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Abstract

The advent of Music-Language Models has
greatly enhanced the automatic music gener-
ation capability of AI systems, but they are also
limited in their coverage of the musical gen-
res and cultures of the world. We present a
study of the datasets and research papers for
music generation and quantify the bias and
under-representation of genres. We find that
only 5.7% of the total hours of existing mu-
sic datasets come from non-Western genres,
which naturally leads to disparate performance
of the models across genres. We then investi-
gate the efficacy of Parameter-Efficient Fine-
Tuning (PEFT) techniques in mitigating this
bias. Our experiments with two popular mod-
els – MusicGen and Mustango, for two un-
derrepresented non-Western music traditions
– Hindustani Classical and Turkish Makam mu-
sic, highlight the promises as well as the non-
triviality of cross-genre adaptation of music
through small datasets, implying the need for
more equitable baseline music-language mod-
els that are designed for cross-cultural transfer
learning. The code for the paper is available at
our Github Repository and the model adapters
are available at Huggingface.

1 Introduction

Music, as a powerful expression of cultural iden-
tity, is deeply embedded in traditions (Swain, 1995;
Chung, 2006). Recent advancements in AI, pow-
ered by deep learning models (Schneider et al.,
2024; Copet et al., 2023; Tal et al., 2024), have
led to significant improvements in automatic mu-
sic generation technologies. This progress has led
to several music generation playgrounds such as
Jukebox (Radford et al., 2020), Suno1, and Udio2

offering users the ability to generate music accord-
ing to their specifications. However, these models
often reflect biases, particularly towards Western

1https://suno.com/
2https://www.udio.com/

musical traditions (Tao et al., 2024; Copet et al.,
2023), in their training data.

This lack of diversity in datasets, as outlined
by Copet et al. (2023); Melechovsky et al. (2024);
Radford et al. (2020), is also evident in the dis-
parate performance of the music generation models
across genres. More specifically, the models tend to
rely on Western tonal and rhythmic structures when
generating music for non-Western genres, such as
Indian or Middle Eastern music. The situation is
comparable to the lack of cultural and linguistic
diversity (Joshi et al., 2020; Bender and Friedman,
2018; Bender et al., 2021) in NLP research.

In order to quantify the severity of this prob-
lem in music generation research landscape, we
conduct a comprehensive analysis of existing mu-
sic datasets and music generation papers, which
reveals a stark disparity in the representation of
non-Western music. Particularly noteworthy is the
scarcity of non-Western music data, with merely
5.7% of the total hours of the available datasets.
This finding highlights the need for more diverse
musical datasets and methods to adapt state-of-the-
art models to low-resource genres.

However, it remains unclear whether cross-
genre music adaptation, similar to cross-lingual
adaptation, can be effectively achieved using
lightweight computational techniques such as
parameter-efficient fine-tuning (PEFT) (Houlsby
et al., 2019). In this paper, we explore this ques-
tion by adapting two open-source models, Music-
Gen (Copet et al., 2023) and Mustango (Mele-
chovsky et al., 2024) for two low-resource non-
Western genres - Hindustani Classical 3 music of
India and Makamat 4 music of the Middle East.

3Hindustani Classical music is a traditional system of
music that emphasizes melodic development based on ragas
(melodic frameworks) and talas (rhythmic cycles).

4Makam, in traditional Arabic music, is a melodic mode
system defining pitches, patterns, and improvisation, central
to Arabian art music, with 72 heptatonic scales
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Figure 1: The bottom left piechart shows the global distribution of genre. Each piechart in the map shows the
distribution of genres in different regions with the size of each piechart being proportional to their contribution to
the data corpus.

We hypothesize that explicit fine-tuning with a
small number of additional parameters (less than
1% of the pre-trained model) as adapters (Bapna
and Firat, 2019), will lead to a far better perfor-
mance for the under-represented music style. We
conduct a series of experiments comparing the
performance of baseline models and our adapter-
enhanced models on objective metrics. For human
evaluations, each model is tested using our novel
evaluation framework roughly based on Bloom’s
Taxonomy (Armstrong, 2010): Recall, Analysis,
and Creativity evaluate a model’s audio generation.
Recall reproduces trained entities, Analysis forms
new combinations of them, and Creativity blends
different entities across genres in novel, unseen
ways. Evaluations are conducted in a play-arena
style, ranking models based on their adherence to
the text prompt in terms of rhythm, instrument,
melody and creativity. Mustango shows improve-
ment when finetuned on Hindustani Classical mu-
sic by 8% and MusicGen shows improvement by
4% on Turkish Makam in ELO ratings from their
respective baselines.

Our results show that while PEFT techniques
are effective in improving the overall quality of
generated music for the under-represented genre
over the baseline models, not all models are adapt-
able to all genres. This implies that the various

design choices made in the architecture, and the
training datasets and recipes for the base model are
crucial determinants of the adaptability of a model
to certain musical genres.

The contributions of this paper are threefold:

1. We provide a detailed analysis of the cur-
rent state of musical datasets, highlighting the
under-representation of non-Western music.

2. We present the first application of parameter-
efficient training with adapters for cultural
adaptation of under-represented genres in mu-
sic generation models.

3. We introduce a novel arena-style evaluation
framework based on Bloom’s Taxonomy to
assess the text to music generation capabili-
ties of models using a play-arena style, rank-
ing models on on their adherence to the text
prompt on rhythm, instrument, melody and
creativity.

4. We demonstrate that while adapting base mod-
els to different genres is possible, it is a non-
trivial challenge.

The rest of the paper is organized as follows: In
Section 2, we discuss global disparities in music
representation, followed by Section 3, which de-
tails our approach to adapting genres. Section 4
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presents our evaluation methodology and the re-
sults obtained from our analysis. We conclude our
findings in Section 5.

2 The Disparity in Music Generation
Research

AI music generation has evolved rapidly with tech-
niques such as autoregressive (Agostinelli et al.,
2023; Copet et al., 2023; Ziv et al., 2024), diffusion-
based (Schneider et al., 2024; Huang et al., 2023;
Li et al., 2024) and GAN-based (Dong et al., 2018;
Li and Sung, 2021) producing high-quality mu-
sic. Some of the works include adapter-based
settings which proved effective for music edit-
ing and inpainting (Lin et al., 2024; Zhang et al.,
2024). Moreover, Lan et al. (2024) used adapters
for rhythm and chord conditioning. Tan et al.
(2020) showcased how visual emotions from im-
ages can be effectively translated into music using
deep learning techniques.

Drawing inspiration Joshi et al. (2020), which
systematically analyzes the under-representation
of languages spoken by the global majority, we
conduct a survey of the datasets and research papers
on music generation.

2.1 Data Collection

To get our initial pool of papers, we implemented
an efficient, automated data collection method.

We employed a multi-stage, keyword-based se-
lection method, leveraging the Scholarly pack-
age Cholewiak et al. (2021) to gather approxi-
mately 5000 papers. This included up to 1000
papers per query, using broad search terms such
as “music,” “music generation,” “non-Western mu-
sic,” “MIDI,” and “symbolic music.” We then re-
fined our selection by focusing on papers presented
at 10 major conferences including IJCAI, AAAI,
ICML, EURASIP, EUSIPCO, ISMIR, NeurIPS,
SMC, NIME and ICASSP, chosen based on their
popularity and prestige in the area of computational
processing of music, narrowing our pool to around
800 papers. Conferences such as ISMIR and NIME
specialize in music information retrieval and mu-
sical expression, frequently showcasing work re-
lated to generative AI. Additionally, conferences
like ICASSP, AAAI, and NeurIPS are known for
their focus on cutting-edge AI technologies, such
as GANs and transformers, which are crucial for
music generation.

2.1.1 Dataset Papers

To identify papers proposing datasets, we read
through the title and abstract of each paper. This
led to a set of 152 papers proposing new datasets
with a total of 1 million+ hours of music. These
datasets were manually annotated for the region
and genres covered, total hours of music data, and
whether the dataset is annotated with other details
(such as, instruments, genre, and style). Papers that
directly provided details of the distribution of data
points across genres and regions, were analyzed
with the already available statistics. Unfortunately,
several datasets did not offer substantial details nec-
essary for our study. If such a dataset had more
than 10,000 hours of audio data, we analyzed each
sound file’s metadata to collect genre and region
information. However, when the genre and region
were not explicitly mentioned in either the paper
or the metadata, we did not make any assumptions;
thus, 7.9% of the datasets totaling 5,772 hours
were excluded from our analysis.

2.2 Findings

Our findings are summarized in Figure 1. The
results reveal an almost complete omission of musi-
cal genres from non-Western countries, especially
those from the Global South. Approximately 94%
of the total hours in available datasets are dedicated
to music from the Western world, while only 5.7%
are devoted to South Asian, Middle Eastern, Ocea-
nian, Central Asian, Latin American, and African
music combined. This imbalance is likely to cause
poor-quality music generation for genres from the
Global South. For detailed analysis, please refer to
Appendix A.

3 Genre Adaptation: Data, Models and
Experiments

For our genre-adaptation experiments, we se-
lected two distinct non-Western genres — Hin-
dustani Classical (Jairazbhoy, 1971) and Turkish
Makam (Signell, 2008) — both significantly un-
derrepresented in music generation research and
datasets, and two open source models – Music-
Gen (Copet et al., 2023) and Mustango (Mele-
chovsky et al., 2024). We begin by describing the
dataset creation, followed by prompt generation,
the models, adapter architectures and finally, the
training process.
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3.1 Dataset Creation

Our study necessitated diverse corpus of non-
Western music with detailed metadata. The
Dunya (Porter et al., 2013) which is part of the
CompMusic project (Serra, 2014), emerged as the
ideal choice, offering an extensive collection of
over 1,300 hours of music across multiple non-
Western genres. This corpus includes Carnatic,
Hindustani, Turkish Makam, Beijing opera, and
Arab Andalusian music, providing a broad spec-
trum of cultural music. We focused specifically
on Hindustani Classical and Turkish Makam gen-
res as both genres possess complex culturally spe-
cific melodic and rhythmic structures different from
Western music & we had easier access to listeners
familiar with Indian and Turkish music. For Hin-
dustani Classical, we chose the MTG Saraga (Srini-
vasamurthy et al., 2021) annotated dataset which
is built on CompMusic offering 50 hours of au-
dio. For Turkish Makam, we use the Dunya dataset
API for accessing the metadata and audio samples
leading to 405 hours of audio.

To ensure consistency and manage computa-
tional resources effectively, we implemented sev-
eral pre-processing steps. We standardized the au-
dio sample length by truncating longer recordings
to 30 seconds. We utilized the accompanying meta-
data from the Dunya corpus without modification.
These descriptions, rich in genre-specific details,
served as valuable inputs for creating prompt tem-
plates. Finally, to accommodate the differing re-
quirements of our chosen models, we performed
audio resampling. Specifically, for MusicGen we
resampled the audio to a 32 kHz sampling rate and
for Mustango 16 kHz sampling rate.

The metadata from the dataset provides genre-
specific information for each audio clip, includ-
ing three key details critical to our study: melodic
line, rhythmic pattern, and instrumentation. For the
melodic line, we extracted the raga (a melodic
framework in Hindustani Classical music) and
Makam (a system of melodic modes in Turkish
music). For rhythmic patterns, we identified laya
(tempo) in Indian music and usul (a sequence of
rhythmic strokes) in Turkish music. Additionally,
we extracted the meta-data for the instruments (in-
cluding voice) played in each audio sample. Details
of the dataset can be found in Appendix F.

After pre-processing, we collected a total of
23.24 hours of audio for Hindustani Classical mu-
sic and 121.16 hours for Turkish Makam music.

Query Type Example

Recall Imagine a traditional ⋆ Makam perfor-
mance that brings together ▷ Clarinet, ▷
Darbuka, ▷ Kanun, ▷ Oud, ▷ Voice, ♯ Ak-
sak makam, and ♭ Hicaz usul, flowing ef-
fortlessly.

Analysis Imagine a traditional ⋆ Makam perfor-
mance that brings together ▷ Tanbur, ▷
Oud, ▷ Cello, with the flowing essence
of ♯ Aksak makam and ♭ Fahte usul, flow-
ing effortlessly.

Creativity Imagine a modern ⋆ Western Electronic
Dance Music (EDM) performance in-
fused with the soulful sound of ▷ Tanbur,
rich vocals blending with ♯ Acem makam
and ♭ Fahte usul.

Table 1: Recall, Analysis & Creativity Queries: Recall
uses known combinations, while Analysis introduces
novel combinations to test analytical capability and Cre-
ativity introduces cross-genre combinations. Refer to
Section 4. Genre:⋆, melodic line:♯, rhythmic pattern:♭,
and instrumentation:▷.

The dataset was then divided using an 80-20% split
for training and testing, allowing us to evaluate the
final model performance effectively. We ensured
that audio clips for training and testing come from
different songs to prevent distribution overlap in
train and test. This split resulted in 18.91 hours
of Hindustani Classical music and 97.23 hours of
Turkish Makam music for training, and the remain-
ing portions reserved for testing.

3.2 Prompt Generation
To create effective prompts for model training, we
created three distinct templates that describe each
musical piece based on sample metadata from the
selected genres.

For each audio sample, we randomly selected
one of the three templates and populated it with
relevant metadata attributes as shown in Table 1.
This process ensures that each prompt captures
the unique musical elements of the sample. By
maintaining this metadata-specific structure across
prompts, we help the model learn to identify and
respond to key attributes within each genre, en-
abling it to generate more accurate and culturally
informed outputs during training.

3.3 Models
We utilize two state-of-the-art models, Music-
Gen (Copet et al., 2023) and Mustango (Mele-
chovsky et al., 2024), to explore cross-genre adap-
tation. MusicGen is a transformer-based model,
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Design a captivating Makam 
composition where the mellow tones of 
Cello and Tanbur explore the depth of 
Hicaz makam, Yuruksemai usul, with a 
captivating resonance.

Frozen Parameters


Trainable Parameters


Design a captivating Makam composition where 
the mellow tones of Cello and Tanbur explore the 
depth of Hicaz makam, Yuruksemai usul, with a 
captivating resonance.
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Figure 2: Mustango & MusicGen settings for low-resource fine-tuning.

while Mustango integrates both diffusion and trans-
former architectures. We introduce adapters (Pfeif-
fer et al., 2020) that enable low-resource fine-
tuning. We also considered Moûsai (Schneider
et al., 2024) and MusicLM (Agostinelli et al.,
2023), but Moûsai and MusicLM lack open-source
training codes.

3.3.1 MusicGen

In MusicGen, we enhance the model with an ad-
ditional 2 million parameters by integrating Bot-
tleneck Residual Adapter after the transformer
decoder within the MusicGen architecture after
thorough experimentation with other placements.
The total parameter count of MusicGen is 2 bil-
lion, making the adapter only 0.1% of the total
size. The adapter, as shown in Figure 2, consists
of a linear layer that compresses the embedding to
a very small dimension, followed by a non-linear
activation and projection back to the original size.

MusicGen leverages the Encodec (Défossez
et al., 2023) framework, which compresses audio
into latent representations. These latent represen-
tations are processed through a transformer model,
which generates new music based on input prompts.
By placing adapters at the end of the decoder, we
achieve a lightweight adaptation mechanism that
enhances the model’s ability to generate music in
specific styles or regions, such as Hindustani Clas-
sical music and Makam, without modifying the
fundamental Encodec structure.

3.3.2 Mustango
In Mustango, we enhance the model with an addi-
tional 2 million parameters, which represents only
0.1% of the model’s total parameter count, by inte-
grating a Bottleneck Residual Adapter.

While Mustango supports chord and beat embed-
dings, we opted not to use them here due to the
distinct focus of Hindustani Classical and Turkish
Makam on melodic lines rather than harmonic pro-
gressions. Unlike Western classical music, these
genres feature complex, rhythms with accents often
within a single beat, making fixed beat and chord
embeddings difficult to apply.

The adaptation process in Mustango begins with
the FLAN-T5 (Chung et al., 2024) model, which
converts the input text into embeddings. These
embeddings are then incorporated into the UNet
architecture (Ronneberger et al., 2015) through a
cross-attention mechanism, aligning the text and
audio components. To refine this process, a Bot-
tleneck Residual Adapter with convolution layers
is incorporated into the up-sampling, middle, and
down-sampling blocks of the UNet, positioned im-
mediately after the cross-attention block at the end
of each stage (Figure 2). The adapters reduce chan-
nel dimensions by a factor of 8, using a kernel size
of 1 and GeLU activation after the down-projection
layers to introduce non-linearity. Various adapter
configurations and placements were explored to
preserve the musical structure while adapting stylis-
tic elements, with this setup yielding the best output
quality. This design facilitates cultural adaptation
while preserving computational efficiency.
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Objective Metrics

Hindustani Classical Music

Model FAD ↓ FD ↓ KLD ↓ PSNR ↑

MGB 40.05 75.76 6.53 16.23
MGF 40.04 72.65 6.12 16.18
MTB 6.36 45.31 2.73 16.78
MTF 5.18 22.03 1.26 17.70

Turkish Makam

Model FAD ↓ FD ↓ KLD ↓ PSNR ↑

MGB 39.65 57.29 7.35 14.60
MGF 39.68 56.71 7.21 14.46
MTB 8.65 75.21 6.01 16.60
MTF 2.57 20.56 4.81 16.17

Table 2: Objective Evaluation Metrics for Hindustani
Classical Music and Turkish Makam.

3.4 Training settings
For MusicGen fine-tuning, we used two RTX
A6000 GPUs over a period of around 10 hours.
The adapter block was fine-tuned, using the
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate of 5e-5 and a weight decay of
0.05 using MSE based Reconstruction Loss. The
training spanned 20 epochs, with a patience thresh-
old of 5 epochs for early stopping based on valida-
tion loss. We utilized a batch size of 4 and applied
gradient clipping with a maximum norm of 1.0.
The training data was split into 90% for training
and 10% for validation.

For Mustango model fine-tuning, we used one
RTX A6000 GPU over a period of 12 hours. The
adapter block was fine-tuned, using the AdamW op-
timizer with a learning rate of 4.5e-5 and a weight
decay of 0.01 using MSE based Reconstruction
Loss. The training spanned 25 epochs for both gen-
res, with a patience threshold of 5 epochs for early
stopping based on validation loss. The training
data was split into 80% for training and 20% for
validation.

4 Results

We evaluated four models, Mustango Baseline
(MTB), Mustangto Fine-tuned (MTF), MusicGen
Baseline (MGB), and MusicGen Finetuned (MGF),
on two genres using both objective metrics and
human evaluation, providing both objective and
subjective insights into model performance.

4.1 Automatic Metrics
We sample 400 audio samples from the test set to
form our test prompt corpus. For capturing the dis-

tance between generated audio and the test corpus
we compute Fréchet Audio Distance(FAD), Fréchet
Distance(FD) and Kullback-Leibler(KL) with Sig-
moid activation. We utilize the AudioLDM (Liu
et al., 2023) toolkit for implementation of FAD, FD,
and KL, with distributions computed using PANN-
CNN14 (Kong et al., 2020) as the backbone model
for extracting features for each audio sample.

Table 2 presents the performance metrics for
models trained on Hindustani Classical music.
Both finetuned versions of MusicGen and Mus-
tango demonstrate superior performance compared
to their baseline counterparts across all evaluated
metrics. Notably, Mustango exhibits significant
improvement after finetuning, whereas MusicGen
shows only marginal gains. This disparity sug-
gests that Mustango possesses a greater capacity
for dataset-specific adaptation.

Adapter finetuning for Mustango model better
incorporates domain-specific nuances of Hindus-
tani Classical music, resulting in generated outputs
that more closely align with the target style.

Table 2 additionally presents results for Turkish
Makam generation. The performance trends mirror
those observed in Hindustani Classical music. Mus-
tango demonstrates strong improvement with one
notable exception: the PSNR metric. For PSNR,
the baseline Mustango model performs better.

4.2 Human Evaluation

To complement our objective metrics, we designed
a rigorous human evaluation process, recognizing
the crucial role of human perception in assessing
music quality and authenticity. We begin by gen-
erating prompts for drawing audio inferences from
the models based on Bloom’s taxonomy criteria.
Then we present the outputs to human judges to
compare them in an arena setup (Chiang et al.,
2024; mrfakename et al., 2024).

We divided our process into two phases. In first
phase, two annotators independently judged a por-
tion of the same set of data points. This allowed
us to compute inter-annotator agreement, a crucial
measure of evaluation reliability. Disagreements
were systematically discussed and resolved, refin-
ing our evaluation criteria. In phase two, annotators
transitioned to single annotations per data point
continuing evaluation of the rest audios. Finally,
we compute ELO ratings of the models based on
second phase annotations.
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Figure 3: Inter Annotator Agreement metrics for Hindustani Classical & Turkish Makam.

4.2.1 Material
We introduce novel evaluation criteria based on
Bloom’s Taxonomy to assess a model’s understand-
ing of musical elements in text and their alignment
with the generated audio using arena-style evalua-
tion.

We evaluate the models under three conditions:
recall, analysis, and creativity, by manually gen-
erating 10 prompts in each category (Table 1).

• Recall: Tests the model’s ability to repro-
duce combinations of melody, instrument, and
rhythm from the fine-tuning data, testing ef-
fective memorization and recall.

• Analysis, We create novel combinations by
substituting melodies, rhythms, or instru-
ments, testing the model’s adaptability beyond
the training data.

• Creativity, We combine genres, blending
melodies, rhythms, and instruments across
styles to test the model’s integration of un-
derrepresented and over-represented genres.

For each case, we generate model responses from
all models, creating 120 total music samples.
Since Mustango generates 10-second inferences at
16kHz, we process MusicGen outputs by clipping
them to 10 seconds and downsampling to 16kHz to
ensure uniform evaluation conditions.

4.2.2 Method
We decided to go for a comparative evaluation of
pieces instead of absolute judgments of pieces in
isolation to control the subjectivity so that, the
shorter, lower-sampling-rate music clips, are more
effectively evaluated through comparison. For each
comparison, the user receives a reference prompt
and two anonymous audio samples (with the com-
parisons ordered randomly), followed by five com-
parative evaluation questions comparing the two

audio generations on each criterion: Overall Aes-
thetic(OA), Instrument Accuracy(Inst.), Rhythm
Capture(RC), Melody Capture(MC), and Creativ-
ity(CR) since we provide these entities in the
prompt and we are trying to assess the alignment
of the text to the audio generated. For each criteria,
we provide the annotator with 7 options: A ≫ B,
A > B, A = B, A < B, A ≪ B, None, and Not
Applicable (NA). Please refer to Appendix B for
questions.

In first phase, we conduct four types of com-
parisons: baseline vs. baseline, baseline vs. fine-
tuned (for both models), and fine-tuned vs. fine-
tuned. We request two avid listeners of each genre,
who are aware of the nuances but not themselves
professional musicians(demography details in Ap-
pendix I), to annotate these samples. The annota-
tion process begins by evaluating 36 comparisons
for each genre—9 generations from each model
per genre—compared across all models based on
the five evaluation criteria. After the completion
of first phase we compute the Inter-Annotator
Agreement(IAA), using distance and direction-
based kappa scores. The distance-based Kappa
quantifies the absolute differences in annotations by
both the annotators whereas direction-based Kappa
assesses consistency in preference order rather than
the extent of preference. Detailed kappa-score cal-
culation methods are provided in the Appendix E.

Figure 3 presents the kappa score and average
agreement for each criterion. In evaluating Hin-
dustani Classical and Turkish Makam music, these
metrics reveal distinct patterns across assessment
criteria. As we can see from the figure, OA scores
range from 0.40 to 0.67, while Inst. shows high
agreement, with scores up to 0.89 due to its objec-
tivity (Figure 3). MC achieves moderate agreement,
and RC scores are generally lower, particularly for
Hindustani Classical (0.19 and 0.21), likely due
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Figure 4: Scaled ELO ratings for each model in Hindustani Classical and Turkish Makam music. Categories
include OA: Overall Assessment, Inst.: Instrument Accuracy, MC: Melody Capture, RC: Rhythm Capture, and CR:
Creativity. Ratings are provided for all query types and individual query categories.

to the complexity of rhythmic patterns within the
short 10-second evaluation span. CR consistently
records the lowest scores, reflecting the subjective
nature of this criterion(For more genre-wise and
query-type-wise details refer to AppendixC). Af-
ter phase-I, we ask the annotators to discuss and
re-annotate music samples for Inst. and RC criteria
where disagreement is higher.

In the second phase, for Hindustani Classical,
we removed the MGB vs MGF comparison since
the trend made it clear that MGB is better with
agreement from both the annotators. For Turkish
Makam, we removed MTF vs MTB since MTB
proved to be better(see Figure 4). After filtering we
are left with 3 sets of comparisons, with 7 queries
for each model, across 3 query types leading to 63
more comparisons for each genre. The annotations
from both rounds are combined to compute each
model’s ELO rating.

4.2.3 ELO Ratings

After comparing the model outputs, we compute
ELO ratings (usually used to calculate the relative
skill levels of players in a two-player game) for
each model across all query types for each eval-

uation criterion. For each criterion, we consider
a single annotation as a single match between the
models. If the annotator marks it as NA, then we
omit it from the calculation, if A=B or None is
marked we consider it as a draw and A≫B, A>
is considered a win for A and vice-versa for the
remaining cases. The details of computing ELO
ratings are given in Appendix G.

The normalized ELO ratings are shown in Fig-
ure 4. For Hindustani Classical music, over all
queries, MTF outperforms all models. Interest-
ingly, MGB is better than MTF, but MGF is judged
least favourably, implying that while fine-tuning
significantly improves Mustango, MusicGen’s per-
formance regresses considerably. These trends hold
for all aspects (melody, rhythm, instrument) except
creativity. The trends are most prominent for Recall
queries, but also hold for Analysis queries, but com-
pletely reverses for creativity queries, where MTF
performs the worst while MTB performs the best.
Qualitative analysis of the generated pieces confirm
this finding and shows that there was a strong effect
of adaptation on Mustango which led to knowledge
attrition and resultant poor performance on creative
queries, which required the model to utilize previ-
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ous knowledge.
For Turkish Makam music, MTF regresses sig-

nificantly from MTB, for types of queries as well
as on all aspects. While MGF performs slightly
better than MGB on all queries for overall rating,
the trends are not consistent across different as-
pects, or different types of queries. In fact, for
Analysis queries, even MusicGen’s performance
significantly regresses for all aspects on finetuning.
Thus, we can conclude that the PEFT technique
explored here did not help boost the performance
of the models for Turkish Makam music.

5 Conclusion

In this paper, for the first time, we systematically
explored and established the skewed distribution of
musical genres from around the world in datasets
used for training Music-Language Models. Non-
Western musical traditions are severely underrerp-
resented which naturally leads to disparate perfor-
mance across genres in these models. We also
demonstrate that PEFT-based techniques vary in
effectiveness across different genres and models,
further aggravating the challenges of overcoming
the data scarcity problem.

As generative models continue to gain traction
in the field of music generation and are expected to
be used even more widely in the coming years, the
misrepresentation and under-representation of the
musical genres of the “global majority" poses a sig-
nificant threat to the inclusion of musical cultures
from around the world. The skewed distribution in
datasets, reflected in model outputs, can lead to sev-
eral issues, including cultural homogenization, re-
inforcement of Western culture dominance (Craw-
ford, 2016), misrepresentation of musical styles,
and most importantly, gradual decline leading to
the disappearance of many musical genres (Tan,
2021; Lund, 2019; Team, 2023). Therefore, it is
critically important to prioritize the creation of in-
clusive music datasets and models, with an empha-
sis on under-represented musical genres.

Limitations

Our work relies on adapter-based techniques for
cross-cultural adaptation but there is a need to
explore additional architectural configurations to
further optimize low-resource fine-tuning such as
LoRA (Hu et al., 2021) or Compacter (Davison,
2021) approaches.

Additionally, our approach only focused on a
few genres, and future work should aim to incor-
porate a broader range of musical styles. Our in-
vestigation involves only Hindustani classical and
Turkish Makam traditions, leaving other genres
from the Dunya dataset unexplored. This narrow
focus stems not from a lack of curiosity, but from
our limited cultural expertise - a constraint we ac-
knowledge upfront.

We also trained separate models for Hindustani
Classical and Turkish Makam music; combining
these into a single model could offer greater gener-
alization across genres.

Another limitation lies in the evaluation process.
Human evaluations were conducted on a limited
number of samples with a duration of 10 seconds,
and more genre-specific assessments are necessary.
We also believe that computing objective metrics
for underrepresented genres may obscure the full
picture because the backbone models used to com-
pute these metrics may not have been trained on
various underrepresented genres, resulting in an
erroneous portrayal of genres.
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Their Structure and Evolution. Wesleyan University
Press.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293, Online. Association for Computational
Linguistics.

Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang,
Wenwu Wang, and Mark D. Plumbley. 2020. Panns:
Large-scale pretrained audio neural networks for au-
dio pattern recognition. IEEE Transactions on Audio,
Speech, and Language Processing, 28:2880–2894.

Yun-Han Lan, Wen-Yi Hsiao, Hao-Chung Cheng, and
Yi-Hsuan Yang. 2024. Musicongen: Rhythm and
chord control for transformer-based text-to-music
generation. In Proceedings of the International So-
ciety for Music Information Retrieval Conference
(ISMIR).

Peike Patrick Li, Boyu Chen, Yao Yao, Yikai Wang,
Allen Wang, and Alex Wang. 2024. Jen-1: Text-
guided universal music generation with omnidirec-
tional diffusion models. In 2024 IEEE Conference on
Artificial Intelligence (CAI), pages 762–769. IEEE.

Shuyu Li and Yunsick Sung. 2021. Inco-gan: variable-
length music generation method based on incep-
tion model-based conditional gan. Mathematics,
9(4):387.

Liwei Lin, Gus Xia, Yixiao Zhang, and Junyan Jiang.
2024. Arrange, inpaint, and refine: Steerable long-
term music audio generation and editing via content-
based controls. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intel-
ligence, IJCAI-24, pages 7690–7698. International
Joint Conferences on Artificial Intelligence Organi-
zation. AI, Arts Creativity.

4578

https://doi.org/10.5281/zenodo.5764801
https://doi.org/10.5281/zenodo.5764801
https://doi.org/10.5281/zenodo.5764801
http://jmlr.org/papers/v25/23-0870.html
http://jmlr.org/papers/v25/23-0870.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/94b472a1842cd7c56dcb125fb2765fbd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/94b472a1842cd7c56dcb125fb2765fbd-Paper-Conference.pdf
https://www.nytimes.com/2016/06/26/opinion/sunday/artificial-intelligences-white-guy-problem.html
https://www.nytimes.com/2016/06/26/opinion/sunday/artificial-intelligences-white-guy-problem.html
https://api.semanticscholar.org/CorpusID:235356070
https://api.semanticscholar.org/CorpusID:235356070
https://openreview.net/forum?id=ivCd8z8zR2
https://openreview.net/forum?id=ivCd8z8zR2
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://api.semanticscholar.org/CorpusID:256662408
https://api.semanticscholar.org/CorpusID:256662408
https://books.google.ae/books?id=0A0wAQAAIAAJ
https://books.google.ae/books?id=0A0wAQAAIAAJ
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.1109/TASLP.2020.3030497
https://doi.org/10.1109/TASLP.2020.3030497
https://doi.org/10.1109/TASLP.2020.3030497
https://doi.org/10.24963/ijcai.2024/851
https://doi.org/10.24963/ijcai.2024/851
https://doi.org/10.24963/ijcai.2024/851


Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo
Liu, Danilo Mandic, Wenwu Wang, and Mark D
Plumbley. 2023. AudioLDM: Text-to-audio gener-
ation with latent diffusion models. Proceedings of
the International Conference on Machine Learning,
pages 21450–21474.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Holger Lund. 2019. Decolonizing pop music.

Jan Melechovsky, Zixun Guo, Deepanway Ghosal,
Navonil Majumder, Dorien Herremans, and Soujanya
Poria. 2024. Mustango: Toward controllable text-
to-music generation. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 8293–8316, Mexico City, Mexico. Association
for Computational Linguistics.

mrfakename, Vaibhav Srivastav, Clémentine Fourrier,
Lucain Pouget, Yoach Lacombe, main, and San-
chit Gandhi. 2024. Text to speech arena. https:
//huggingface.co/spaces/TTS-AGI/TTS-Arena.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
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A Research Landscape

Region Papers (count) Duration (hrs.)

European 66 6127.92

East Asian 71 2746.73
South Asian 1 88.78
Central Asian 0 57.01

American 72 921.84
Latin American 5 323.25

Oceania 3 41.99

African 0 27.50

Middle Eastern 5 37.86

Table 3: Distribution of Papers and Duration in hours
by Region.
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A.1 Genre Distribution Analysis
Genre-wise analysis we can observe in Table 4 and
that Pop music forms 200K+ hours of the corpus
while Folk music constitutes only 20K hours of
the corpus which is a 10 times between the two as
shown in Table 4. Pop, Rock, Classical and Elec-
tronic music genres each constitute more than 10%
of the total corpus and more than 100K hours in
the total corpus. As shown in Figure 1, Pop music
has the highest (19.3%) representation followed by
Rock (17.4%) and Classical (13.5%) genres. Coun-
try, hip-hop, blues and jazz have a moderate (more
than 5%) representation in the corpus. Folk and
experimental music contribute to only 2.1% of the
corpus. The other genres receive minimal atten-
tion(≤ 1%) which includes music for Children,
Indie-music, and region-specific genres.

A.2 Regional Distribution Analysis
In region-wise analysis, from analyzing the re-
search space we find that more than 6k hours of
music in the research belongs to European music
and only 28 hours of music belong to African mu-
sic as shown in Table 3. European, East Asian and
American music are well explored forming 84.5%
of the corpus. On the other hand, South Asian,
Middle Eastern, Central Asian and African music
each contribute less than 1% to the whole corpus
as depicted in Figure 1.

Genre Papers (count) Duration (hrs.)

Pop 24 206.89
Rock 7 186.67
Electronic 36 140.25

Classical 91 144.64
Country - 95.77
Hip-hop 3 64.35

Jazz 15 60.62
Blues - 64.01
Easy Listening 2 74.39

Folk 3 22.802
Experimental 26 11.310
Others 15 0.94

Table 4: Distribution of Hours and Papers by Genre.
Duration (Dur.) is represented as 103 hours.

B Annotation Details

We asked annotators to choose between two au-
dio samples, based on their preference, to select
which better represents the prompted culture in
both the inter-annotator agreement scenario and

human evaluation. For both inter-annotator agree-
ment and human evaluation, we relied on the same
set of questions outlined below.

• Overall, which piece do you like more?

• Which piece captures the instrument (if men-
tioned the prompt) better?

• Which piece captures the melodic line/scale
(if mentioned the prompt) better?

• Which piece captures the rhythm/tempo (if
mentioned the prompt) better?

• Which piece is more creative (ignore audio
quality while answering this question)?

C Evaluation of Inter Annotator
Agreement Results

The inter-annotator agreement (IAA) results, mea-
sured using Cohen’s Kappa, reveal interesting pat-
terns across genres, metrics, and query types.

In Table 5 Turkish Makam consistently showed
higher agreement (0.57-0.67) than Hindustani Clas-
sical (0.40-0.60), suggesting potentially clearer
structural elements. This trend is particularly pro-
nounced in Rhythm (RC) annotations, where Turk-
ish Makam exhibits substantially higher agreement
(0.58-0.76) compared to Hindustani Classical (0.19-
0.21).

Instrument identification (Inst.) showed high
agreement across both genres (0.57-0.89), with
Hindustani Classical scoring particularly well (0.89
for direction). Creativity (CR) exhibited the low-
est overall agreement (0.02-0.55), reflecting the
inherent subjectivity in assessing creativity.

Examining query types in Table 6 reveals that
Recall queries generally yielded higher agreement,
particularly in Turkish Makam (0.74-0.75). This
indicates strong consistency in factual recall tasks.
Analysis queries showed mixed results, with some
categories in Hindustani Classical even showing
negative agreement, pointing to potential confusion
or divergent interpretations in analytical tasks. In-
terestingly, Creativity queries showed perfect agree-
ment (1.0) in Melody for both genres, suggesting a
strong consensus in perceiving creative aspects of
melody.

D Evaluation of Human Evaluation
Results

The human evaluation results in Table 7 and Ta-
ble 8, measured using ELO ratings, also reveal in-
triguing patterns across genres, models, and query
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Inter Annotator Agreement (Kappa Score, ↑)

Hindustani Classical - All Queries

Metric Type OA Inst. MC RC CR

Direction 0.40 0.89 0.38 0.19 0.02
Distance 0.60 0.74 0.49 0.21 0.25

Turkish Makam - All Queries

Metric Type OA Inst. MC RC CR

Direction 0.57 0.61 0.38 0.58 0.39
Distance 0.67 0.57 0.44 0.76 0.55

Table 5: Inter Annotator Agreement for Hindustani Classical and Turkish Makam genres. The IAA is calculated
using both Direction and Distance-based metrics.

Inter Annotator Agreement (Kappa Score, ↑)

Hindustani Classical Music

Recall Queries

Metric Type OA Inst. MC RC CR

Direction 0.38 1 0.07 0.72 -0.04
Distance 0.48 0.63 0.33 0.39 0.32

Analysis Queries

Metric Type OA Inst. MC RC CR

Direction 0.43 1 0.48 -0.56 0.15
Distance 0.66 1 0.63 -0.11 0.33

Creativity Queries

Metric Type OA Inst. MC RC CR

Direction 0.38 0.65 1 0.48 -0.14
Distance 0.63 0.59 0.63 0.38 0.06

Turkish Makam

Recall Queries

Metric Type OA Inst. MC RC CR

Direction 0.74 1 0.38 0.65 0.74
Distance 0.75 0.79 0.63 0.84 0.75

Analysis Queries

Metric Type OA Inst. MC RC CR

Direction 0.48 0.38 -0.04 0.72 0.48
Distance 0.63 0.33 0.18 0.80 0.45

Creativity Queries

Metric Type OA Inst. MC RC CR

Direction 0.48 0.55 1 0.38 -0.04
Distance 0.63 0.68 0.51 0.63 0.45

Table 6: Inter Annotator Agreement (IAA) Metrics across Recall, Analysis, and Creativity Queries for Hindustani
Classical Music and Turkish Makam. Higher Kappa Scores (↑) indicate better agreement.

types. Comparing the two genres, we observe dis-
tinct performance profiles for each model. In Hin-
dustani Classical Music, the Mustango finetuned
model emerges as the clear leader (OA: 1577), out-
performing other models across most categories,
particularly excelling in Melodic Contour (MC:
1623). This suggests a strong grasp of the melodic
structures specific to Hindustani music. Conversely,
for Turkish Makam, the MusicGen finetuned model
takes the lead (OA: 1597), with both MusicGen and
Mustango baseline models also performing well.

The MusicGen Baseline shows remarkable con-
sistency across both genres, often scoring above
1500 in various categories. This suggests a ro-
bust general understanding of musical elements
that transcends genre boundaries. The Mustango
Baseline, while competitive, generally scores lower
than MusicGen Baseline, especially in Hindustani
Classical Music.

Finetuning yields mixed results across the two
models. For Mustango, it significantly improves
performance in Hindustani Classical but drastically
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Human Evaluation (ELO Ratings, ↑)

Hindustani Classical Music - All Queries

Model OA Inst. MC RC CR

MusicGen Baseline 1525 1520 1540 1552 1546
Mustango Baseline 1449 1466 1409 1470 1518
MusicGen Finetuned 1448 1454 1428 1439 1448
Mustango Finetuned 1577 1559 1623 1538 1487

Turkish Makam - All Queries

Model OA Inst. MC RC CR

MusicGen Baseline 1539 1562 1597 1622 1603
Mustango Baseline 1527 1531 1499 1523 1560
MusicGen Finetuned 1597 1529 1570 1570 1541
Mustango Finetuned 1337 1377 1334 1286 1297

Table 7: Overall Evaluation Metrics for Hindustani Classical Music and Turkish Makam. ELO ratings (human
evaluation) have higher values as better (↑).

Human Evaluation (ELO Ratings, ↑)

Hindustani Classical Music

Recall Queries

Model OA Inst. MC RC CR

MusicGen Baseline 1500 1508 1518 1523 1514
Mustango Baseline 1404 1393 1362 1404 1413
MusicGen Finetuned 1466 1440 1453 1425 1426
Mustango Finetuned 1630 1659 1668 1648 1648

Analysis Queries

Model OA Inst. MC RC CR

MusicGen Baseline 1536 1535 1556 1536 1505
Mustango Baseline 1467 1435 1412 1438 1480
MusicGen Finetuned 1426 1462 1411 1454 1452
Mustango Finetuned 1571 1566 1620 1572 1562

Creativity Queries

Model OA Inst. MC RC CR

MusicGen Baseline 1514 1508 1526 1555 1583
Mustango Baseline 1553 1600 1568 1561 1565
MusicGen Finetuned 1494 1478 1446 1456 1471
Mustango Finetuned 1439 1414 1460 1428 1381

Turkish Makam

Recall Queries

Model OA Inst. MC RC CR

MusicGen Baseline 1512 1529 1556 1577 1578
Mustango Baseline 1531 1512 1533 1539 1511
MusicGen Finetuned 1530 1542 1524 1549 1543
Mustango Finetuned 1428 1417 1387 1334 1368

Analysis Queries

Model OA Inst. MC RC CR

MusicGen Baseline 1540 1527 1561 1553 1525
Mustango Baseline 1564 1559 1566 1597 1607
MusicGen Finetuned 1461 1471 1425 1433 1469
Mustango Finetuned 1436 1442 1448 1469 1399

Creativity Queries

Model OA Inst. MC RC CR

MusicGen Baseline 1508 1528 1544 1579 1604
Mustango Baseline 1566 1576 1578 1573 1570
MusicGen Finetuned 1525 1528 1512 1507 1534
Mustango Finetuned 1402 1369 1366 1342 1291

Table 8: Model Evaluation Metrics across Recall, Analysis, and Creativity Queries for Hindustani Classical Music
and Turkish Makam. ELO ratings (human evaluation) have higher values as better (↑).
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reduces its effectiveness in Turkish Makam. Con-
versely, MusicGen’s finetuning slightly lowers its
performance in Hindustani Classical but enhances
it in Turkish Makam. This divergence underscores
the complexity of adapting models to specific mu-
sical traditions without losing generalizability.

Examining performance across query types re-
veals further insights. In Recall queries for Hin-
dustani Classical, Mustango finetuned significantly
outperforms other models (OA: 1630), particularly
in Melody (1668). For Turkish Makam, MusicGen
Baseline leads in Recall queries (OA: 1512), with
MusicGen finetuned close behind (OA: 1530). This
suggests that finetuning can enhance a model’s abil-
ity to accurately reproduce genre-specific musical
elements.

Creativity queries yield particularly interesting
results, with baseline models outperforming their
finetuned counterparts in both genres. In Hin-
dustani Classical, Mustango Baseline leads (OA:
1553), while in Turkish Makam, it shares the top
position with MusicGen Baseline (OA: 1508 and
1566 respectively). This suggests that finetuning,
while beneficial for recall and analysis, might con-
strain the model’s creative capabilities.

E Kappa Score Computation

A≫B A>B A=B A<B A≪B
A≫B 1 1 0.33 0 0
A>B 1 1 0.67 0.33 0
A=B 0.33 0.67 1 0.67 0.33
A<B 0 0.33 0.67 1 1
A≪B 0 0 0.33 1 1

Table 9: Matrix representation of distance-based agree-
ment score for Inter Annotator Agreement. Column
represents Annotator-1’s preference and Row represents
Annotator-2’s preference.

E.1 Distance-based Computation Matrix

The distance-based Kappa quantifies the abso-
lute differences in annotations by both the annota-
tors. Each option(except None & NA) is assigned
a value between 2 to -2 in order; A ≫ B, A >
B, A = B, A < B, A ≪ B. After assigning values
we calculate absolute distances between annotator
preferences while excluding all cases which are
annotated None or NA by annotators. The distance

values are clipped to a maximum of 3, with agree-
ment computed as follows :

pio =
3− d

3

Table 9 represents the annotator preferences and
the agreement score for each combination.

E.2 Direction-based Computation Matrix

A≫B A>B A=B A<B A≪B
A≫B 1 1 1 0 0
A>B 1 1 1 0 0
A=B 1 1 1 1 1
A<B 0 0 1 1 1
A≪B 0 0 1 1 1

Table 10: Matrix representation of direction-based
agreement score for Inter Annotator Agreement. Col-
umn represents Annotator-1’s preference and Row rep-
resents Annotator-2’s preference.

The direction-based Kappa assesses consis-
tency in preference order rather than the extent of
preference. A disagreement is defined as only when
the preference orders are reversed between the two
annotators (i.e., when one annotator chooses A<B
or A≪B and the other annotator chooses B<A or
B≪A) Agreement is calculated as follows :

pio = 1− d

Table 10 shows the agreement scores between
different annotations.

Observed agreement is averaged per criterion,
with expected agreement(pe) and Kappa(κ) calcu-
lated as follows:

κ =
1
n

∑n
i=1 p

i
o − pe

1− pe

F Dataset Details

For Hindustani Classical, the dataset includes five
instrument types—sarangi, harmonium, tabla, vio-
lin, and tanpura—along with voice. It comprises 41
ragas across two laya types: Madhya and Vilambit.

For Turkish Makam, the dataset features 15
makam-specific instruments, including the oud, tan-
bur, ney, davul, clarinet, kös, kudüm, yaylı tan-
bur, tef, kanun, zurna, bendir, darbuka, classical
kemençe, rebab, and çevgen. It encompasses 93
different makams and 63 distinct usuls.
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G ELO Ratings Computation

For phase I, the total number of evaluations are 36
by each annotator and we consider each annotation
as a single match. In Phase II, 63 additional annota-
tions are conducted making a total of 135 matches
for computing the ELO ratings. For every match
the new rating :

Ri = Ri +K ∗ (Si − Ei)

Ri: Player’s current Elo rating.
K: Weighting factor that determines how much a
single game affects the rating.
Si: Outcome of the game for the player: 1 for a
win, 0.5 for a draw, and 0 for a loss.

Ei =
1

(1 + 10
(Rj−Ri)

400 )
, Ej =

1

(1 + 10
(Ri−Rj)

400 )

Ri: Player- 1 current Elo rating.
Rj : Player- 2 current Elo rating.
Ei: Expected Elo rating of Player-1.

We use a K value of 15 for calculations due to
the limited number of matches; a higher K would
disproportionately weight each match and skew the
ELO ratings.

H Annotation Tool

We deployed LabelStudio, a versatile and user-
friendly annotation tool, on HuggingFace Spaces.
Figure 5 provides a visual representation of our
annotation tool interface, illustrating the layout and
features that our human evaluators used to assess
the generated music samples.

I Annotator Demographics

The annotators for our music generation task using
adapter models include three individuals from India
and one from Uzbekistan, all of whom are avid
music listeners with diverse cultural backgrounds
and a keen interest in music technology.
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Figure 5: Screenshots of Label Studio, annotation tool for Inter Annotator Agreement and ELO rating comparison
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