certain models can really benefit from the MCF approach, although
among the models in the original study it was really only the Anthropic-LM v4-s3 (52B) model which
could take full advantage of it.

C.2 CF normalization details

Tables 10, 11 and 12 show detailed comparisons of CF normalization on different models, for the various
tasks.

Unlike in MCF, where the evaluation metric involves just scoring the log-likelihood corresponding to
the answer choice label (i.e., A/B/C/...), there is a choice of log-likelihood normalization (“none”, “per
token”, “per character” or “pmi”) for CF as detailed in Section 3.3.

When evaluating the GPT-3 model (Brown et al., 2020), they worked around this issue by normalizing
the log-probability by the number of tokens in the answer (similar to how loss is computed during
training). They also noted that for a few datasets, it worked markedly better to instead “normalize” by
dividing by LLM probability of the same answer string without the presence of the question (usually
by just having a generic prefix like "Answer: <answer_string>"). This can be considered a form of
pointwise-mutual-information (PMI) and was explored further in other works (Holtzman et al., 2021).

The Eleuther LM Evaluation Harness (Gao et al., 2023; Biderman et al., 2024) and some subsequent
evaluations (e.g., the Llama models (Touvron et al., 2023a)) have also used “per answer character”
normalization, using the argumentation (Gao, 2021; Biderman et al., 2024), that normalizing per token is
problematic since it depends on the tokenizer. Since the purpose of the normalization is simply to rank the
answer choices within themselves (keeping model and tokenizer fixed), this does not seem like a relevant
argument, and indeed a normalization which changes the probability of “yes” vs “no” simply because
the “no” token has fewer characters seem problematic. In practice, for tasks where answers are either
relatively long or similar in length, there are minor differences between these two length normalizations.

The HELM study (Liang et al., 2023) included comparisons between these normalization approaches
for a number of tasks and models (using the terms “separate” and “separate calibrated” for “token” and
“pmi” respectively), eventually settling on a default choice for each, not unlike the choices in the GPT-3
report (Brown et al., 2020). The Eleuther LM Evaluation Harness generally reports two metrics for
each multiple-choice task: acc (using the “none” normalization) and acc_norm (using the “character”
normalization).

C.2.1 Tasks that generally prefer CF
HELLASWAG and WINOGRANDE continue to have CF scores higher than MCF scores even for the strongest
models that can understand the MCF prompt. This somewhat surprising tendency seems correlated with
the fact that these tasks in the CF format are exactly like the language modeling task of finding the most
natural continuation of a running piece of text. Judging from the trends in the plot, it would also be
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ARC_C ARC_E BoolQ CSQA HSwag MMLU
model MCF CF MCF CF MCF CF MCF CF MCF CF MCF CF

Pythia-1B 24.1 31.4 24.0 63.4 56.8 56.6 21.0 50.9 23.6 48.0 26.5 31.1
OLMo-1B 25.3 38.6 25.4 68.3 37.9 51.3 20.2 62.2 24.6 65.2 26.6 33.4
TinyLlama-1.1B 26.4 38.1 24.3 69.5 60.7 63.6 17.9 61.1 26.2 60.8 26.2 33.6
Pythia-6.7B 26.6 44.6 24.9 72.6 64.0 68.7 20.5 62.1 24.3 66.1 25.4 37.7
RPJ-INCITE-7B 28.1 45.3 25.1 78.8 64.2 72.0 19.7 69.2 23.5 72.8 29.0 40.1
StableLM2-1.6B 50.6 47.3 69.6 75.3 60.1 82.3 70.4 68.2 52.4 70.3 40.4 37.1
OLMo-7B 27.2 46.4 27.0 78.9 67.5 78.7 20.8 70.8 25.0 78.1 28.3 40.5
MPT-7b 27.9 45.7 27.5 78.0 44.6 82.4 20.9 70.9 26.4 79.6 30.0 40.6
Falcon-7B 27.2 49.7 25.3 80.6 48.1 78.2 20.2 73.4 27.7 79.0 28.0 42.1
Llama2-7B 52.6 54.2 70.6 84.0 57.5 86.1 59.2 74.2 41.4 78.9 46.2 44.4
Llama2-13B 67.3 56.2 85.0 85.9 77.8 86.7 68.1 74.0 62.4 83.9 55.8 47.6
OLMo-7B-0424 66.9 51.2 83.6 81.5 82.0 85.9 85.8 70.4 50.0 80.1 54.4 42.4
Llama3-8B 79.3 57.1 92.4 86.6 84.8 87.5 73.9 69.9 63.8 81.8 66.6 51.1
Mistral-7B-v0.1 78.6 59.6 90.8 86.8 87.2 89.3 72.4 72.3 71.5 83.0 64.0 50.3
Llama3-70B 93.7 69.0 97.7 89.6 91.7 91.2 83.2 75.8 89.1 89.5 79.8 60.7

Table 6: Comparing MCF and CF scores on each task (part 1). Weaker models at the top of the table have
near-random MCF scores, while for stronger models at the bottom, the MCF score provides a better assessment
than the CF score.

OBQA PIQA SIQA WinoG average scores
model MCF CF MCF CF MCF CF MCF CF MCF CF all max

Pythia-1B 26.0 40.4 52.2 68.9 33.5 46.4 50.4 52.7 33.8 49.0 41.4 49.0
OLMo-1B 28.0 47.6 50.6 74.1 32.8 51.5 51.1 59.3 32.3 55.1 43.7 55.1
TinyLlama-1.1B 25.6 45.0 50.2 71.7 34.9 50.4 50.0 60.1 34.2 55.4 44.8 55.4
Pythia-6.7B 26.2 50.4 51.2 74.9 33.5 51.7 49.6 62.3 34.6 59.1 46.9 59.1
RPJ-INCITE-7B 22.6 49.0 53.5 75.9 33.7 56.6 52.1 68.0 35.1 62.8 49.0 62.8
StableLM2-1.6B 56.6 51.0 62.8 75.6 64.3 61.1 53.5 65.7 58.1 63.4 60.7 65.1
OLMo-7B 27.0 55.8 57.2 78.5 35.1 56.5 50.4 68.5 36.6 65.3 50.9 65.3
MPT-7b 29.6 52.4 53.8 79.2 34.4 57.4 51.1 70.2 34.6 65.6 50.1 65.6
Falcon-7B 27.8 55.2 50.5 79.0 33.9 60.1 49.0 71.3 33.8 66.9 50.3 66.9
Llama2-7B 54.8 57.8 63.2 77.5 58.7 59.6 52.4 71.7 55.7 68.8 62.2 69.0
Llama2-13B 65.4 60.8 74.0 80.2 65.9 63.6 56.1 74.9 67.8 71.4 69.6 74.0
OLMo-7B-0424 68.6 59.8 65.6 80.3 76.1 54.9 56.2 73.6 68.9 68.0 68.5 75.5
Llama3-8B 77.2 56.2 77.3 81.6 70.2 62.6 61.6 76.2 74.7 71.0 72.9 78.7
Mistral-7B-v0.1 80.6 61.0 79.0 82.8 71.3 63.0 59.8 77.9 75.5 72.6 74.1 79.1
Llama3-70B 93.4 69.0 91.6 83.1 78.9 65.6 79.6 84.1 87.9 77.8 82.8 88.4

Table 7: Comparing MCF and CF scores on each task (part 2), along with overall averages. The “max” average
corresponds to the OLMES score, taking the best of MCF and CF for each task.
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model MCF-macro MCF-micro CF-macro CF-micro

Pythia-6.7B 25.4 25.2 37.7 37.5
TinyLlama-1.1B 26.2 25.7 33.6 33.5
Pythia-1B 26.5 26.4 31.1 31.2
OLMo-1B 26.6 26.3 33.4 33.6
Falcon-7B 28.0 27.7 42.1 41.9
OLMo-7B 28.3 28.3 40.5 40.7
RPJ-INCITE-7B 29.0 28.4 40.1 40.1
MPT-7b 30.0 29.3 40.6 40.6
StableLM2-1.6B 40.4 39.6 37.1 37.0
Llama2-7B 46.2 45.5 44.4 44.3
OLMo-7B-0424 54.4 52.8 42.4 42.4
Llama2-13B 55.8 55.5 47.6 47.1
Mistral-7B-v0.1 64.0 63.0 50.3 49.8
Llama3-8B 66.6 65.4 51.1 50.8
Llama3-70B 79.8 79.2 60.7 60.5

Table 8: Macro vs micro average scores on MMLU, where macro average is over the 57 tasks and micro average is
over the 14042 individual questions. In general there are small differences between the two.

ARC_C ARC_E BoolQ CSQA HSwag MMLU OBQA PIQA SIQA
model pmi diff char diff none diff pmi diff char diff char diff pmi diff char diff char diff

Pythia-1B 31.4 0.0 63.4 0.0 56.6 4.5 50.9 0.0 48.0 0.0 31.1 1.2 40.4 0.0 68.9 1.4 46.4 0.0
OLMo-1B 38.6 0.0 68.3 0.2 51.3 4.7 62.2 0.0 65.2 0.0 33.4 0.8 47.6 0.0 74.1 0.0 51.5 0.0
TinyLlama-1.1B 38.1 0.0 69.5 0.0 63.6 2.2 61.1 0.0 60.8 0.0 33.6 0.9 45.0 0.0 71.7 0.6 50.4 0.0
Pythia-6.7B 44.6 0.0 72.6 0.0 68.7 0.0 62.1 0.2 66.1 0.0 37.7 0.2 50.4 0.0 74.9 0.0 51.7 1.1
RPJ-INCITE-7B 45.3 0.0 78.8 0.0 72.0 2.5 69.2 0.2 72.8 0.0 40.1 0.8 49.0 0.0 75.9 0.1 56.6 0.0
MPT-7b 45.7 0.6 78.0 0.0 82.4 0.0 70.9 0.0 79.6 0.0 40.6 0.0 52.4 0.0 79.2 0.0 57.4 0.0
Falcon-7B 49.7 0.0 80.6 0.0 78.2 0.6 73.4 0.0 79.0 0.0 42.1 0.0 55.2 0.0 79.0 0.2 60.1 0.0
OLMo-7B 46.4 0.0 78.9 0.0 78.7 0.0 70.8 0.0 78.1 0.0 40.5 0.1 55.8 0.0 78.5 0.8 56.5 0.0
StableLM2-1.6B 47.3 0.0 75.3 0.0 82.3 0.0 68.2 0.0 70.3 0.0 37.1 1.5 51.0 0.0 75.6 0.3 61.1 0.0
Llama2-7B 54.2 0.0 84.0 0.0 86.1 0.0 74.2 0.0 78.9 0.0 44.4 0.4 57.8 0.0 77.5 0.2 59.6 0.0
OLMo-7B-0424 51.2 0.0 81.5 0.0 85.9 0.0 70.4 1.1 80.1 0.0 42.4 0.0 59.8 0.0 80.3 0.0 54.9 0.8
Llama2-13B 56.2 0.9 85.9 0.0 86.7 1.5 74.0 0.0 83.9 0.0 47.6 0.0 60.8 0.0 80.2 0.0 63.6 0.0
Llama3-8B 57.1 1.3 86.6 0.0 87.5 0.3 69.9 4.3 81.8 0.0 51.1 0.0 56.2 0.0 81.6 0.0 62.6 0.0
Mistral-7B-v0.1 59.6 0.6 86.8 0.0 89.3 0.0 72.3 2.1 83.0 0.0 50.3 0.0 61.0 0.0 82.8 0.0 63.0 0.0
Llama3-70B 69.0 0.0 89.6 0.8 91.2 0.5 75.8 1.3 89.5 0.0 60.7 0.0 69.0 0.0 83.1 0.1 65.6 0.0

Table 9: Normalization details, showing that our recommendations are not only supported by reasoning using
principles behind the normalization but also close to the empirically best normalization that lets you get the highest
accuracy for each model on each task (see “diff” columns).

ARC_C ARC_E BoolQ
model none char tok pmi best none char tok pmi best none char tok pmi best

Pythia-1B 26.1 28.4 29.0 31.4 pmi 61.9 63.4 60.9 56.5 char 56.6 61.1 56.6 41.0 char
OLMo-1B 32.9 34.4 34.7 38.6 pmi 68.5 68.3 65.8 60.2 none 51.3 56.0 51.3 42.3 char
TinyLlama-1.1B 31.5 34.1 32.2 38.1 pmi 68.6 69.5 64.4 60.4 char 63.6 65.8 63.6 53.6 char
Pythia-6.7B 36.3 39.5 39.0 44.6 pmi 71.4 72.6 70.0 64.1 char 68.7 66.9 68.7 47.6 none
RPJ-INCITE-7B 40.3 43.5 42.9 45.3 pmi 76.1 78.8 75.9 70.1 char 72.0 74.5 72.0 72.4 char
MPT-7b 41.7 46.3 44.7 45.7 char 76.3 78.0 76.2 68.5 char 82.4 79.9 82.4 76.7 none
Falcon-7B 41.6 47.4 47.6 49.7 pmi 77.0 80.6 78.3 69.8 char 78.2 78.8 78.2 77.6 char
OLMo-7B 41.6 45.5 45.0 46.4 pmi 76.7 78.9 77.4 69.6 char 78.7 77.7 78.7 78.6 none
StableLM2-1.6B 42.2 44.3 44.9 47.3 pmi 73.3 75.3 74.4 70.0 char 82.3 82.0 82.3 76.1 none
Llama2-7B 48.4 52.0 50.2 54.2 pmi 81.4 84.0 81.0 74.7 char 86.1 85.6 86.1 80.5 none
OLMo-7B-0424 45.5 49.3 48.5 51.2 pmi 79.2 81.5 79.7 71.1 char 85.9 83.8 85.9 85.6 none
Llama2-13B 52.4 57.1 54.2 56.2 char 83.9 85.9 82.8 77.6 char 86.7 88.2 86.7 77.5 char
Llama3-8B 53.6 58.4 56.8 57.1 char 85.8 86.6 85.8 76.6 char 87.5 87.8 87.5 67.0 char
Mistral-7B-v0.1 56.1 60.2 58.9 59.6 char 84.7 86.8 84.6 78.6 char 89.3 89.1 89.3 89.2 none
Llama3-70B 65.7 69.0 67.7 69.0 char 89.7 89.6 90.4 82.6 tok 91.2 90.4 91.2 91.7 pmi

average scores 43.7 47.3 46.4 49.0 NA 77.0 78.7 76.5 70.0 NA 77.4 77.8 77.4 70.5 NA

win percentage 0.0 33.3 0.0 66.7 pmi 6.7 86.7 6.7 0.0 char 46.7 46.7 0.0 6.7 none

Table 10: Comparing CF normalization schemes (part 1).
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CSQA HSwag MMLU
model none char tok pmi best none char tok pmi best none char tok pmi best

Pythia-1B 47.7 50.9 47.3 50.9 char 39.2 48.0 47.8 41.0 char 29.5 31.1 30.8 32.3 pmi
OLMo-1B 56.8 60.0 57.6 62.2 pmi 50.9 65.2 64.1 49.8 char 31.7 33.4 33.3 34.2 pmi
TinyLlama-1.1B 58.9 60.5 55.9 61.1 pmi 46.9 60.8 59.7 48.5 char 31.2 33.6 33.0 34.5 pmi
Pythia-6.7B 59.5 62.2 58.9 62.1 char 50.4 66.1 65.9 53.5 char 34.9 37.7 37.0 37.9 pmi
RPJ-INCITE-7B 67.7 69.4 67.2 69.2 char 55.7 72.8 71.8 60.6 char 37.4 40.1 40.0 40.9 pmi
MPT-7b 69.6 70.3 69.1 70.9 pmi 60.5 79.6 76.5 61.5 char 37.8 40.6 40.1 40.4 char
Falcon-7B 70.0 70.3 69.5 73.4 pmi 60.7 79.0 78.4 60.0 char 39.3 42.1 41.9 42.1 char
OLMo-7B 69.0 70.0 67.9 70.8 pmi 59.3 78.1 76.3 64.2 char 37.9 40.5 40.5 40.6 pmi
StableLM2-1.6B 63.6 66.3 65.6 68.2 pmi 54.7 70.3 69.7 56.4 char 35.2 37.1 37.1 38.6 pmi
Llama2-7B 70.5 72.7 68.4 74.2 pmi 61.9 78.9 77.1 64.4 char 42.0 44.4 43.9 44.8 pmi
OLMo-7B-0424 71.6 63.5 59.0 70.4 none 61.4 80.1 77.7 65.2 char 39.9 42.4 42.2 41.8 char
Llama2-13B 72.2 72.7 68.4 74.0 pmi 63.7 83.9 81.0 70.3 char 44.3 47.6 46.7 47.1 char
Llama3-8B 72.0 74.2 73.5 69.9 char 62.8 81.8 80.3 71.1 char 47.5 51.1 50.8 49.6 char
Mistral-7B-v0.1 73.1 73.8 74.4 72.3 tok 64.5 83.0 81.0 70.3 char 46.9 50.3 50.0 49.0 char
Llama3-70B 77.1 77.1 77.1 75.8 char 70.3 89.5 87.1 80.8 char 57.2 60.7 60.5 59.4 char

average scores 66.6 67.6 65.3 68.4 NA 57.5 74.5 73.0 61.2 NA 39.5 42.2 41.9 42.2 NA

win percentage 6.7 33.3 6.7 53.3 pmi 0.0 100.0 0.0 0.0 char 0.0 46.7 0.0 53.3 pmi

Table 11: Comparing CF normalization schemes (part 2)

OBQA PIQA SIQA
model none char tok pmi best none char tok pmi best none char tok pmi best

Pythia-1B 20.2 28.6 30.4 40.4 pmi 70.3 68.9 68.8 60.1 none 42.8 46.4 46.0 44.4 char
OLMo-1B 26.0 33.0 38.4 47.6 pmi 73.2 74.1 73.2 59.9 char 45.3 51.5 49.9 47.3 char
TinyLlama-1.1B 24.4 34.8 35.8 45.0 pmi 72.1 71.7 72.3 62.0 tok 45.6 50.4 48.2 48.4 char
Pythia-6.7B 25.8 37.0 37.4 50.4 pmi 74.8 74.9 74.3 63.6 char 48.0 51.7 52.8 49.2 tok
RPJ-INCITE-7B 31.8 40.0 42.8 49.0 pmi 74.9 75.9 76.0 61.9 tok 50.8 56.6 56.0 52.2 char
MPT-7b 31.6 43.8 43.8 52.4 pmi 77.7 79.2 78.1 63.7 char 51.0 57.4 55.9 52.5 char
Falcon-7B 35.2 45.8 44.4 55.2 pmi 78.3 79.0 79.2 63.2 tok 52.9 60.1 57.5 54.4 char
OLMo-7B 33.2 42.8 45.0 55.8 pmi 78.2 78.5 79.3 65.2 tok 50.3 56.5 56.5 52.8 char
StableLM2-1.6B 34.4 41.6 45.2 51.0 pmi 75.2 75.6 75.9 63.6 tok 52.7 61.1 60.7 56.1 char
Llama2-7B 33.8 44.6 45.0 57.8 pmi 76.7 77.5 77.7 62.9 tok 52.6 59.6 58.3 53.6 char
OLMo-7B-0424 37.2 48.4 49.6 59.8 pmi 78.5 80.3 79.3 66.3 char 53.5 54.9 54.3 55.7 pmi
Llama2-13B 39.2 46.4 48.4 60.8 pmi 78.9 80.2 79.8 66.4 char 56.7 63.6 60.7 56.8 char
Llama3-8B 37.0 47.6 50.0 56.2 pmi 79.7 81.6 81.1 67.5 char 54.6 62.6 60.1 56.4 char
Mistral-7B-v0.1 38.2 48.4 50.0 61.0 pmi 80.8 82.8 81.3 67.4 char 55.6 63.0 60.9 57.5 char
Llama3-70B 47.0 55.0 56.6 69.0 pmi 82.8 83.1 83.2 68.3 tok 59.7 65.6 64.8 57.3 char

average scores 33.0 42.5 44.2 54.1 NA 76.8 77.6 77.3 64.1 NA 51.5 57.4 56.2 53.0 NA

win percentage 0.0 0.0 0.0 100.0 pmi 6.7 46.7 46.7 0.0 char 0.0 86.7 6.7 6.7 char

Table 12: Comparing CF normalization schemes (part 3).
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interesting to monitor if as even more capable models are developed, the MCF scores will eventually
surpass that of the CF scores (given how close they already get to each other).

C.2.2 Hybrid formulation
In CF, overall probability score could be quite misleading since it may heavily favor shorter answers with
fewer tokens. Note that this would be different if the answer choices are actually listed before scoring the
answer string, then most tokens (after the choice has been disambiguated by the first few tokens) would
have probability near one. This “hybrid” formulation has been used in some cases, but usually scores
in between the CF and MCF approaches (Wiegreffe et al., 2023). However, this hybrid approach is not
popular in evaluation standardization efforts like the Open LLM Leaderboard, HELM, or when used to
evaluate models during development, so it is not a focus in OLMES.

C.3 Tokenization of MCQA choice labels
When formatting multiple-choice questions, OLMES specifies the use of a prefix space in front of each
answer choice, that is "\n A. <choice>" rather than "\nA. <choice>". Figure 3 shows explicit
examples of tokenizers where this helps maintain a correspondence between the token for the answer label
and the token in the final answer (e.g., "\nAnswer: A"). E.g., for the Llama tokenizer, the consistent
token is the "_A" rather than the separate token "A" you get without the prefix space.

> from transformers import AutoTokenizer

> llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

> olmo_tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-7B-0424-hf")

> test_string = "What is 3+4?\n A. 7\nA. 7\nAnswer: A"

> llama_tokenizer.tokenizer(test_string)

[’_What’, ’_is’, ’_’, ’3’, ’+’, ’4’, ’?’, ’<0x0A>’, ’_A’, ’.’, ’_’, ’7’, ’<0x0A>’, ’A’, ’.’, ’_’,

’7’, ’<0x0A>’, ’Answer’, ’:’, ’_A’]

> olmo_tokenizer.tokenizer(test_string)

[’What’, ’Ġis’, ’Ġ3’, ’+’, ’4’, ’?’, ’Ċ’, ’ĠA’, ’.’, ’Ġ7’, ’Ċ’, ’A’, ’.’, ’Ġ7’, ’Ċ’, ’Answer’,

’:’, ’ĠA’]

Figure 3: Tokenizer example, showing two examples of tokenizers which need a prefix space before MCQA answer
choice labels to represent the choice label and the final answer label using the same token.

D Extended OLMES result table

Table 13 shows OLMES evaluations across an extended set of 40 models. Table 14 shows an extended
version of Table 1 which includes score variations across different references on OPENBOOKQA in addition
to ARC-CHALLENGE.

E HELM Reproduction of MMLU

In Figure 4 we see data taken from HELM’s reproduction of MMLU scores for a variety of models.

F Compute used

The inference on the models evaluated were done on NVIDIA RTX A6000 GPUs. A total of around 400
GPU hours was used.

G Curation of 5-shot examples: considerations

Procedure for manually curating the few-shot examples:

• Download the train set from Hugging Face datasets

• Start from the beginning of the training set, looking at a batch of 10 (i.e., start with first 10)
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model ARC_C ARC_E BoolQ CSQA HSwag MMLU OBQA PIQA SIQA WinoG average

Pythia-1B 31.4 63.4 56.8† 50.9 48.0 31.1 40.4 68.9 46.4 52.7 49.0
OLMo-1B-0724 36.4 53.5 66.8 42.4 67.5 32.0 44.2 74.0 45.2 62.9 52.5
OLMo-1B 38.6 68.3 51.3 62.2 65.2 33.4 47.6 74.1 51.5 59.3 55.1
TinyLlama-1.1B 38.1 69.5 63.6 61.1 60.8 33.6 45.0 71.7 50.4 60.1 55.4
Qwen2-0.5B 48.4† 64.9† 64.3 56.2 48.9 45.3† 51.6† 67.9 54.7† 56.1 55.8
Llama3.2-1B 43.5 71.6 69.4 59.6 67.3 38.2 42.0 73.7 52.0 62.5 58.0
Pythia-6.7B 44.6 72.6 68.7 62.1 66.1 37.7 50.4 74.9 51.7 62.3 59.1
RPJ-INCITE-7B 45.3 78.8 72.0 69.2 72.8 40.1 49.0 75.9 56.6 68.0 62.8
Gemma-2B 49.9 80.2 76.6 68.9 72.5 41.7† 52.4 76.1 57.1 66.1 64.2
StableLM2-1.6B 50.6† 75.3 82.3 70.4† 70.3 40.4† 56.6† 75.6 64.3† 65.7 65.1
OLMo-7B 46.4 78.9 78.7 70.8 78.1 40.5 55.8 78.5 56.5 68.5 65.3
MPT-7b 45.7 78.0 82.4 70.9 79.6 40.6 52.4 79.2 57.4 70.2 65.6
Zamba2-1.2B 55.0† 85.4 76.1 70.1 73.4 44.7† 59.8† 76.6 58.4 67.2 66.7
Falcon-7B 49.7 80.6 78.2 73.4 79.0 42.1 55.2 79.0 60.1 71.3 66.9
DCLM-1B 57.6† 79.5 80.9 71.3 75.1 48.5† 60.0† 76.6 60.5† 68.1 67.8
DeepSeek-MoE-16B 53.4 82.7 81.9 72.7 80.4 45.5† 58.4 80.1 59.9 73.2 68.8
Llama2-7B 54.2 84.0 86.1 74.2 78.9 46.2† 57.8 77.5 59.6 71.7 69.0
DeepSeek-7B 57.2† 80.6 84.8 74.0 80.4 48.7† 62.2† 79.3 65.1† 72.5 70.5
Qwen2-1.5B 68.6† 85.2† 75.3 72.0† 67.6 56.5† 74.6† 75.7 65.3† 64.5 70.5
OLMoE-1B-7B-0924 62.1† 84.2 79.2 72.9 80.0 54.1† 65.4† 79.8 63.0† 70.2 71.1
Gemma2-2B 67.5† 84.3† 83.6 66.4† 74.6 53.3† 68.8† 78.5 64.7† 71.8 71.3
Llama3.2-3B 69.6† 85.1† 78.3 69.0 77.0 57.8† 67.2† 77.4 64.9† 69.9 71.6
JetMoE-8B 61.4† 81.9† 85.7 75.3† 81.7 49.1† 68.0† 80.3 71.3† 70.7 72.5
Llama2-13B 67.3† 85.9 86.7 74.0 83.9 55.8† 65.4† 80.2 65.9† 74.9 74.0
OLMo-7B-0424 66.9† 83.6† 85.9 85.8† 80.1 54.4† 68.6† 80.3 76.1† 73.6 75.5
OLMo-7B-0724 68.0† 85.7† 85.3 85.4† 80.5 54.9† 67.6† 79.3 76.1† 73.2 75.6
DeepSeek-V2-Lite 74.0† 88.9† 84.7 73.8 81.9 58.8† 72.4† 80.2 69.1† 74.0 75.8
Qwen1.5-MoE-A2.7B 77.4† 91.6† 85.0 81.4† 80.0 62.4† 80.6† 81.0 74.1† 72.3 78.6
Llama3-8B 79.3† 92.4† 87.5 73.9† 81.8 66.6† 77.2† 81.6 70.2† 76.2 78.7
Mistral-7B-v0.3 78.3† 91.1† 88.4 72.7† 83.1 63.5† 80.0† 81.9 71.2† 77.7 78.8
Llama3.1-8B 79.5† 91.7† 88.5 74.3† 81.6 66.9† 78.6† 81.1 71.4† 76.6 79.0
Mistral-7B-v0.1 78.6† 90.8† 89.3 72.4† 83.0 64.0† 80.6† 82.8 71.3† 77.9 79.1
DCLM-7B 79.8† 92.3† 87.0 77.0 82.3 64.4† 79.6† 80.1 71.2† 77.3 79.1
Qwen2-7B 88.1† 95.3† 88.9 81.2† 86.4† 71.8† 88.2† 86.0† 78.0† 75.1 83.9
Gemma2-9B 89.5† 95.5† 89.4 78.8† 87.3† 70.6† 88.4† 86.1† 76.0† 78.8 84.0
Mixtral-8x7B-v0.1 87.1† 96.1† 90.0† 78.3† 86.7 71.9† 87.0† 86.1† 75.1† 82.6 84.1
Zamba2-7B 92.2† 96.7† 89.3 84.0† 89.4† 68.5† 84.2† 86.5† 77.7† 79.6 84.8
Llama3.1-70B 92.8† 97.4† 91.9 81.7† 89.4 79.1† 92.6† 91.2† 80.6† 84.5 88.1
Llama3-70B 93.7† 97.7† 91.7† 83.2† 89.5 79.8† 93.4† 91.6† 78.9† 84.1 88.4
Qwen2.5-72B 95.5† 98.8† 91.9† 89.7† 97.5† 85.3† 97.4† 94.0† 82.2† 84.3† 91.7

Table 13: Extended reproducible performance scores across models and tasks using OLMES, providing robust,
meaningful comparisons across a wide range of models and tasks. † indicates use of the MCF score.
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ARC-CHALLENGE Evaluations: OPENBOOKQA Evaluations:
Model↓ Ref1 Ref2 Ref3 Ref4 Ref5 Ref6 OLMES Ref2 Ref4 Ref5 Ref7 Ref8 OLMES

MPT-7B 47.7 42.6 46.5 45.7 51.4 48.6 52.4
RPJ-INCITE-7B 46.3 42.8 45.3 49.4 49.0
Falcon-7B 47.9 42.4 44.5 47.5 49.7 51.6 44.6 53.0 26.0† 55.2
Mistral-7B 60.0 55.5 54.9 78.6† 52.2 77.6† 80.6†

Llama2-7B 53.1 45.9 43.2 45.9 48.5 53.7† 54.2 58.6 58.6 48.4 58.6 54.4† 57.8
Llama2-13B 59.4 49.4 48.8 49.4 67.6† 67.3† 57.0 57.0 57.0 63.4† 65.4†

Llama3-8B 60.2 78.6† 79.3† 76.6† 77.2†

Num shots 25 0 0 0 0 25 5 0 0 0 0 5 5
Curated shots No No Yes No Yes
Formulation CF CF CF? CF CF MCF MCF/CF CF CF CF CF MCF MCF/CF
Normalization char char ? char? pmi none none/pmi pmi pmi? pmi pmi? none none/pmi

Ref Reference citation Ref Reference citation

Ref1 HF Open LLM Leaderboard (Beeching et al., 2023) Ref5 OLMo paper (Groeneveld et al., 2024)
Ref2 Llama2 paper (Touvron et al., 2023a) Ref6 Llama3 model card (AI@Meta, 2024)
Ref3 Mistral 7B (Jiang et al., 2023) Ref7 Gemma paper (Gemma Team et al., 2024)
Ref4 Falcon paper (Almazrouei et al., 2023) Ref8 HELM Lite Leaderboard (Liang et al., 2023)

Table 14: Extended version of Table 1 showing scores reported in different references for LLM performances on
ARC-CHALLENGE and OPENBOOKQA. Scores indicated with † are using multiple-choice formulation (MCF) rather
than “cloze” formulation (CF) (see Section 2.1 for definitions). Entries with “?” denote either undocumented or
mixed approaches across models. Different references use different evaluation setups, some of which are not fully
specified, so conclusions about which models perform best are not reproducible.
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Self-reporting overestimates MMLU score compared to reproduction

Figure 4: Self-reporting overestimates MMLU score compared to reproduction, from https://crfm.stanford.
edu/2024/05/01/helm-mmlu.html. Each point corresponds to a model, the x-axis shows self-reported MMLU
score, and the y-axis shows the difference between the self-reported score and the reproduced score. Points above
the y=0 line have higher self-reported performance than the reproduction; the trend line has a positive slope,
indicating that on average, the higher the self-reported score the more they overestimate performance compared to
the reproduction.
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Prompt Question: George wants to warm his hands quickly by rubbing them. Which skin surface
will produce the most heat?
Answer: dry palms

Question: Which of the following statements best explains why magnets usually stick to
a refrigerator door?
Answer: The refrigerator door contains iron.

Question: A fold observed in layers of sedimentary rock most likely resulted from the
Answer: converging of crustal plates.

Question: Which of these do scientists offer as the most recent explanation as to why
many plants and animals died out at the end of the Mesozoic era?
Answer: impact of an asteroid created dust that blocked the sunlight

Question: Which of the following is a trait that a dog does NOT inherit from its parents?
Answer: the size of its appetite

Question: A boat is acted on by a river current flowing north and by wind blowing on its
sails. The boat travels northeast. In which direction is the wind most likely applying
force to the sails of the boat?
Answer:

Completion east

Figure 5: OLMES 5-shot prompt example for ARC-CHALLENGE (CF).

• Skip ambiguous instances

• Skip instances that hint at discrimination or otherwise deemed inappropriate

• Skip instances if the same label has appeared frequently (e.g., 4 consecutive instances with gold label
‘C’, keep better ones out of those)

• If instances are grouped/labeled by topic, choose instances to be diverse (e.g., first 3 are all about a
certain topic, pick from later ones to ensure diversity).

• If you end up with less than 7 instances that cover the label space or range of different topics, look at
the next batch of 10.

• Finally, reorder instances to obtain a somewhat balanced output of answer labels – the first 5 shots
should cover the space of answer labels.

Note that a few more than 5 shots per dataset were curated in the process, though in practice we are just
using the first 5.

H OLMES prompt formats for each task

In Figure 5 we show an example of a full 5-shot prompt from ARC-CHALLENGE (CF). Then we show single
instance formatting for each of the 10 tasks in Figures 6- 25. For each task, we show both the MCF and
CF formats.

All curated few-shot examples and prompt formatting code are available by accessing https://github.
com/allenai/olmes.

5044

https://github.com/allenai/olmes
https://github.com/allenai/olmes


Prompt Question: George wants to warm his hands quickly by rubbing them. Which skin surface
will produce the most heat?
A. dry palms
B. wet palms
C. palms covered with oil
D. palms covered with lotion
Answer:

Completion A

Figure 6: OLMES prompt example for ARC-CHALLENGE (MCF).

Prompt Question: George wants to warm his hands quickly by rubbing them. Which skin surface
will produce the most heat?
Answer:

Completion dry palms

Figure 7: OLMES prompt example for ARC-CHALLENGE (CF).

Prompt Question: Lichens are symbiotic organisms made of green algae and fungi. What do the
green algae supply to the fungi in this symbiotic relationship?
A. carbon dioxide
B. food
C. protection
D. water
Answer:

Completion B

Figure 8: OLMES prompt example for ARC-EASY (MCF).

Prompt Question: Lichens are symbiotic organisms made of green algae and fungi. What do the
green algae supply to the fungi in this symbiotic relationship?
Answer:

Completion food

Figure 9: OLMES prompt example for ARC-EASY (CF).

Prompt Persian language – Persian, also known by its endonym Farsi, is one of the Western
Iranian languages within the Indo-Iranian branch of the Indo-European language family.
It is primarily spoken in Iran, Afghanistan (officially known as Dari since 1958), and
Tajikistan (officially known as Tajiki since the Soviet era), and some other regions
which historically were Persianate societies and considered part of Greater Iran. It is
written in the Persian alphabet, a modified variant of the Arabic script, which itself
evolved from the Aramaic alphabet.
Question: do iran and afghanistan speak the same language?
A. yes
B. no
Answer:

Completion A

Figure 10: OLMES prompt example for BOOLQ (MCF).
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Prompt Persian language – Persian, also known by its endonym Farsi, is one of the Western
Iranian languages within the Indo-Iranian branch of the Indo-European language family.
It is primarily spoken in Iran, Afghanistan (officially known as Dari since 1958), and
Tajikistan (officially known as Tajiki since the Soviet era), and some other regions
which historically were Persianate societies and considered part of Greater Iran. It is
written in the Persian alphabet, a modified variant of the Arabic script, which itself
evolved from the Aramaic alphabet.
Question: do iran and afghanistan speak the same language?
Answer:

Completion yes

Figure 11: OLMES prompt example for BOOLQ (CF).

Prompt Question: Sammy wanted to go to where the people were. Where might he go?
A. race track
B. populated areas
C. the desert
D. apartment
E. roadblock
Answer:

Completion B

Figure 12: OLMES prompt example for COMMONSENSEQA (MCF).

Prompt Question: Sammy wanted to go to where the people were. Where might he go?
Answer:

Completion populated areas

Figure 13: OLMES prompt example for COMMONSENSEQA (CF).

Prompt Health: How to cope with suicidal thoughts. Put off any plans. Promise yourself that
you’ll wait 48 hours before doing anything. Remember, thoughts don’t have the power to
force you to act.
Choose the best continuation:
A. Even when you do, there may be a small image of the future still lurking around your
brain. For instance, don’t tell yourself that you can’t make it.
B. You’re doing something, and no one can force you to act. It’s completely natural to
feel negative thoughts before you act.
C. Do not panic if people talk to you (even if it’s about quitting smoking). Have a

plan for how you’re going to react to a group of people who bring on suicidal thoughts.
D. Sometimes extreme pain can distort our perception. Waiting before taking action

will give your mind time to clear.
Answer:

Completion D

Figure 14: OLMES prompt example for HELLASWAG (MCF).

Prompt Health: How to cope with suicidal thoughts. Put off any plans. Promise yourself that
you’ll wait 48 hours before doing anything. Remember, thoughts don’t have the power to
force you to act.

Completion Sometimes extreme pain can distort our perception. Waiting before taking action will
give your mind time to clear.

Figure 15: OLMES prompt example for HELLASWAG (CF).

5046



Instruction The following are multiple choice questions (with answers) about abstract algebra.
Prompt Question: Find all c in Z_3 such that Z_3[x]/(x^2 + c) is a field.

A. 0
B. 1
C. 2
D. 3
Answer:

Completion B

Figure 16: OLMES prompt example for MMLU (abstract_algebra) (MCF).

Instruction The following are multiple choice questions (with answers) about abstract algebra.
Prompt Question: Find all c in Z_3 such that Z_3[x]/(x^2 + c) is a field.

Answer:

Completion 1

Figure 17: OLMES prompt example for MMLU (abstract_algebra) (CF).

Prompt Question: When standing miles away from Mount Rushmore
A. the mountains seem very close
B. the mountains are boring
C. the mountains look the same as from up close
D. the mountains seem smaller than in photographs
Answer:

Completion D

Figure 18: OLMES prompt example for OPENBOOKQA (MCF).

Prompt Question: When standing miles away from Mount Rushmore
Answer:

Completion the mountains seem smaller than in photographs

Figure 19: OLMES prompt example for OPENBOOKQA (CF).

Prompt Goal: how do you stab something?
A. stick a sharp object through it.
B. pin it with a sharp object.
Answer:

Completion A

Figure 20: OLMES prompt example for Physical Interaction QA (MCF).

Prompt Goal: how do you stab something?
Answer:

Completion stick a sharp object through it.

Figure 21: OLMES prompt example for Physical Interaction QA (CF).

Prompt Question: Cameron decided to have a barbecue and gathered her friends together. How
would Others feel as a result?
A. like attending
B. like staying home
C. a good friend to have
Answer:

Completion A

Figure 22: OLMES prompt example for SOCIAL IQA (MCF).
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Prompt Question: Cameron decided to have a barbecue and gathered her friends together. How
would Others feel as a result?
Answer:

Completion like attending

Figure 23: OLMES prompt example for SOCIAL IQA (CF).

Prompt Fill in the blank: John moved the couch from the garage to the backyard to create space.
The ___ is small.
A. garage
B. backyard
Answer:

Completion A

Figure 24: OLMES prompt example for WINOGRANDE (MCF).

Prompt1 John moved the couch from the garage to the backyard to create space. The garage
Prompt2 John moved the couch from the garage to the backyard to create space. The backyard

Completion is small.

Figure 25: OLMES prompt example for WINOGRANDE (CF). In this case the completions are the same for each
answer choice, but the prompt is different.
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