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Abstract

The proliferation of large language models has
raised growing concerns about their misuse,
particularly in cases where AI-generated text is
falsely attributed to human authors. Machine-
generated content detectors claim to effectively
identify such text under various conditions and
from any language model. This paper critically
evaluates these claims by assessing several pop-
ular detectors (RADAR, Wild, T5Sentinel, Fast-
DetectGPT, PHD, LogRank, Binoculars) on a
range of domains, datasets, and models that
these detectors have not previously encoun-
tered. We employ various prompting strate-
gies to simulate practical adversarial attacks,
demonstrating that even moderate efforts can
significantly evade detection. We emphasize
the importance of the true positive rate at a
specific false positive rate (TPR@FPR) met-
ric and demonstrate that these detectors per-
form poorly in certain settings, with TPR@.01
as low as 0%. Our findings suggest that
both trained and zero-shot detectors struggle
to maintain high sensitivity while achieving a
reasonable true positive rate. All code and data
necessary to reproduce our experiments are
available at https://github.com/LeiLiLab/
llm-detector-eval.

1 Introduction

Large language models (LLMs) are becoming in-
creasingly accessible and powerful, leading to
numerous beneficial applications (Touvron et al.,
2023; Achiam et al., 2023). However, they also
pose risks if used maliciously, such as generating
fake news articles, facilitating academic plagiarism
or spam content (Feng et al., 2024; Zellers et al.,
2019b; Perkins, 2023; Fraser et al., 2024). The po-
tential for misuse of LLMs has become a significant
concern for major tech corporations, particularly
in light of the 2024 elections in the united states.
At the Munich Security Conference on February
16th, 2024, these companies pledged to combat

misleading machine-generated content, acknowl-
edging the potential of AI to deceptively influence
electoral outcomes (Accord, 2024). As a result,
there is a growing need to develop reliable meth-
ods for differentiating between LLM-generated and
human-written content. To ensure the effectiveness
and accountability of LLM detection methods, con-
tinuous evaluation of popular techniques is crucial.

Many methods have been released recently that
claim to have a strong ability to detect the differ-
ence between AI-generated and human-generated
texts. These detectors primarily fall into three
categories: trained detectors, zero-shot detectors,
and watermarking techniques (Yang et al., 2023b;
Ghosal et al., 2023; Tang et al., 2023). Trained de-
tectors utilize datasets of human and AI-generated
texts and train a binary classification model to de-
tect the source of a text (Zellers et al., 2019b; Hovy,
2016; Hu et al., 2023; Tian and Cui, 2023; Verma
et al., 2024). Zero-shot detection utilizes a lan-
guage model’s inherent traits to identify text it
generates, without explicit training for detection
tasks other than calibrating a threshold for detec-
tion in some cases (Gehrmann et al., 2019; Mitchell
et al., 2023; Bao et al., 2024; Yang et al., 2023a;
Venkatraman et al., 2024). Watermarking is an-
other technique in which the model owner embeds
a specific probabilistic pattern into the text to make
it detectable Kirchenbauer et al. (2023). However,
watermarking requires the model owner to add the
signal, and its design has theoretical guarantees;
we do not evaluate watermarking models in this
study.

In this paper, we test the robustness of these
detection methods to unseen models, data sources,
and adversarial prompting. To do this, we treat
all model-generated text as a black box generation.
That is, none of the detectors know the source of
the text or have access to the model generating
the text. This presents the most realistic scenario
where the user is presented with text and wants to
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know if it is AI-generated or not. Our contributions
can be summarized as follows:

• We conduct a thorough evaluation of AI-
generated text detectors on unseen models and
tasks, providing insights into their effectiveness
in real-world settings.

• We analyze the performance of various detectors
under practical adversarial prompting, exploring
the extent to which prompting can be used to
evade detection.

• We demonstrate that high AUROC scores, which
are often used as a measure of performance in
classification tasks, do not necessarily translate
to practical usage for machine-generated text de-
tection. Instead, we motivate using the metric
of true positive rate (TPR) at a 1% false positive
rate (FPR) threshold as a more reliable indicator
of a detector’s effectiveness in practice.

2 Related Work and Background

There is a variety of related work that discusses
text detectors. These works cover different aspects,
such as the text detectors themselves, their types,
evaluation, and red-teaming of detectors.

Text Detectors. Machine-generated text detec-
tors can be divided into trained classifiers, zero-
shot classifiers, and watermark methods (Yang
et al., 2023b; Hans et al., 2024; Ghosal et al.,
2023; Jawahar et al., 2020). (1) Trained detectors
use classification models to determine if the text
is machine-generated or human-written (Zellers
et al., 2019b; Hovy, 2016; Hu et al., 2023; Tian
and Cui, 2023; Verma et al., 2024). However,
the increasing prevalence of machine-generated
content (European-Union, 2022) makes it difficult
to label human-generated work for training, as
even humans find it hard to distinguish between
the two (Darda et al., 2023). (2) Zero-shot de-
tectors leverage intrinsic statistical differences be-
tween machine-generated and human-generated
text (Gehrmann et al., 2019; Mitchell et al., 2023;
Bao et al., 2024; Yang et al., 2023a; Venkatra-
man et al., 2024). Proposed methods include us-
ing entropy (Lavergne et al., 2008), log probabil-
ity (Solaiman et al., 2019), and more recently, in-
trinsic dimensionality (Tulchinskii et al., 2023). (3)
Watermark-based detection, introduced by Kirchen-
bauer et al. (2023), involves embedding a hidden

but detectable pattern in the generated output. Var-
ious enhancements to this method have been sug-
gested (e.g., Zhao et al. (2023); Lee et al. (2023)).
This paper focuses on the black-box setting, which
closely resembles real-world detection scenarios.
Watermarking is not tested due to its guaranteed de-
tectability and low false positive rates (e.g., (Zhao
et al., 2023)). The primary concern is detecting
un-watermarked text, as it is the most commonly
encountered and poses the greatest threat.

Evaluation of Text Detectors. The most com-
monly utilized metric in evaluating detectors is
the area under the receiver operating curve (AU-
ROC) (Mitchell et al., 2023; Sadasivan et al., 2023).
Although it offers a reasonable estimate of detec-
tor performance, research by Krishna et al. (2023);
Yang et al. (2023a), and our experimental results
demonstrate that there can be a substantial differ-
ence in performance between two models with AU-
ROC values nearing the maximum of 1.0. Con-
sequently, the true positive rate at a fixed false
positive rate (TPR@FPR) presents a more accurate
representation of a detector’s practical effective-
ness. Both AUROC and true positive rate at a fixed
false positive are important metrics for a complete
evaluation of text detectors.

Redteaming Language Model Detectors. AI
text detectors are increasingly evaluated in red
teaming scenarios, with recent contributions from
Zhu et al. (2023); Chakraborty et al. (2023); Ku-
marage et al. (2023); Shi et al. (2024); Wang et al.
(2024). Shi et al. (2024) identifies two main eva-
sion techniques: word substitution and instruc-
tional prompts. Word substitution includes query-
based methods, which iteratively select low de-
tection score substitutions, and query-free meth-
ods, which use random substitutions. Instructional
prompts, akin to jailbreaking, instruct the model
to mimic a human-written sample. Query-based
word substitution proved most effective, reducing
the True Positive Rate (TPR) to less than 5% at
a 40% False Positive Rate (FPR) against Detect-
GPT. Wang et al. (2024) explore robustness testing
of language model detectors with three editing at-
tacks: typo insertion, homoglyph alteration, and
format character editing. Typo insertion adds ty-
pos, homoglyph alteration replaces characters with
similar shapes, and format character editing uses
invisible text disruptions. Paraphrasing attacks,
noted by Krishna et al. (2023), include synonym
substitution (model-free and model-assisted), span
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Method Datasets

RADAR OpenWebText Corpus (Gokaslan et al., 2019), Xsum (Narayan et al., 2018), SQuAD (Rajpurkar
et al., 2016), Reddit Writing Prompts (Fan et al., 2018), and TOEFL (Liang et al., 2023)

Wild Reddit CMV sub-community comments (Tan et al., 2016), Yelp Reviews (Zhang et al., 2015),
Xsum (Narayan et al., 2018), TLDR_news1, ELI5 dataset (Fan et al., 2019), Reddit Writing
Prompts (Fan et al., 2018), ROCStories Corpora (Mostafazadeh et al., 2016), HellaSwag (Zellers
et al., 2019a), SQuAD (Rajpurkar et al., 2016), and SciGen (Moosavi et al., 2021)

T5Sentinel OpenWebText Corpus (Gokaslan et al., 2019)

Fast-DetectGPT Xsum (Narayan et al., 2018), SQuAD (Rajpurkar et al., 2016), Reddit Writing Prompts (Fan
et al., 2018), WMT16 English and German (Bojar et al., 2017), PubMedQA (Jin et al., 2019)

PHD Wiki40b (Guo et al., 2020), Reddit Writing Prompts (Fan et al., 2018), WikiM (Krishna et al.,
2023), StackExchange (Tulchinskii et al., 2023)

LogRank Xsum (Narayan et al., 2018), SQuAD (Rajpurkar et al., 2016), Reddit Writing Prompts (Fan
et al., 2018)

Binoculars CCNews (Hamborg et al., 2017), PubMed (Sen et al., 2008), CNN (Hermann et al., 2015),
ORCA (Lian et al., 2023)

Table 1: Datasets used for training and evaluation by
each model. To avoid data leakage and cherry-picking,
these datasets are excluded from the current study.

perturbations (masking and refilling random spans),
and paraphrasing at sentence and text levels.

Evaluated Detectors and Datasets. In our pa-
per, we evaluate seven representative detectors:
RADAR (Hu et al., 2023), Detection in the
Wild (Wild) (Li et al., 2024), T5Sentinel (Chen
et al., 2023), Fast-DetectGPT (Bao et al., 2024),
PHD (Tulchinskii et al., 2023), LogRank (Ippolito
et al., 2020)2, and Binoculars (Hans et al., 2024).
RADAR, Wild, and T5Sentinel are trained detec-
tors, while Fast-DetectGPT, PHD, LogRank, and
Binoculars are zero-shot detectors. To ensure a
fair comparison and assess the detectors’ ability to
generalize to new data, we carefully select datasets
that have not been used in the training or evaluation
of these detectors. Table 1 presents an overview
of the datasets and domains on which each detec-
tor has been evaluated. Several datasets, such as
Xsum, SQuAD, and Reddit Writing Prompts, have
been used in the evaluation or training of multiple
detectors. Although these detectors achieve strong
Area Under the Receiver Operating Characteristic
(AUROC) scores on these datasets, they do not re-
port the True Positive Rate at a set False Positive
Rate (TPR@FPR), which is a crucial metric in real-
world scenarios. To address this gap, we aim to
evaluate all seven detectors on the same datasets
using both AUROC and TPR at FPR metrics.

Comparison to Previous Works. There are
some other papers that have explored similar work
to ours, specifically Wang et al. (2024) and Dugan
et al. (2024). Our work differs from theirs in some
important ways. We do not focus as much on the
various methods of red-teaming the detectors in
complicated ways. Rather, we explore some more

2LogRank has been evaluated on many datasets, we report
the ones from Mitchell et al. (2023).

natural methods that an average person might uti-
lize in practice. We also explore in more depth the
variability in detector capabilities across various
tasks and languages with discussion on potential
sources of that difference. And lastly, we utilize
newer models, which gives insight into the adapt-
ability of the detectors.

3 Benchmarking Procedure

Our benchmarking method involves compiling
datasets that have not been encountered by any
of the detectors during their training or evaluation
phases. This approach ensures that the datasets rep-
resent new, unseen data and prevents the possibility
of data contamination. For zero-shot detectors, this
methodology eliminates the risk of using cherry-
picked datasets that may bias the evaluation. For
trained detectors, this reduces the risk of data leak-
age and tests on out-of-domain data. Furthermore,
we assess the model’s performance across a diverse
range of domains that the detectors may not have
been previously evaluated against. This compre-
hensive evaluation strategy allows for a more robust
assessment of the detectors’ generalization capa-
bilities. Additionally, we evaluate the detectors on
a variety of language models that they have not
encountered before. This enables us to examine
the detectors’ performance on unfamiliar language
models, providing a more comprehensive under-
standing of their effectiveness and adaptability.

3.1 Datasets
We evaluate each of the detectors on seven different
tasks with three of the tasks, question answering,
summarization, and dialogue writing, including
multilingual results. The datasets chosen for each
domain are as follows:

• Question Answering: The MFAQ dataset
(De Bruyn et al., 2021) was used for this do-
main. It contains over one million question-
answer pairs in various languages. We used the
English, Spanish, French, and Chinese subsets.

• Summarization: We used the MTG summariza-
tion dataset (Chen et al., 2022) for this task. The
complete multilingual dataset comprises roughly
200k summarizations. We utilized the English,
Spanish, French, and Chinese subsets.

• Dialogue Writing: For this task, we utilized
the MSAMSum dataset, a translated version of
the SAMSum dataset(Feng et al., 2022; Gliwa
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et al., 2019). This dataset consists of over 16k
dialogues with summaries in six languages. We
utilized English, Spanish, French, and Chinese
for consistency with the other multilingual do-
mains.

• Code: We used the APPS dataset (Hendrycks
et al., 2021), which contains 10k code questions
and solutions. The subset used was randomly
selected from all the data included in APPS.

• Abstract Writing: For this task, we utilized
the Arxiv section of the scientific papers dataset
(Cohan et al., 2018) to avoid potential bias, as
some detectors have previously been exposed to
PubMed data. Additionally, we only selected
papers published in 2020 or earlier to remove
potential LLM influence.

• Review Writing: The PeerRead dataset was
used for the review writing task (Kang et al.,
2018). PeerRead contains over 10k peer reviews
written by experts corresponding to the paper that
they were written for.

• Translation: We used the Par3 dataset (Karpin-
ska et al., 2022), which provides paragraph
level translations from public-domain foreign lan-
guage novels. Each paragraph includes at least
2 human translations of which we selected only
one to represent human translation.

3.2 Large Language Models
Our objective is to evaluate the detectors on mod-
els that they have not previously been trained or
assessed on to gauge their generalization capabil-
ities. We evaluated 4 different models across ev-
ery task. The models we use are Llama-3-Instruct
8B (AI@Meta, 2024), Mistral-Instruct-v0.3 (Jiang
et al., 2023), Phi-3-Mini-Instruct 4k (Abdin et al.,
2024), and GPT-4o.

3.3 Detection Models
The detection models were chosen from the newest
and highest performing detectors in their respec-
tive categories. Our goal was to represent both
trained and zero-shot detectors. As previously
mentioned, the trained detectors we are using are
RADAR (Hu et al., 2023), Detection in the Wild
(Wild) (Li et al., 2024), and T5Sentinel (Chen
et al., 2023). The zero-shot detectors we are us-
ing are Fast-DetectGPT (Bao et al., 2024), GPTID
(Tulchinskii et al., 2023), LogRank (Ippolito et al.,

Method Model
Fast-DetectGPT GPT-Neo-2.7B (Black et al., 2021)
GPTID Roberta-Base (Liu et al., 2019)
LogRank GPT2-Medium (Radford et al., 2019)
Binoculars Falcon-7B, Falcon-7B-Instruct (Almazrouei et al., 2023)

Table 2: Underlying models utilized by each zero-shot
detection method.

2020), and Binoculars (Hans et al., 2024). Each of
the zero-shot detectors utilize a generating model
as a part of their detection process. We utilize
the same underlying models as reported by each
respective zero-shot model’s original publication
listed in Table 2. We also evaluate every zero-shot
method using three of the other underlying models
for a more accurate comparison. This is notably
unfair to the Binoculars method, which uses two
different underlying models: base and instruction
tuned. We replace both with the same model for
these experiments because not all models have both
base and instruction tuned versions.

Notably, we did not include any watermark de-
tectors. The primary reason for this is that the
evaluation techniques we use over various models
would not work with watermark detection. While
watermark detection has shown strong performance
(Kirchenbauer et al., 2023), they have a significant
drawback in that they only work if a model applies
a watermark. In this paper, we assume a scenario
in which no watermark is applied or it is unknown
whether a watermark is applied. Therefore, we
must turn to other detection methods.

3.4 Evaluation Metrics
In this study, we evaluate machine-generated text
detectors using AUROC and TPR at a fixed FPR.
Our findings, consistent with prior research (Kr-
ishna et al., 2023; Yang et al., 2023a), suggest that
AUROC alone may not reflect a detector’s practi-
cal effectiveness, as a high AUROC score can still
correspond to significant false positive rates. This
is critical since false positives, particularly in fields
like academia and media, can have severe conse-
quences. We argue that TPR at a given FPR should
be the standard evaluation metric, as demonstrated
by a detector achieving a 0.89 AUROC but less
than 20% TPR at a 1% FPR on a task.

3.5 Red Teaming
We employ two different methods of prompting for
every task: plain prompting and adversarial prompt-
ing. Plain prompting involves using a typical assis-
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tant system prompt and providing the model with
the same input that was given to the human for
human-generated content. Adversarial prompting,
on the other hand, requests that the model try to act
more like a person. Examples of the question an-
swering plain and adversarial prompts3 are shown
as follows:

Plain Prompt Example: Question Answering

You are a helpful question answering assistant that
will answer a single question as completely as possi-
ble given the information in the question. Do NOT
use any markdown, bullet, or numbered list format-
ting. The assistant will use ONLY paragraph format-
ting. **Respond only in {language}**.

Adversarial Prompt Example: Question Answering

{Question answering prompt} Try to sound as human
as possible.

We also conducted experiments using the LLMs
as writing assistants. Specifically, we requested
that the model rewrite the human response and
improve upon its clarity and professionalism. This
represents a scenario where a person will write
down an answer first and then request that a model
make their answer better before presenting it. The
specific prompt we used it as follow:

Rewriting Prompt

You are a helpful writing assistant. Rewrite the fol-
lowing text to improve clarity and professionalism.
Do not provide any other text. Only provide the
rewritten text.

4 Experiment

4.1 Dataset Processing
Each dataset undergoes additional processing to
prepare it for detection tasks. Research indicates
that detectors of machine-generated text are more
effective with longer content (Yang et al., 2023b).
To leverage this, we aimed to use human samples
of maximum possible length. However, the min-
imum length needed to obtain sufficient samples
varied by task. We randomly selected 500 samples
of human text from filtered subsets with the fol-
lowing token lengths using Llama2-13B tokenizer
(Touvron et al., 2023): 500 tokens for question
answering, 400 tokens for code4, 150 tokens for

3The others can be found in the appendix Table 13.
4Length limited to 2500 tokens.

Task AI Human
Avg Min Avg Min

Code 486.58 15 4496.88 605
QA 508.01 24 1052.37 501
Summ 410.03 18 191.00 151
Dialogue 380.92 15 402.13 276
Reviews 551.28 24 796.06 501
Abstract 427.92 30 2081.88 501
Translation 525.32 256 772.75 501

Table 3: Average and minimum token counts of
machine-generated and human-generated text for each
task, tokenized using the Llama2 tokenizer (Touvron
et al., 2023). Minimum token counts for human-
generated text are omitted as they were previously de-
scribed.

summarization, 275 tokens for dialogue, 500 to-
kens for reviews, 500 tokens for abstracts, and 500
tokens for translation (Table 3). These 500 samples
served as human examples. From them, prompts
from the first 100 samples were chosen for use
in the generator model, using the input given to
the human author as the model prompt. This re-
sulted in a dataset of 500 human examples and 100
machine-generated examples per model for a to-
tal of 400 machine-generated examples for each
task. This slight data imbalance is intentional to
ensure a more accurate TPR@FPR metric because
there would likely be more human examples than
machine generated examples in practice.

Detection methods show improved performance
with longer text sequences (Wu et al., 2023) so
we show the statistics of the text in Table 3. Our
primary focus was on detectors’ ability to identify
AI-generated text while maintaining a low FPR.
The longer length of human-generated text is likely
to enhance the TPR@FPR by making it easier to
detect as human. We considered the AI-generated
text sufficiently long for two reasons. First, Li et al.
(2024) reports an average AI generation length of
279.99, which is much lower than our average to-
ken lengths. Their extensive training and evalua-
tion data support the adequacy of this length for AI
content. Second, our models, with a maximum gen-
eration length of 512 tokens 5, produced responses
indicative of real-world lengths.

4.2 Text Generation and Detection Process
Once the prompt samples were selected, we needed
to generate positive examples. The process for this
can be seen in Figure 1. We employ three different

5The averages can exceed this number due to different
tokenizers and additional tokens to keep text coherent
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Human
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Large Language
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Figure 1: Pipeline for prompting and evaluation. Adver-
sarial prompting and rewriting are applied to the LLMs.
After collecting machine-generated text, AUROC and
TPR@FPR are measured for each detector.

strategies for prompting the models, one is a plain
prompt and the other two are adversarial prompts.
The first strategy involves using a basic prompt for
each domain that explains the goal of the model
and the desired output format. The second strategy
consists of requesting that the model be as human
as possible. The third strategy requests that the
model rewrite and improve upon the human written
response 6. The first strategy aims to simulate a ba-
sic system prompt that would generally be in place
on a model someone is using to generate content.
The second strategy simulates the case where a
user might try to get the model to generate content
that closely resembles human-generated content.
The third strategy simulates a scenario where the
user writes their own response and simply wants
the model to clean it up or make it easier to un-
derstand. The outputs of the models were taken
as is with no editing. After generating the positive
examples, we passed all of the machine-generated
and human-generated examples through the detec-
tors. RADAR, Wild, and T5Sentinel all return a
percentage probability for each class, and GPTID,
Fastdetectgpt, Binoculars, and LogRank return a
value representing their score. We do not use any
thresholds and take the scores as is for AUROC
and TPR@FPR metrics.

5 Results and Analysis

Table 4 shows the overall performance of each de-
tector across the entire dataset. In this section,
we break down the performance of each detector
across tasks, languages, and prompt techniques.

6Prompts and templates can be found in the appendix.

Detector TPR@0.01 TPR@0.05 TPR@0.1 AUROC

Radar 0.05 0.15 0.27 0.6009
Fast-DetectGPT 0.49 0.61 0.68 0.8405
Wild 0.11 0.19 0.29 0.6841
PHD 0.08 0.23 0.37 0.6790
LogRank 0.09 0.40 0.50 0.7763
T5Sentinel 0.03 0.09 0.14 0.5179
Binoculars 0.58 0.67 0.72 0.8485

Table 4: Performance of different detectors across the
entire dataset.

5.1 Plain Prompting
We evaluate the AUROC and TPR at 0.01 FPR for
machine-generated texts from direct prompting us-
ing identical prompts as human written texts. A
simple prompt was employed to ensure the gener-
ated text was in the correct format and language for
the multilingual tasks.

Figures 2a and 2b show the results for the mul-
tilingual tasks and 3a and 3b show the results for
the only English tasks. The results broken down
by detector are shown in Appendix A.3. A signifi-
cant difference is observed in detector performance
across languages and tasks, particularly in the mul-
tilingual setting as well as across detectors. In the
TPR@.01 setting, the difference between the best
detector and worst detector is greater than 0.95.
Across all detectors we generally see strong results
in the English tasks, while the performance drops
off in the non-English tasks. In most detectors, in
all tasks, they struggle to maintain a strong TPR
rate at an FPR rate of 0.01.

For the English-only tasks, most detectors show
improved performance in the AUROC, while the
TPR@0.01 stays quite low. Despite expectations
that the translation domain would be the most chal-
lenging due to lower entropy in translated texts,
detectors performed reasonably well from the AU-
ROC perspective. The TPR@0.01 graph highlights
ongoing challenges in maintaining low false posi-
tive rates.

5.2 Adversarial Prompting
Figure 2c shows the results on the multilingual
tasks where the model was instructed to be "as
human as possible." Interestingly, this request
had little effect on performance. In the few in-
stances where changes occurred, scores generally
increased, suggesting that asking the model to
"sound human" may have made its output easier to
detect. This aligns with expectations, as large lan-
guage models are already trained on predominantly
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(a) Average TPR@0.01 results for multilingual
tasks with normal prompting across all detectors.

(b) Average AUROC results for multilingual tasks
with normal prompting across all detectors.

(c) Average TPR@0.01 results for multilingual
tasks with template prompting across all detectors.

(d) Average TPR@0.01 results for multilingual
tasks with rewrite prompting across all detectors.

Figure 2: Comparison of average AUROC results for multilingual tasks across all detectors using different normal
prompting and average TPR@0.01 across all detectors using normal, template, and rewrite prompting. Error bars
show maximum and minimum performance across detectors.

(a) Average TPR@0.01 results for English tasks
with normal prompting across all detectors.

(b) Average AUROC results for English tasks with
normal prompting across all detectors.

(c) Average TPR@0.01 results for English tasks
with template prompting across all detectors.

(d) Average TPR@0.01 results for English tasks
with rewrite prompting across all detectors.

Figure 3: Comparison of average AUROC results for English tasks across all detectors using different normal
prompting and average TPR@0.01 across all detectors using normal, template, and rewrite prompting. Error bars
show maximum and minimum performance across detectors.
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Figure 4: Correlations between the TPR at various FPR
rates and the overall AUROC score. AUROC score is
more representative of the middle FPR rates, while this
detection task is more concerned with the lower end of
FPR.

human-written texts, and generating more conver-
sational output can make detection more straight-
forward, as evidenced in dialogue generation tasks.

On the English tasks, as shown in figure, 3c,
the results were similarly unaffected by the human-
like request, with some slight score increases where
changes were observed. This is especially expected
in domains such as reviews, code, and abstracts,
which follow specific writing conventions, while
tasks like question answering and dialogue genera-
tion exhibit more variability and creativity.

5.3 Rewriting
Finally, we show the results for the rewriting
prompt for the multilingual tasks in figure 2d and
for the English tasks in figure 3d. We observe a
notable decrease in TPR@0.01 performance for
detectors that previously performed well leading
to a drop in the average performance in most tasks.
Some of the lower performing did see an increase
in performance which is why the average perfor-
mance in the Code and French Translation tasks
are slightly higher. Despite these shifts, the relative
performance across tasks remains consistent, indi-
cating an inherent variability in detectability based
on the type of task and language.

5.4 TPR@FPR vs AUROC
In this paper, we utilize both the AUROC and
TPR@FPR metrics. However, we also argue that
TPR at a low FPR is a much more important metric
for this detection task. Figure 4 shows the corre-
lation between TPR scores at various FPR rates

Figure 5: AUROC and TPR@0.01 for each zero-shot
method using various underlying models. Only Fast-
DetectGPT and Binoculars show a significant change in
performance with GPT2-Medium.

and the AUROC score for all tasks, detectors, and
models used in this research. The AUROC cor-
relates much higher with FPR rates in the 0.4 to
0.6 range and much lower with FPR rates at the
edges, less than 0.2 and greater than 0.8. While
the 0.75 is still a reasonable correlation value, the
AUROC is still much more representative of the
middle FPR’s while we are really concerned with
the lower FPR’s for this task. This is why we report
the TPR@0.01, which is much more representative
of the applicability of a detector than the AUROC.

5.5 Output Quality and Detection
Measuring the quality of LLM outputs, especially
in creative tasks, remains challenging, making it
difficult to determine if higher-quality outputs are
harder to detect. Table 5 compares various mod-
els’ performance scores and rankings from Chatbot
Arena (Chiang et al., 2024), allowing us to explore
if output quality affects detectability. The data
shows little difference in detectability across mod-
els of varying quality, with AUROC and TPR@0.01
scores remaining consistent. This suggests that
output quality does not significantly impact the
difficulty of detection, though further research is
needed for a fuller understanding.

5.6 Impact of Model on Zero-shot Methods
Each zero-shot method used in this paper has an
underlying model that assists in the detection pro-
cess. In this paper we consider the model chosen by
the respective authors of each detector to be a part
of the detector itself. However, we also swapped
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Model
Code Reviews Abstract QA Summ Dialogue Trans.

Arena Score
TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC

GPT-4o 0.02 0.55 0.28 0.63 0.04 0.53 0.05 0.54 0.05 0.50 0.03 0.58 0.03 0.52 1339

Llama-3 0.06 0.56 0.28 0.67 0.21 0.64 0.12 0.60 0.07 0.57 0.08 0.60 0.09 0.56 1152

Mistral 0.02 0.54 0.28 0.65 0.04 0.54 0.10 0.58 0.04 0.51 0.06 0.59 0.05 0.54 1072

Phi-3 0.04 0.57 0.24 0.62 0.13 0.58 0.08 0.58 0.12 0.58 0.13 0.63 0.08 0.56 1066

Table 5: Model performance (AUROC and TPR@0.01) across tasks compared with model generation quality. The
Chatbot Arena score is utilized to measure the quality of a model. The higher scores do not correlate with lower
detectability of generated content.

out each model to directly compare the statistical
methods themselves, removing any impact from a
specific model on a detector.

Figure 5 shows the results of running each de-
tector across the entire dataset with three different
models. There is generally not much of a difference
in the ability of a detection method when changing
the underlying model. Fast-DetectGPT and Binoc-
ulars show a small change in AUROC and a larger
change in TPR@0.01 when using the gpt2-medium
model (Radford et al., 2019). Gpt2-medium is the
oldest model of the three, which likely results in
its output logits being different than the generation
models more often. This provides some evidence
that these zero-shot methods will require updated
underlying models to remain successful on more
advanced generation models, but more research
would need to be conducted.

6 Conclusion

This study evaluates seven advanced detectors
across seven tasks and four languages, revealing
notable inconsistencies in their detection capabili-
ties. We also examined three different prompting
strategies and their impact on detectability, find-
ing that requests for more "human-like" output do
not make the text harder to detect, while rewritten
human content proves more difficult to identify.

The detection results for both the Translation
task and Rewrite prompt are generally lower than
the average detectability for other machine gen-
erated text. This encourages a discussion about
whether this type of text should be detected as ma-
chine generated or not. The text may have been
machine generated, but it is heavily influenced by
human generated text. Specifically in the transla-
tion case, the text should match the source text in
another language. In the Rewrite case, the model
is not generating any new ideas, just improving
the readability of the text. It is clear from the re-

sults that these cases are harder to detect than when
a model has a more open-ended generation. It
is likely worth differentiating between these two
cases which we leave to future work.

Additionally, this research highlights the limi-
tations of relying on the AUROC metric for as-
sessing machine-generated content detectors. Our
findings emphasize the need for robust evaluation
methods to develop more reliable detection tech-
niques. The study underscores the challenges in de-
tecting machine-generated text, particularly when
human written text was only modified by a lan-
guage model, and advocates for TPR@FPR as the
preferred evaluation metric to better capture detec-
tor performance.

7 Limitations

A limitation of this method is the settings in which
the human data was collected may vary from the
settings in which these detectors will be used. Addi-
tionally, some of the datasets we used had collected
their data from the internet which raises a concern
that some of that data is not completely human
generated. This is a challenge that all future de-
tectors will also struggle with when training and
evaluating. These results pose the risk of embold-
ening users to use AI generated content when they
otherwise should not because they know detectors
cannot be confidently trusted. However, acknowl-
edging this is important to encouraging research
into new detection methods and improving current
methods.
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Al-Rfou. 2020. Wiki-40B: Multilingual language
model dataset. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
2440–2452.

Felix Hamborg, Norman Meuschke, Corinna Breitinger,
and Bela Gipp. 2017. news-please. In Everything
Changes, Everything Stays the Same? Understanding
Information Spaces. Proceedings of the 15th Interna-
tional Symposium of Information Science (ISI 2017),
pages 218–223.

Abhimanyu Hans, Avi Schwarzschild, Valeriia
Cherepanova, Hamid Kazemi, Aniruddha Saha,
Micah Goldblum, Jonas Geiping, and Tom Goldstein.
2024. Spotting llms with binoculars: Zero-shot
detection of machine-generated text. ArXiv preprint,
abs/2401.12070.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
ArXiv preprint, abs/2105.09938.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
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A More Results

This section contains results for detections by mod-
els and tasks, the prompts used for plain prompting,
and the results by detector.

A.1 Results by Model
The following tables show the results for each de-
tector by generation model and task. As discussed
in the paper, there is not a significant difference in
detectability of a text by the model that generated
that text. More specifically, a higher quality model
like GPT-4o is not noticeably harder to detect than
a lower quality model like Phi-3. The differences
in detectability are more obvious across tasks than
generation models.

Model Detector TPR@.01 AUROC

GPT-4o

Binoculars 0.14 0.8739
Fast-DetectGPT 0.07 0.8223
LogRank 0.00 0.5722
PHD 0.00 0.3976
Radar 0.00 0.6594
T5Sentinel 0.01 0.4604
Wild 0.00 0.4724

Llama-3

Binoculars 0.45 0.9474
Fast-DetectGPT 0.16 0.8211
LogRank 0.00 0.6060
PHD 0.04 0.4940
Radar 0.05 0.8088
T5Sentinel 0.09 0.5358
Wild 0.06 0.6231

Mistral

Binoculars 0.39 0.9681
Fast-DetectGPT 0.16 0.9029
LogRank 0.06 0.4552
PHD 0.06 0.3104
Radar 0.00 0.5787
T5Sentinel 0.02 0.3315
Wild 0.07 0.5412

Phi-3

Binoculars 0.35 0.7825
Fast-DetectGPT 0.21 0.8076
LogRank 0.08 0.5470
PHD 0.14 0.4657
Radar 0.06 0.7700
T5Sentinel 0.03 0.5209
Wild 0.12 0.5779

Table 6: Code

A.2 Plain Prompts
Table 13 shows the prompts used for each task in
the plain prompting. The prompts we used were
intentionally very simple and not overly instruc-
tive. This is because we wanted to replicate a re-
alistic scenario of an average person prompting a
language model. We performed small ablations
on these prompts and found no difference in de-
tectability.

Model Detector TPR@.01 AUROC

GPT-4o

Binoculars 0.47 0.8676
Fast-DetectGPT 0.35 0.8918
LogRank 0.01 0.5972
PHD 0.01 0.4758
Radar 0.02 0.3474
T5Sentinel 0.01 0.4909
Wild 0.02 0.5088

Llama-3

Binoculars 0.66 0.9501
Fast-DetectGPT 0.68 0.9465
LogRank 0.03 0.7816
PHD 0.02 0.6637
Radar 0.13 0.6581
T5Sentinel 0.03 0.4995
Wild 0.06 0.6024

Mistral

Binoculars 0.56 0.8954
Fast-DetectGPT 0.57 0.8852
LogRank 0.04 0.7052
PHD 0.04 0.6261
Radar 0.04 0.5776
T5Sentinel 0.02 0.5078
Wild 0.04 0.5664

Phi-3

Binoculars 0.48 0.8188
Fast-DetectGPT 0.41 0.8424
LogRank 0.13 0.7448
PHD 0.13 0.6553
Radar 0.07 0.5966
T5Sentinel 0.02 0.5787
Wild 0.07 0.5923

Table 7: Question Answering

Model Detector TPR@.01 AUROC

GPT-4o

Binoculars 0.05 0.6533
Fast-DetectGPT 0.11 0.6981
LogRank 0.23 0.7070
PHD 0.00 0.4922
Radar 0.00 0.2085
T5Sentinel 0.01 0.4339
Wild 0.11 0.4753

Llama-3

Binoculars 0.33 0.8134
Fast-DetectGPT 0.19 0.7540
LogRank 0.61 0.8941
PHD 0.30 0.6642
Radar 0.08 0.6605
T5Sentinel 0.05 0.4720
Wild 0.15 0.6570

Mistral

Binoculars 0.06 0.6011
Fast-DetectGPT 0.08 0.5862
LogRank 0.30 0.7635
PHD 0.01 0.5216
Radar 0.00 0.3428
T5Sentinel 0.02 0.4256
Wild 0.13 0.5931

Phi-3

Binoculars 0.48 0.7501
Fast-DetectGPT 0.30 0.7135
LogRank 0.60 0.9049
PHD 0.33 0.7668
Radar 0.09 0.7492
T5Sentinel 0.01 0.3561
Wild 0.38 0.8890

Table 8: Summarization
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Model Detector TPR@.01 AUROC

GPT-4o

Binoculars 0.68 0.9362
Fast-DetectGPT 0.52 0.9277
LogRank 0.37 0.7857
PHD 0.07 0.6279
Radar 0.03 0.6143
T5Sentinel 0.06 0.5045
Wild 0.01 0.5633

Llama-3

Binoculars 0.80 0.9695
Fast-DetectGPT 0.67 0.9487
LogRank 0.42 0.8235
PHD 0.24 0.6772
Radar 0.14 0.6907
T5Sentinel 0.04 0.5265
Wild 0.03 0.6378

Mistral

Binoculars 0.64 0.9150
Fast-DetectGPT 0.56 0.9246
LogRank 0.33 0.7827
PHD 0.17 0.6514
Radar 0.19 0.6989
T5Sentinel 0.02 0.4949
Wild 0.02 0.6044

Phi-3

Binoculars 0.69 0.9243
Fast-DetectGPT 0.59 0.8506
LogRank 0.60 0.9206
PHD 0.37 0.7745
Radar 0.04 0.7626
T5Sentinel 0.11 0.6134
Wild 0.10 0.6505

Table 9: Dialogue

Model Detector TPR@.01 AUROC

GPT-4o

Binoculars 0.39 0.8584
Fast-DetectGPT 0.33 0.8895
LogRank 0.00 0.6474
PHD 0.00 0.2399
Radar 0.01 0.1890
T5Sentinel 0.00 0.3086
Wild 0.06 0.6178

Llama-3

Binoculars 0.71 0.9248
Fast-DetectGPT 0.70 0.9352
LogRank 0.12 0.8505
PHD 0.09 0.5909
Radar 0.29 0.6430
T5Sentinel 0.16 0.6843
Wild 0.42 0.8185

Mistral

Binoculars 0.44 0.8672
Fast-DetectGPT 0.38 0.8937
LogRank 0.01 0.6964
PHD 0.01 0.3262
Radar 0.03 0.1770
T5Sentinel 0.05 0.4642
Wild 0.04 0.5601

Phi-3

Binoculars 0.38 0.5372
Fast-DetectGPT 0.43 0.7147
LogRank 0.30 0.8252
PHD 0.48 0.7344
Radar 0.42 0.8498
T5Sentinel 0.01 0.3748
Wild 0.49 0.9189

Table 10: Abstract

Model Detector TPR@.01 AUROC

GPT-4o

Binoculars 0.69 0.9247
Fast-DetectGPT 0.65 0.8847
LogRank 0.31 0.8778
PHD 0.00 0.7663
Radar 0.12 0.8791
T5Sentinel 0.02 0.5718
Wild 0.00 0.9249

Llama-3

Binoculars 0.80 0.9662
Fast-DetectGPT 0.72 0.9305
LogRank 0.65 0.9240
PHD 0.47 0.8589
Radar 0.39 0.8883
T5Sentinel 0.11 0.5814
Wild 0.30 0.9541

Mistral

Binoculars 0.79 0.9659
Fast-DetectGPT 0.74 0.9358
LogRank 0.60 0.9249
PHD 0.06 0.8347
Radar 0.37 0.9015
T5Sentinel 0.07 0.6376
Wild 0.42 0.9574

Phi-3

Binoculars 0.70 0.8889
Fast-DetectGPT 0.49 0.8178
LogRank 0.40 0.8272
PHD 0.17 0.8137
Radar 0.47 0.9024
T5Sentinel 0.03 0.4166
Wild 0.25 0.9410

Table 11: Reviews

Model Detector TPR@.01 AUROC

GPT-4o

Binoculars 0.12 0.7020
Fast-DetectGPT 0.05 0.6539
LogRank 0.02 0.6059
PHD 0.02 0.5611
Radar 0.01 0.6624
T5Sentinel 0.01 0.3732
Wild 0.13 0.5788

Llama-3

Binoculars 0.54 0.8739
Fast-DetectGPT 0.40 0.8146
LogRank 0.23 0.7281
PHD 0.08 0.6874
Radar 0.18 0.8910
T5Sentinel 0.06 0.4902
Wild 0.37 0.7462

Mistral

Binoculars 0.31 0.7781
Fast-DetectGPT 0.14 0.7139
LogRank 0.05 0.6167
PHD 0.03 0.6115
Radar 0.08 0.8602
T5Sentinel 0.02 0.3869
Wild 0.19 0.6562

Phi-3

Binoculars 0.36 0.7671
Fast-DetectGPT 0.20 0.6446
LogRank 0.09 0.6377
PHD 0.30 0.7130
Radar 0.36 0.9726
T5Sentinel 0.01 0.4116
Wild 0.45 0.8199

Table 12: Translation
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Task Prompt

Code You are a helpful code assistant that can teach a junior developer
how to code. Your language of choice is Python. Don’t explain
the code, just generate the code block itself.

Question Answering You are a helpful question answering assistant who will answer
a single question as completely as possible given the information
in the question. Do NOT use any markdown, bullet, or numbered
list formatting. The assistant will use ONLY paragraph formatting.
**Respond only in {language}**

Summarization You are a helpful summarization assistant that will summarize a
given article. Provide only the summarization in paragraph format-
ting. Do not introduce the summary. **Respond in {language}**

Dialogue You are a helpful dialogue generation assistant that will generate a
dialogue between people given a short paragraph describing the
people involved. Provide only the dialogue. Do not introduce the
dialogue. **Respond in {language}**

Abstract Writing You are a helpful abstract writing assistant. You will write an
abstract given the content of a paper. Do not provide any other
text. You will only provide an abstract.

Review Writing You are a helpful conference paper review assistant. Please provide
a detailed review of the following paper, including its strengths,
weaknesses, and suggestions for improvement.

Translation You are a helpful translation assistant that will translate a given
text into English. Provide only the translation and nothing else.

Rewriting You are a helpful writing assistant. Rewrite the following text to
improve clarity and professionalism. Do not provide any other
text. Only provide the rewritten text.

Table 13: The table shows the prompts used in the plain prompting. For GPT, these were used as system prompts,
and for huggingface models they were prepended to the questions.

4854



A.3 Results by Detector
This section shows the numerical value of each detector on each task. In the paper we display graphs
representing most of these values but show all of the numbers here for reference. The TPR@.01 and
AUROC change significantly across tasks for every detector signifying that these detectors are not equally
capable of detecting all types of machine generated text.

Code Reviews Abstract Translation ES Translation FR Translation ZH
TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC

Radar 0.0258 0.7042 0.3358 0.8928 0.1858 0.4647 0.1806 0.8528 0.1475 0.8565 0.3625 0.8307

Fast-DetectGPT 0.1508 0.8385 0.6475 0.8922 0.4608 0.8583 0.1782 0.6337 0.0817 0.6078 0.3333 0.7953

Wild 0.0608 0.5537 0.2425 0.9443 0.2517 0.7288 0.1759 0.7433 0.0875 0.5455 0.5358 0.9049

PHD 0.0625 0.4169 0.1758 0.8184 0.1467 0.4729 0.0556 0.5264 0.0075 0.6328 0.2283 0.7915

LogRank 0.0367 0.5451 0.4883 0.8884 0.1075 0.7549 0.0509 0.4446 0.0600 0.5900 0.1792 0.7820

T5Sentinel 0.0400 0.4621 0.0575 0.5519 0.0575 0.4580 0.0231 0.2582 0.0025 0.3473 0.0767 0.5286

Binoculars 0.3317 0.8930 0.7450 0.9364 0.4783 0.7969 0.1944 0.6989 0.1492 0.6754 0.5233 0.8807

Table 14: Detector performance (AUROC and TPR@0.01) across tasks.

QA EN QA ES QA FR QA ZH
TPR AUC TPR AUC TPR AUC TPR AUC

Radar 0.1225 0.7542 0.0100 0.4832 0.0525 0.5008 0.0400 0.3730

Fast-DetectGPT 0.5450 0.9063 0.4233 0.8522 0.6483 0.9390 0.5808 0.8864

Wild 0.1375 0.7437 0.0308 0.5019 0.0183 0.4660 0.0275 0.6180

PHD 0.0600 0.4694 0.0792 0.6228 0.0158 0.6371 0.0733 0.7138

LogRank 0.0725 0.7517 0.0725 0.6427 0.0200 0.7741 0.1308 0.8323

T5Sentinel 0.0558 0.6007 0.0075 0.4353 0.0025 0.4131 0.0175 0.6688

Binoculars 0.6950 0.9271 0.5292 0.8295 0.7250 0.9326 0.4908 0.8785

Table 15: Detector performance (AUROC and TPR@0.01) across multilingual QA tasks.

Summ EN Summ ES Summ FR Summ ZH
TPR AUC TPR AUC TPR AUC TPR AUC

Radar 0.0825 0.5721 0.0125 0.3839 0.0208 0.3966 0.2433 0.6940

Fast-DetectGPT 0.2175 0.8185 0.1408 0.6446 0.1058 0.6169 0.1950 0.6729

Wild 0.1250 0.7436 0.2683 0.6027 0.2350 0.5578 0.4392 0.8499

PHD 0.1292 0.5907 0.1417 0.6107 0.1617 0.5875 0.1933 0.6631

LogRank 0.7517 0.9705 0.4425 0.8902 0.4217 0.8754 0.4533 0.8317

T5Sentinel 0.1333 0.6275 0.0042 0.2728 0.0208 0.3219 0.0183 0.3828

Binoculars 0.3792 0.7916 0.2225 0.6866 0.1942 0.6482 0.1333 0.6935

Table 16: Detector performance (AUROC and TPR@0.01) across multilingual summarization tasks.
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Dialogue EN Dialogue ES Dialogue FR Dialogue ZH
TPR AUC TPR AUC TPR AUC TPR AUC

Radar 0.7175 0.9344 0.0583 0.6827 0.0417 0.5549 0.1317 0.6120

Fast-DetectGPT 0.7475 0.9508 0.4300 0.8847 0.6158 0.9098 0.4217 0.9011

Wild 0.0292 0.8720 0.0775 0.6266 0.1000 0.6035 0.0617 0.3290

PHD 0.0425 0.6224 0.1892 0.7168 0.1842 0.7401 0.3835 0.7962

LogRank 0.8583 0.9889 0.4250 0.8824 0.4283 0.8987 0.5208 0.8870

T5Sentinel 0.1708 0.6628 0.0467 0.6010 0.0508 0.4639 0.0217 0.3446

Binoculars 0.7767 0.9489 0.7700 0.9407 0.7125 0.9393 0.6467 0.9475

Table 17: Detector performance (AUROC and TPR@0.01) across multilingual dialogue tasks.
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