
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 4521–4535

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Rethinking Smoothness for Fast and Adaptable Entity Alignment
Decoding

Yuanyi Wang1, Han Li2, Haifeng Sun1 * , Lei Zhang2 *, Bo He1,
Wei Tang,3, Tianhao Yan4, Qi Qi1, Jingyu Wang1

1State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,
2China Unicom Network Communications Co., Ltd.,

3Huawei Translation Services Center, 4Jilin University

Abstract

Entity alignment (EA) is crucial for integrating
multi-source knowledge graphs (KGs), aim-
ing to identify equivalent entities across dif-
ferent graphs. However, most existing EA de-
coding methods rely on both entity and rela-
tion embeddings, limiting their generalizabil-
ity and efficiency, especially in GNN-based
models. To address these challenges, we pro-
pose Triple Feature Propagation (TFP), an
adaptable and fast EA decoding framework
that only utilizes entity embeddings. TFP re-
constructs KG representation by maximizing
the smoothness of entity embeddings. The
discretized smoothness-maximization process
yields the explicit Euler solution of TFP. We
also generalize multi-view matrices: entity-
to-entity, entity-to-relation, relation-to-entity,
and relation-to-triple, to capture structural
diversity. Extensive experiments on public
datasets demonstrate that TFP is fast and adapt-
able to various encoders, achieving compara-
ble results to state-of-the-art methods in under
6 seconds, and surpassing them in many cases.

1 Introduction

Knowledge Graphs (KGs) are pivotal in diverse
Natural Language Processing applications (Yu
and Yang, 2023; Wang et al., 2023; Chakrabarti,
2022), serving as crucial repositories of struc-
tured knowledge. However, their utility is often
hampered by incomplete coverage. To integrate
multi-source KGs, which often contain overlap-
ping facts and complementary information, Entity
Alignment (EA) seeks to identify equivalent enti-
ties in distinct KGs. This typically consists of an
encoding phase, where entity and relation embed-
dings are generated, and a decoding phase, crucial
for establishing alignments (as shown in Fig.1 (1))
(Ji et al., 2022).

*Corresponding authors: Haifeng Sun and Lei Zhang.
{wangyuanyi,hfsun,hebo,qiqi8266,wangjingyu}@bupt.edu.cn,
{han.li, zhangl83}@chinaunicom.cn,tangwei133@huawei.com

Entity Embedding

Entity Embedding

Alignment Results

Source Graph

Target Graph

Graph
Decoder

Graph
Encoder

Graph
Encoder

Figure 1: The architecture of existing EA methods that
involve the encoding and decoding phase.

Recent advancements in EA encoders fall into
two categories: translation-based models, such as
TransE (Bordes et al., 2013) and its variants (Chen
et al., 2017; Guo et al., 2019), and Graph Neural
Network (GNN)-based models, like GCN-Align
(Wang et al., 2018) and Dual-AMN (Mao et al.,
2021a). Translation-based models treat relation
embeddings as translation vectors between enti-
ties, while GNN-based models aggregate neigh-
boring embeddings to generate entity representa-
tions.

Despite progress in encoder design, research on
decoders remains limited (Zhu et al., 2024). De-
coders are either time-consuming or heavily de-
pendent on encoder outputs. DATTI (Mao et al.,
2022a) uses third-order tensor isomorphism to
leverage structural information for decoding, but
its effectiveness is constrained by the need for
explicit relation embeddings, which many GNN-
based encoders lack. While LightEA (Mao et al.,
2022b) offers an efficient decoding framework,
it remains computationally expensive in practice.
Other methods like CSLS (Lample et al., 2018)
and global alignment strategies, such as the Hun-
garian (Kuhn, 1955) or Sinkhorn (Cuturi, 2013) al-
gorithms, are fast and simple but fail to fully ex-
ploit the structural properties of KGs.

In this work, we propose Triple Feature Propa-
gation (TFP), a fast EA decoding method designed
to maximize the smoothness of entity embeddings.
TFP reconstructs KG representations using only
entity embeddings by minimizing Dirichlet energy

4521

(DE), which results in a propagation-based differ-
ential equation on the graph. Discretizing this
equation yields an explicit Euler solutiona sim-
ple, fast, and adaptable iterative algorithm. We
also generalize the traditional adjacency matrix
to multi-view matrices (entity-to-entity, entity-to-
relation, relation-to-entity, and relation-to-triple)
to capture the full structural diversity of KGs. TFP
leverages these multi-view matrices within its iter-
ative process instead of the traditional adjacency
matrix. We evaluate TFP across both translation-
and GNN-based encoders on public datasets. The
results show that TFP is fast, adaptable to vari-
ous encoders, and achieves results comparable to
state-of-the-art methods in under six seconds, sur-
passing them in many cases. Our contributions are
summarized as follows:

• We introduce TFP, a fast and adaptable decod-
ing method that reconstructs entity embed-
dings by maximizing smoothness, suitable
for various types of encoders.

• We provide a solid mathematical founda-
tion for TFP by discretizing the smoothness-
maximization differential equation, leading
to an explicit Euler solution.

• Extensive experiments show that TFP im-
proves upon existing EA methods, using only
entity embeddings with minimal computa-
tional cost, typically under 6 seconds.

2 Related Work

Entity Alignment Encoders. EA is predomi-
nantly viewed as a graph representation learning
endeavor, with encoders designed to intricately
model KG structures (Zeng et al., 2021a). En-
coders fall into two main categories: translation-
based, exemplified by TransE (Bordes et al., 2013)
and its variants (Chen et al., 2017; Guo et al.,
2019; Pei et al., 2019), which emphasize embed-
ding learning strategy; and GNN-based, which
leverage a variety of GNN architectures to pro-
duce entity embeddings. These include simple
GCNs (Wang et al., 2018), multi-hop and rela-
tional GCNs (Sun et al., 2020; Yu et al., 2020),
graph attention networks (Zhu et al., 2020; Mao
et al., 2021a; Sun et al., 2022), and self-supervised
GCNs (Li and Song, 2022). Innovations extend to
semi-supervised (Li and Song, 2022; Mao et al.,
2020a) and active learning approaches (Zeng et al.,
2021b; Liu et al., 2021; Berrendorf et al., 2021),

plus the integration of additional information like
entity attributes or temporal data (Sun et al., 2017;
Trisedya et al., 2019; Wu et al., 2019a; Xu et al.,
2021, 2022; Liu et al., 2023). Our TFP decod-
ing strategy aims to reconstruct entity representa-
tion by maximizing the smoothness. TFP, adapt-
able across graph encoder types, enhances these
encoders, including advanced models.
Entity Alignment Decoders traditionally aim at
pairing entities from different KGs using learned
embeddings. The greedy search algorithm (Ye
et al., 2019; Shi and Xiao, 2019), though widely
used, can produce multiple mappings for a sin-
gle entity, conflicting with EA’s one-to-one map-
ping principle. Alternative methods like Cross-
Domain Similarity Local Scaling (CSLS) (Lample
et al., 2018) and the deferred acceptance algorithm
(Roth, 2008) have sought to refine alignment accu-
racy. More recent efforts (Xu et al., 2020; Zhu
et al., 2021) employ global alignment strategies,
using algorithms such as the Hungarian (Kuhn,
1955) or Sinkhorn (Cuturi, 2013), yet often over-
look KGs’ distinctive structural properties. DATTI
(Mao et al., 2022a) advances decoding by utilizing
third-order tensor isomorphism to capture struc-
tural information but is limited by its requirement
for explicit relation embeddings, absent in many
GNN-based models. While LightEA (Mao et al.,
2022b) offers an adaptable decoding framework,
it remains computationally expensive in practice.
TFP distinguishes itself by focusing on entity em-
beddings, fundamental to all encoder types, and
establishes a fast and adaptable decoding solution
requiring less than 6 seconds, applicable across a
wide range of encoder architectures. 1

3 Preliminary

Definition 1. Knowledge Graph (KG) stores
the real-world knowledge in the form of G =
(E ,R, T), given a set of entities E as nodes, a
set of relations R as edges, and a set of triples
T = {(h, r, t), |h, t ∈ E , r ∈ R}, where h, t de-
note the head and tail entity, r denotes the relation.

Definition 2. Entity Alignment (EA) aims to dis-
cover a one-to-one mapping Φ = {(es, et), |, es ∈
Es, et ∈ Et, es ≡ et} between entities from a
source KG Gs = (Es,Rs, Ts) to a target KG
Gt = (Et,Rt, Tt), where with ≡ signifying an
equivalence relation between entities es and et.

1The code and processed dataset are available at https:
//github.com/wyy-code/TFP

4522

https://github.com/wyy-code/TFP
https://github.com/wyy-code/TFP

The Dirichlet energy is widely used as a reg-
ularization loss for functions defined on the em-
beddings of the graph (Rossi et al., 2022; Maskey
et al., 2024).To simplify the derivation, we con-
sider the simple undirected graph at first.

Definition 3. (Laplacian matrix.) The adja-
cency matrix is defined as A, the symmetrically
normalized adjacency is represented by Ã =

D− 1
2AD− 1

2 , and the symmetrically normalized
Laplacian matrix as ∆ = I− Ã.

Definition 4. (Dirichlet Energy (DE).) Given the
graph node embedding X ∈ RN×d, the Dirichlet
energy of X is defined as:

L (X) = tr(X⊤∆X)

=
1

2

N∑

i,j=1

ai,j ||
Xi√

Di,i + 1
− Xj√

Dj,j + 1
||22

(1)

The Dirichlet energy of node embedding X
measures how much the features change over the
nodes of G (Maskey et al., 2024). Intuitively,
it measures the disparity between the normalized
outflow of information from node j and the nor-
malized inflow of information to node i.

4 Theoretical Motivation

Our Triple Feature Propagation (TFP) seeks to
maximize smoothness by minimizing the Dirichlet
energy (DE). The Dirichlet energy is widely used
as a smoothness criterion for functions defined
on the nodes of the graph and thus promotes ho-
mophily. Functions minimizing the Dirichlet en-
ergy to maximize smoothness are called harmonic;
without boundary conditions, it is minimized by a
constant function (Rossi et al., 2022).

TFP primarily utilizes the symmetric Laplacian
matrix ∆, constructed from the undirected adja-
cency matrix to capture the entity-to-entity rela-
tionships. We initiate our study with gradient
flows within this matrix. Before decoding, the
encoder is trained to produce initial entity embed-
dings X(0).

X(0) = Encoder(G) ∈ R|E|×d (2)

4.1 Existence of the Solution
Given seed alignment entity features xs, our ob-
jective is to reconstruct the features xo of other en-
tities for maximizing smoothness by minimizing
the Dirichlet energy L (X). We designate the set

of seed alignment entities as Es ⊆ E , with the re-
maining entities denoted by Eo = E\Es. The enti-
ties are ordered such that:

X =

(
xs

xo

)
, ∆ =

(
∆ss ∆so

∆os ∆oo

)
(3)

We consider the associated gradient flow as
a differential equation with boundary condition
xs(t) = xs, which is expressed as:

dX(t)

dt
= −∇xL (X(t)) = −∆X(t) (4)

As the features of seed alignments are regarded as
stationary (Wang et al., 2024), we have the initial
and boundary conditions:

X(0) =

(
xs

xo(0)

)
, xs(t) = xs (5)

By integrating the above conditions, the solution
to this propagation equation provides the required
decoding process.

d

dt

(
xs(t)
xo(t)

)
= −

(
0 0

∆os ∆oo

)(
xs

xo(t)

)

=

(
0

−∆osxs −∆ooxo(t)

) (6)

As expected, the gradient flow of the aligned fea-
tures (xs) is 0, given that they do not change dur-
ing the propagation.

Given the positive semi-definite nature of the
graph Laplacian matrix, Dirichlet energy L is
convex, and its global minimizer is the solution to
the gradient equation ∇L (X(t)) = 0. The solu-
tion in equation (6) can be expressed as:

dxo(t)

dt
= −∆osxs −∆ooxo(t) = 0 (7)

Therefore, we present the following proposition:

Proposition 1. (Existence of the solution.) The
matrix ∆oo is non-singular, allowing the re-
construction of other entity features xo using
seed alignment entity features xs as xo(t) =
−∆−1

oo ∆osxs.

Proof. Please refer to Appendix A.

Remark. This special gradient flow in TFP is gen-
eralized to directed graphs, distinguishing it from
FP (Rossi et al., 2022) on undirected graphs.

4523

4.2 Explicit Euler Solution
Proposition 1 reveals the existence of the solution
to maximize the smoothness. However, solving
this system of linear equations is computationally
intensive, with a complexity of O(|Eo|3) for ma-
trix inversion, rendering it impractical for large
graphs. To tackle the computational challenges,
we discretize the equation (6) and adopt an itera-
tive approach for its resolution. By approximating
the temporal derivative as a forward difference and
discretizing time t with fixed steps (t = hk for
step size h > 0 and k = 1, 2, . . .), we employ the
implicit Euler scheme:

X(k+1) = X(k) + h
dX(t)

dt
X(k) (8)

Incorporating the initial and boundary conditions
(5), the explicit Euler scheme is defined as:

X(k+1) =

(
I 0

−h∆os I− h∆oo

)
X(k) (9)

When focusing on the special case of h = 1, we
can use the following observation to rewrite the
iteration formula to equation (11).

Ã = I−∆ =

(
I−∆ss −∆so

−∆os I−∆oo

)
(10)

X(k+1) =

(
I 0

Ãos Ãoo

)
X(k) (11)

This Euler scheme serves as a gradient descent for
the Dirichlet energy. The approximation of this
solution in this case is formalized as follows:

Proposition 2. (Approximation of the solution.)
With the reconstruction solution as delineated in
equation (11), and considering a sufficiently large
iteration count N , the entity features will approxi-
mate the results of feature propagation as follows:

X(N) ≈
(

xs

∆−1
oo Ãosxs

)
(12)

Proof. Please refer to Appendix B.

The update process in Equation (11) equates to
initially multiplying the entity features X by the
matrix Ã, followed by resetting the seed align-
ment features to their original values.

X(k+1) ← ÃX(k); x(k+1)
s ← x(k)

s (13)

Equation (13) defines an iterative strategy to
reconstruct entity features from aligned entities,

Algorithm 1: TFP

Input: The entity embedding X(0), the
triples T , iteration number K,
dimension dr, de.

Output: The reconstructed entity feature
Xout.

1 Initialize Ãproximal, Ãdistal, Ãintegral, and
Atri−rel through the triples T .;

2 for k = 1→ K do
3 X

(k)
r ← ÃdistalX

(k)
e ;

4 X
(k+1)
e ←
ÃintegralX

(k)
e + ÃproximalX

(k)
r ;

5 x
(k+1)
s ← x

(k)
s ;

6 end
7 Xr ← random_projection(X(K)

r , dr);
8 Xt ← Atri−relXr;
9 Generate Atriple

i through Xt.;

10 Xe ← random_projection(X(K)
e , de);

11 Xi ← Atriple
i Xe;

12 Xout ← [X1||X2|| . . . ||Xdr];
13 return Xout

forming the basic Triple Feature Propagation.
Since Ã only captures entity-to-entity relation-
ships, it is termed "basic." In the following section,
we generalize the adjacency matrix to multi-view
matrices to capture comprehensive structural infor-
mation, leading to the complete TFP.

5 Method

In this section, we present the complete TFP. First,
we generalize the traditional adjacency matrix to
multi-view matrices to capture the comprehensive
KG structure. These multi-view matrices are then
applied to Equation 13 to derive the complete TFP.
Fig.2 shows the framework and Algorithm 1 illus-
trates the details.

5.1 Generalized Multi-view Matrices

Equation (13) establishes the basic Triple Fea-
ture Propagation. However, KGs extend beyond
the realm of simple directed graphs represented
by an adjacency matrix A. KGs encompass a
richer structure, with triples T = {(h, r, t), |h, t ∈
E , r ∈ R}, highlighting entity-to-entity (h − t),
entity-to-relation (h−r), relation-to-entity (r−t),
and relation-to-triple (r − T). These perspectives
encapsulate key meta-structures in KGs:

4524

Graph
Encoder

Graph
Encoder

Target Graph

Source Graph

Entity Embedding

Entity Embedding

Alignment Loss

Searching
Alignment Results

Encoding ProcessKG

Generalized Adjacency Matrices

Entity-Entity

Entity-Relation

Relation-Entity

Relation-Triple

Decoding Process

Entity Embedding

Relation Embedding

Triple Embedding

Constructing the

Entity Final Representation:

Triple Feature Propagation

Figure 2: The illustration of Triple Feature Propagation.

(i) Entity-to-Relation: Beyond the conven-
tional adjacency matrix, the (h, r) pairs in triples
provide a unique structural perspective, indi-
cating directional links from head entity h to
relation r. This directionality is fundamen-
tal and unidirectional. For instance, in the
triple (London,CapitalOf,England), the en-
tity [England] is connected to [London] via the
relation [CapitalOf], but not in reverse. Sim-
ilar to the adjacency matrix A, we define an
entity to relation matrix Aproximal ∈ R|E|×|R|

based on the (h, r) pairs as:

∃e ∈ E : Aproximal
i,j = 1, (hi, rj , e) ∈ T

Aproximal
i,j = 0, (hi, rj , e) /∈ T

(14)

(ii) Relation-to-Entity. This category, akin to
entity to relation, encompasses directed and ir-
reversible information. It underscores the more
distant positional relationships between relations
and tail entities. The resulting structural matrix,
Adistal ∈ R|R|×|E|, is defined as:

∃e ∈ E : Adistal
i,j = 1, (e, ri, tj) ∈ T

Adistal
i,j = 0, (e, ri, tj) /∈ T

(15)

(iii) Entity-to-Entity. Representing the fun-
damental structural category, this is similar
to the adjacency matrix A. While A pro-
vides a solid foundation and is rich in spec-
tral properties, it is insufficient to fully repre-
sent KG structures. For example, the triples
(London,CapitalOf,England) are structurally
distinct with (London, LocateIn,England) in
KGs, yet a traditional adjacency matrix treats them

identically as they both represent London con-
nects English, representing Ai,j = 1. To bet-
ter represent relationships between entities, we ex-
tend the adjacency matrix to Aintegral ∈ R|E|×|E|:

∃r ∈ R : Aintegral
i,i = |Tei |

Aintegral
i,j = |T(hi,tj)|, (hi, r, tj) ∈ T

Aintegral
i,j = 0, (hi, r, tj) /∈ T

(16)
|Tei | denotes the number of triples involving entity
ei, and |T(hi,tj)| indicates the count of triples with
the pair (hi, tj).

(iv) Relation-to-Triple. As discussed before,
the knowledge in KG is stored in the triple T =
{(h, r, t), |h, t ∈ E , r ∈ R}, which is the core
representation of the KG structure. The unique
role of relation r within triple T motivates the ex-
tension of the adjacency matrix to the triple level
through relation r. We introduce the adjacency ma-
trix Atri−rel ∈ R|T |×|R|, defined as:

Atri−rel
i,j = 1, rj ∈ Ti

Atri−rel
i,j = 0, rj /∈ Ti

(17)

(v) Entity-to-Triple matrix is also considered.
This matrix is considered to represent entity-entity-
triple relationships for head (h) and tail (t) entities
connections in T . In fact, these connections are al-
ready encapsulated within the entity-to-entity ma-
trix Aintegral. This matrix, which details connec-
tions between head h and tail t entities, effectively
doubles as an entity-to-triple representation.

We assume that the normalized form of
Aproximal, Adistal, and Aintegral, which are sim-
ilar to graph Laplacian, representing different

4525

facets of KG structure, can be regarded as Ã in
equation (13). The experimental results confirm
our view. Consequently, the gradient flow should
yield comparable solutions across these matrices.
We denote their normalized form Ãk, where k =
{proximal, distal, integral}

Ãk
i =

Ak
i∑numberofcolumn

j=0 Ak
i,j

(18)

5.2 Triple Feature Propagation
Utilizing the gradient flow of Dirichlet energy on
these categories of KG structure, we derive a nat-
ural and straightforward generalized propagation
strategy. The propagation process is articulated
through the following equations:

X(k)
r = ÃdistalX(k)

e (19)

X(k+1)
e = ÃintegralX(k)

e + ÃproximalX(k)
r (20)

x(k+1)
s = x(k)

s (21)

Here, X(i)
e , 1 ≤ i ≤ k + 1, denotes the entity fea-

tures, initially derived from the graph encoder as
X

(0)
e . Xr represents the implicit relation features

generated through the propagation. To compre-
hensively capture the evolving entity and relation
information across iterations, we aggregate entity
features from each step through concatenation, re-
sulting in the entity feature as follows:

Xe = [X(0)||X(1)|| . . . ||X(k)] (22)

We notice that our process explicitly captures
the implicit relation feature Xr, serving as an es-
sential intermediary. By leveraging the triple-to-
relation matrix, we further refine Xr. We use
a hyper-sphere independent random projection to
reduce the dimension of Xr to dr, following the
method outlined in (Mao et al., 2022b). This step
enables the creation of the triple feature Xt.

Xr = ranp(Xr) ∈ R|R|×dr (23)

Xt = Atri−relXr (24)

Our method enables the representation of the KG
structure as a three-dimensional tensor Atriple ∈
R|E|×|E|×dr , rather than the traditional adjacency
matrix. The tensor is defined as:

Atriple
h,t = Xt(h, r, t), (h, t) ∈ T

Atriple
h,t = 0, (h, t) /∈ T

(25)

Here, Xt(h, r, t) represents the feature of triple
(h, r, t) in Xt. The KG structure is encapsulated
in dr slices as Atriple

1 , . . . ,Atriple
dr

∈ R|E|×|E|. Par-
allel to the relation feature, the entity feature Xe is
also scaled through hyper-sphere independent ran-
dom projection to de dimension. The propagation
process is based on the final entity features Xe, al-
lowing for the continuation of gradient flow from
the triple perspective. Since each Atriple

i repre-
sents a segmented view of the overall Atriple, their
concatenation is essential to compile the compre-
hensive final feature.

Xe = ranp(Xe) ∈ R|R|×de ,

Xi = Atriple
i Xe, i = 1, . . . , dr

(26)

Xout = [X1||X2|| . . . ||Xdr] (27)

The Xout is the reconstructed entity embedding,
which is the TFP output and is used to search align-
ment results.
Remark: To search alignment results, we adopt
an approach from (Mao et al., 2022a,b) that frames
the search as an assignment problem. Detailed pro-
cedures are described in Appendix C.

6 Experiments

All experiments are conducted on a PC with an
NVIDIA RTX A6000 GPU and an Intel Xeon
Gold 6248R CPU.

6.1 Experimental Settings

6.1.1 Datasets
We utilize two widely recognized datasets to
test our decoding approach: (1) DBP15K (Sun
et al., 2017) comprises three cross-lingual subsets
from multilingual DBpedia. Each subset contains
15,000 entity pairs. (2) SRPRS (Guo et al., 2019).
Similar to DBP15K in terms of the number of en-
tity pairs but with fewer triples. Following (Wang
et al., 2018; Chen et al., 2017), we use a 30/70 split
of pre-aligned entity pairs for training and testing
encoders. The dataset statistics are reported in Ap-
pendix D.

6.1.2 Baseline
(1) Encoder: Our evaluation includes promi-
nent encoders, divided into GNN-based: MRAEA
(Mao et al., 2020a), RREA (Mao et al., 2020b),
Dual-AMN (Mao et al., 2021a) (with Dual-AMN
as the structural SOTA), and translation-based:
AlignE (Sun et al., 2018), RSN (Guo et al., 2019),

4526

Table 1: Main experimental results on DBP15K and SRPRS datasets. All results and initial embeddings were
derived using official code with default hyperparameters. The Hungarian algorithm (Hun) produces only one
aligned pair per entity, thus only Hits@1 is reported. DATTI cannot decode RREA, as both entity and relation
embeddings are required, whereas RREA provides only entity embeddings.

Datasets DBPFR−EN DBPJA−EN DBPZH−EN SRPRSFR−EN SRPRSDE−EN

Model H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

G
N

N
-b

as
ed

RREA 73.40 94.80 81.36 70.59 94.13 79.11 70.73 93.21 78.97 42.96 73.96 53.41 56.74 81.24 65.18
+Hun 80.42 - - 78.44 - - 78.69 - - 45.68 - - 58.96 - -

+ Sinkhorn 80.77 96.45 86.76 78.72 95.70 84.90 78.98 94.98 84.84 46.81 75.06 56.21 60.05 81.97 67.70
+LightEA 84.53 97.71 89.45 80.74 96.59 86.20 80.90 95.20 85.92 49.18 76.53 58.32 60.89 82.03 68.32

+TFP 80.79 96.98 86.79 78.83 96.00 85.23 79.43 95.45 85.35 47.23 75.60 56.67 59.98 82.33 67.80

DualAMN 83.43 96.19 88.14 80.31 94.69 85.57 80.39 93.68 85.29 48.28 75.51 57.34 61.20 81.91 68.30
+Hun 83.87 - - 80.39 - - 80.12 - - 48.32 - - 61.15 - -

+ Sinkhorn 84.02 95.86 88.58 80.32 93.69 85.22 80.06 92.88 84.77 48.19 73.40 56.41 61.24 80.36 67.81
+DATTI 87.30 97.90 91.30 83.60 96.90 88.40 83.50 95.30 88.00 49.50 76.00 58.30 62.30 82.20 69.10

+LightEA 84.45 95.35 89.10 82.47 93.91 86.81 81.86 92.74 86.67 48.61 76.50 57.93 61.38 83.32 68.86
+TFP 85.31 97.26 89.92 81.26 95.85 86.82 81.64 95.24 86.84 48.90 76.28 58.02 61.84 82.61 69.01

Tr
an

sl
at

io
n-

ba
se

d

RSN 63.17 86.37 71.33 59.13 81.50 67.03 60.67 82.86 68.53 35.10 63.78 44.73 51.07 74.43 59.02
+Hun 69.25 - - 63.33 - - 66.08 - - 37.42 - - 53.79 - -

+ Sinkhorn 69.23 88.47 76.03 63.73 83.59 70.73 65.98 84.76 72.67 37.50 64.91 46.58 53.70 75.07 61.18
+DATTI 72.00 91.80 79.00 68.60 89.50 75.90 72.10 90.30 78.50 40.70 69.40 50.20 55.90 78.20 63.70

+LightEA 74.50 94.80 81.99 71.00 93.20 78.89 71.82 91.96 79.08 43.61 74.30 53.89 58.00 82.06 66.37
+TFP 77.79 92.45 83.73 73.53 91.97 80.04 75.44 91.71 81.33 44.32 73.22 53.97 59.27 81.14 66.84

TransEdge 76.90 93.97 83.03 74.66 92.93 81.10 76.19 92.16 81.81 40.81 67.66 49.73 55.65 75.30 64.28
+Hun 79.55 - - 77.06 - - 78.72 - - 42.65 - - 57.41 - -

+ Sinkhorn 79.32 95.37 85.17 76.94 94.18 83.20 78.50 93.42 83.87 43.78 68.31 51.66 57.30 75.67 65.15
+DATTI 81.80 96.50 87.30 80.40 95.70 86.10 81.40 94.70 86.30 44.10 70.70 52.10 59.30 78.20 67.30

+LightEA 80.68 96.56 87.30 78.20 95.17 85.16 78.98 94.61 85.06 49.37 75.10 56.30 64.80 82.10 71.24
+TFP 82.36 96.90 87.91 80.52 95.96 86.19 81.53 95.21 86.50 49.03 75.22 56.49 64.12 81.70 70.95

Table 2: Main results of execution time (s). TFP(C)
and TFP(G) represent CPU and GPU execution, respec-
tively. "Encoding" refers to the time spent on encoding,
with all models run on the GPU except for TFP(C).

Dataset Encoder Time Hun DATTI LightEA TFP(C) TFP(G)

D
B

P1
5K

RSN 3659 13.4 8.6 12.8 14.2 4.8
TransEdge 1625 8.0 6.1 12.5 12.9 4.7

RREA 323 12.3 6.0 13.1 16.3 5.7
DualAMN 177 12.2 6.6 13.4 17.7 5.1

SR
PR

S RSN 1279 12.7 5.4 12.3 9.2 3.7
TransEdge 1625 12.5 4.7 12.1 12.9 4.7

RREA 276 13.1 4.3 11.2 11.0 3.8
DualAMN 163 13.3 4.1 11.3 11.4 4.6

and TransEdge (Sun et al., 2019) (with TransEdge
as the premier in its class).
(2) Decoder: For decoding baselines, we bench-
mark against the Hungarian algorithm (Kuhn,
1955), which is the prominent solution in previous
work (Xu et al., 2020), and the SOTA of EA de-
coder, DATTI (Mao et al., 2022a). The LightEA
(Mao et al., 2022b) and plain Sinkhorn (Cuturi,
2013) are also applied as decoders.
Remark: The hyperparameter and implementa-
tion details are provided in Appendix E.

6.2 Main Results

The main experimental results and time costs are
summarized in Tables 1 and 2. TFP consistently

demonstrates fast execution, adaptability to var-
ious encoders, and performance comparable to
state-of-the-art methods with minimal time con-
sumption. It strikes the elegant balance between
accuracy and efficiency.

6.2.1 GNN-based Encoders

As shown in Tables 1 and 2, TFP consumes the
least additional timefar less than LightEA and
DATTIand generally secures the runner-up posi-
tion, which consistently improves the accuracy of
RREA and DualAMN across datasets, with a time
cost under 6 seconds. While LightEA decodes
RREA effectively and DATTI excels at decoding
Dual-AMN (the state-of-the-art GNN-based struc-
tural EA decoder), DATTI’s reliance on both en-
tity and relation embeddings limits its suitability
for RREA and LightEA is too time-consuming.
In contrast, TFP delivers comparable results to
LightEA and DATTI while being the fastest for
both RREA and DualAMN. LightEA performs
better than TFP on RREA due to its label gen-
eralization and propagation strategy, which pro-
vides more comprehensive topology information
in high-dimensional hyper-spheres but at a high
computational cost. DATTI achieves the best per-
formance on DualAMN since it guarantees the

4527

isomorphic property, which is lacking in TFP,
LightEA, and DualAMN.

6.2.2 Translation-based Encoders
TFP significantly enhances the performance of
translation-based EA encoders by capturing multi-
view structural information, achieves the best re-
sults, and maximizes smoothness. Although both
DATTI and LightEA primarily focus on structure,
DATTI considers only the isomorphic graph struc-
ture (Mao et al., 2022a), while the latter overlooks
the stationary property (Wang et al., 2024)specifi-
cally, the gradient flow of aligned entity pairs be-
ing equal to 0. Additionally, DATTI and LightEA
both ignore the smoothness issue of entity embed-
dings. With less than 5 seconds of execution time,
TFP achieves superior decoding performance with
minimal computational cost, highlighting its abil-
ity to efficiently capture KG topology.

6.2.3 Time Complexity
TFP employs iterative sparse-to-dense matrix mul-
tiplications. Following (Mao et al., 2022b), we
optimize these multiplications in Eqs. (19) and
(20) to maintain computational complexity at
O(k(|T |dr + |E|de)). For Eqs. (24) and (26),
Tensorflow’s sparse matrix multiplications reduce
complexity to O(|T |dr) and O(|E|de).
6.2.4 Time Cost
Table 7 provides a detailed comparison of time
costs for encoding and decoding phases on
DBP15K and SRPRS datasets. Notably, TFP’s
cost is minimal in the overall runtime, with most
time spent on encoder training. On a GPU, TFP
runs in as little as 5.9 seconds, and even on a CPU,
it peaks at just 17.7 seconds, rivaling the fastest de-
coders like the GPU-based Hungarian algorithm.
LightEA utilizes label generalization and a prop-
agation strategy to provide more comprehensive
topology information in high-dimensional hyper-
spheres, resulting in better performance on RREA
at the expense of higher time costs. DATTI con-
sumes significant time due to the use of singu-
lar value decomposition (SVD). For the Sinkhorn
algorithm and the Hungarian algorithm, both in-
volve matrix-based optimization, where the com-
putational burden increases significantly with the
matrix size, leading to high time costs for large
problems.

Besides these results, we further evaluate TFP
in other settings. Due to the space limitation, these
experiments are detailed in Appendix F.

Figure 3: Hyper-parameter experiments of TFP decod-
ing the DualAMN on DBP15K.

6.3 Hyper-parameter Analysis

We conduct extensive experiments to examine the
sensitivity of TFP’s hyper-parameters during en-
tity embedding decoding. Due to space limitation,
Figure 3 only presents the results for TFP decod-
ing DualAMN on DBP15K.

6.3.1 Propagation Round
Figure 3 illustrates the performance across differ-
ent propagation rounds K. Similar to increas-
ing network depth, more rounds can cause over-
smoothing. TFP achieves optimal performance at
K = 2 and declines thereafter. This suggests
that while multi-view matrices effectively capture
KG structure, they have distinct spectral properties
compared to the adjacency matrix. The basic TFP
with only the adjacency matrix can still ensure con-
vergence, as demonstrated in Proposition 2.

6.3.2 Entity Dimension
To accelerate computation, we apply hyper-sphere
independent random projection to reduce entity di-
mensions to de. As shown in Figure 3, TFP re-
mains robust to changes in these dimensions, with
performance barely affected by significant dimen-
sional reductions.

6.3.3 Relation Dimension
Similar to entity dimensions, random projection
is used to reduce relation dimensions. However,
dr should not be too large since, as indicated by
Eq. (24), the tensor-matrix product leads to a

4528

Table 3: Performances of unsupervised textual decoding.

Datasets DBPFR−EN DBPJA−EN DBPZH−EN SRPRSFR−EN SRPRSDE−EN

Models H@1 MRR Time/s H@1 MRR Time/s H@1 MRR Time/s H@1 MRR Time/s H@1 MRR Time/s

GM-Align (Xu et al., 2019) 89.4 - 26328 73.9 - 26328 67.9 - 26328 57.4 60.2 13032 68.1 71.0 13032
RDGCN (Wu et al., 2019a) 87.3 90.1 6711 76.3 76.3 6711 69.7 75.0 6711 67.2 71.0 886 77.9 82.0 886
HGCN (Wu et al., 2019b) 76.6 81.0 11275 89.2 91.0 11275 72.0 76.0 11275 67.0 71.0 2504 76.3 80.1 2504
SEU (Mao et al., 2021b) 98.8 99.2 17.0 95.6 96.9 16.2 90.0 92.4 16.2 98.2 98.6 9.6 98.3 98.7 9.8

LightEA (Mao et al., 2022b) 99.5 99.6 15.7 98.1 98.7 14.8 95.2 96.4 15.2 98.6 98.9 11.2 98.8 99.1 11.4

TFP(SEU) 99.05 99.4 4.9 96.21 97.19 4.7 90.51 92.63 5.1 98.55 98.95 3.7 98.57 98.95 3.8
TFP(LightEA) 99.21 99.65 5.1 97.94 98.7 4.9 94.34 95.62 5.4 98.6 99.03 3.9 98.6 99 3.8

TFP 99.33 99.68 4.8 96.68 97.54 4.7 91.54 93.59 4.9 98.99 99.28 3.6 98.87 99.15 3.6

squared increase in dimension after each propaga-
tion round.

Additional hyper-parameter results are detailed
in Appendix G due to space limitations.

6.4 Unsupervised Textual Decoding

Most EA research focuses on structural methods,
but some (Xu et al., 2019; Wu et al., 2019b) use
textual information, such as entity names, for im-
provement via cross-lingual embeddings or trans-
lation systems. These methods treat pre-trained
word embeddings as initial embeddings for enti-
ties, which can be viewed as the decoding process
that captures the topology of KGs. Similarly, TFP
can serve this role, decoding initial entity features
like word embeddings without seed alignments.

We used pre-trained GLoVe embeddings (Pen-
nington et al., 2014) as initial features for TFP,
treating it as an unsupervised textual decoder. Ta-
ble 3 shows TFP outperforming baselines on SR-
PRS with minimal time cost and ranking near the
top on DBP15K. The competitive results of TFP
suggest propagation may be more effective than
neural networks, questioning the need for complex
models and seed alignments. However, TFP(SEU)
and TFP(LightEA), which use SEU and LightEA
as encoders, slightly underperform compared to
TFP, likely due to over-smoothing. Despite this,
TFP achieves top performance on SRPRS, while
the extra required time is less than 4 seconds.

7 Conclusion

This paper introduces a fast and adaptable entity
alignment decoding algorithm that maximizes the
smoothness of entity embeddings, supported by
a solid theoretical foundation. Extensive experi-
ments on public datasets show that our method sig-
nificantly enhances performance on most EA mod-
els, with running time of under six seconds.

Acknowledgments

This work was supported in part by the Na-
tional Natural Science Foundation of China un-
der Grants (62201072, 62401080, 62471055,
62321001, U23B2001, 62171057), the Min-
istry of Education and China Mobile Joint Fund
(MCM20200202, MCM20180101), the Funda-
mental Research Funds for the Central Universi-
ties (2024PTB-004).

Limitations

While TFP has shown speed, adaptability, and ro-
bustness across various public datasets, several
limitations remain:

• Although TFP achieves competitive results
with state-of-the-art methods with signifi-
cantly reduced runtime, some gaps in accu-
racy still exist on certain datasets. Future
work will focus on improving the balance be-
tween performance and efficiency.

• TFP theoretically offers significant potential
for all kinds of EA encoders. However, due to
limited resources, all experiments were con-
ducted only in a single modality setting. We
plan to adapt it to multi-modal EA in the fu-
ture, where we just need to use the multi-
modal EA encoder to generate our multi-
modal entity embedding.

Ethics Statement

This work does not involve discrimination, social
bias, or private data. All datasets used are open-
source, derived from publicly available KGs such
as Wikidata, YAGO, and DBpedia, ensuring com-
pliance with the ACL Ethics Policy. Additionally,
while the introduction of literal features may raise
concerns about misuse of user-generated content,
TFP mitigates this risk by relying solely on struc-
tural information.

4529

References
Max Berrendorf, Evgeniy Faerman, and Volker Tresp.

2021. Active learning for entity alignment. In
Advances in Information Retrieval: 43rd European
Conference on IR Research, ECIR 2021, Virtual
Event, March 28–April 1, 2021, Proceedings, Part
I 43, pages 48–62. Springer.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Soumen Chakrabarti. 2022. Deep knowledge graph
representation learning for completion, alignment,
and question answering. In Proceedings of the 45th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
3451–3454.

Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo
Zaniolo. 2017. Multilingual knowledge graph em-
beddings for cross-lingual knowledge alignment. In
Proceedings of the 26th International Joint Confer-
ence on Artificial Intelligence, pages 1511–1517.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. Advances in neu-
ral information processing systems, 26.

Lingbing Guo, Zequn Sun, and Wei Hu. 2019. Learn-
ing to exploit long-term relational dependencies in
knowledge graphs. In International conference on
machine learning, pages 2505–2514. PMLR.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Mart-
tinen, and Philip S. Yu. 2022. A survey on knowl-
edge graphs: Representation, acquisition, and appli-
cations. IEEE Trans. Neural Networks Learn. Syst.,
33(2):494–514.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Jia Li and Dandan Song. 2022. Uncertainty-aware
pseudo label refinery for entity alignment. In Pro-
ceedings of the ACM Web Conference 2022, pages
829–837.

Bing Liu, Harrisen Scells, Guido Zuccon, Wen Hua,
and Genghong Zhao. 2021. Activeea: Active learn-
ing for neural entity alignment. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3364–3374.

Xiaoze Liu, Junyang Wu, Tianyi Li, Lu Chen, and Yun-
jun Gao. 2023. Unsupervised entity alignment for
temporal knowledge graphs. In Proceedings of the
ACM Web Conference 2023, pages 2528–2538.

Xin Mao, Wenting Wang, Yuanbin Wu, and Man Lan.
2021a. Boosting the speed of entity alignment 10×:
Dual attention matching network with normalized
hard sample mining. In Proceedings of the Web Con-
ference 2021, pages 821–832.

Xin Mao, Wenting Wang, Huimin Xu, Man Lan, and
Yuanbin Wu. 2020a. Mraea: an efficient and robust
entity alignment approach for cross-lingual knowl-
edge graph. In Proceedings of the 13th International
Conference on Web Search and Data Mining, pages
420–428.

Xin Mao, Wenting Wang, Huimin Xu, Yuanbin Wu,
and Man Lan. 2020b. Relational reflection entity
alignment. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge
Management, pages 1095–1104.

Xinnian Mao, Meirong Ma, Hao Yuan, Jianchao Zhu,
Zongyu Wang, Rui Xie, Wei Wu, and Man Lan.
2022a. An effective and efficient entity alignment
decoding algorithm via third-order tensor isomor-
phism. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5888–5898.

Xinnian Mao, Wenting Wang, Yuanbin Wu, and Man
Lan. 2021b. From alignment to assignment: Frus-
tratingly simple unsupervised entity alignment. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
2843–2853.

Xinnian Mao, Wenting Wang, Yuanbin Wu, and Man
Lan. 2022b. Lightea: A scalable, robust, and inter-
pretable entity alignment framework via three-view
label propagation. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 825–838.

Sohir Maskey, Raffaele Paolino, Aras Bacho, and
Gitta Kutyniok. 2023. A fractional graph lapla-
cian approach to oversmoothing. arXiv preprint
arXiv:2305.13084.

Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta
Kutyniok. 2024. A fractional graph laplacian ap-
proach to oversmoothing. Advances in Neural In-
formation Processing Systems, 36.

Shichao Pei, Lu Yu, Robert Hoehndorf, and Xiangliang
Zhang. 2019. Semi-supervised entity alignment via
knowledge graph embedding with awareness of de-
gree difference. In The world wide web conference,
pages 3130–3136.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Emanuele Rossi, Henry Kenlay, Maria I Gorinova,
Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. 2022. On the unreasonable

4530

effectiveness of feature propagation in learning on
graphs with missing node features. In Learning on
Graphs Conference, pages 11–1. PMLR.

Alvin E Roth. 2008. Deferred acceptance algorithms:
History, theory, practice, and open questions. inter-
national Journal of game Theory, 36:537–569.

Xiaofei Shi and Yanghua Xiao. 2019. Modeling multi-
mapping relations for precise cross-lingual entity
alignment. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 813–822.

Zequn Sun, Wei Hu, and Chengkai Li. 2017.
Cross-lingual entity alignment via joint attribute-
preserving embedding. In The Semantic Web–ISWC
2017: 16th International Semantic Web Conference,
Vienna, Austria, October 21–25, 2017, Proceedings,
Part I 16, pages 628–644. Springer.

Zequn Sun, Wei Hu, Chengming Wang, Yuxin Wang,
and Yuzhong Qu. 2022. Revisiting embedding-
based entity alignment: a robust and adaptive
method. IEEE Transactions on Knowledge and
Data Engineering.

Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong
Qu. 2018. Bootstrapping entity alignment with
knowledge graph embedding. In IJCAI, volume 18.

Zequn Sun, Jiacheng Huang, Wei Hu, Muhao Chen,
Lingbing Guo, and Yuzhong Qu. 2019. Transedge:
Translating relation-contextualized embeddings for
knowledge graphs. In The Semantic Web–ISWC
2019: 18th International Semantic Web Conference,
Auckland, New Zealand, October 26–30, 2019, Pro-
ceedings, Part I 18, pages 612–629. Springer.

Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen,
Jian Dai, Wei Zhang, and Yuzhong Qu. 2020.
Knowledge graph alignment network with gated
multi-hop neighborhood aggregation. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 34, pages 222–229.

Bayu Distiawan Trisedya, Jianzhong Qi, and Rui
Zhang. 2019. Entity alignment between knowledge
graphs using attribute embeddings. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 33, pages 297–304.

Jihu Wang, Yuliang Shi, Han Yu, Xinjun Wang, Zhong-
min Yan, and Fanyu Kong. 2023. Mixed-curvature
manifolds interaction learning for knowledge graph-
aware recommendation. In Proceedings of the 46th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
372–382.

Yuanyi Wang, Haifeng Sun, Jiabo Wang, Jingyu Wang,
Wei Tang, Qi Qi, Shaoling Sun, and Jianxin Liao.
2024. Towards semantic consistency: Dirichlet
energy driven robust multi-modal entity alignment.
arXiv preprint arXiv:2401.17859.

Zhichun Wang, Qingsong Lv, Xiaohan Lan, and
Yu Zhang. 2018. Cross-lingual knowledge graph
alignment via graph convolutional networks. In Pro-
ceedings of the 2018 conference on empirical meth-
ods in natural language processing, pages 349–357.

Y Wu, X Liu, Y Feng, Z Wang, R Yan, and D Zhao.
2019a. Relation-aware entity alignment for hetero-
geneous knowledge graphs. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence. International Joint Conferences
on Artificial Intelligence.

Y Wu, X Liu, Y Feng, Z Wang, and D Zhao.
2019b. Jointly learning entity and relation repre-
sentations for entity alignment. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 240–249. Association for
Computational Linguistics.

Chengjin Xu, Fenglong Su, and Jens Lehmann. 2021.
Time-aware graph neural network for entity align-
ment between temporal knowledge graphs. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8999–
9010.

Chengjin Xu, Fenglong Su, Bo Xiong, and Jens
Lehmann. 2022. Time-aware entity alignment using
temporal relational attention. In Proceedings of the
ACM Web Conference 2022, pages 788–797.

Kun Xu, Linfeng Song, Yansong Feng, Yan Song, and
Dong Yu. 2020. Coordinated reasoning for cross-
lingual knowledge graph alignment. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 9354–9361.

Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan
Song, Zhiguo Wang, and Dong Yu. 2019. Cross-
lingual knowledge graph alignment via graph match-
ing neural network. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3156–3161.

Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and
Mingzhong Wang. 2019. A vectorized relational
graph convolutional network for multi-relational net-
work alignment. In IJCAI, pages 4135–4141.

Donghan Yu and Yiming Yang. 2023. Retrieval-
enhanced generative model for large-scale knowl-
edge graph completion. In Proceedings of the 46th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
2334–2338.

Donghan Yu, Yiming Yang, Ruohong Zhang, and
Yuexin Wu. 2020. Generalized multi-relational
graph convolution network. arXiv, page 07331.

Kaisheng Zeng, Chengjiang Li, Lei Hou, Juanzi Li, and
Ling Feng. 2021a. A comprehensive survey of entity
alignment for knowledge graphs. AI Open, 2:1–13.

4531

Weixin Zeng, Xiang Zhao, Jiuyang Tang, and
Changjun Fan. 2021b. Reinforced active entity
alignment. In Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge
Management, pages 2477–2486.

Beibei Zhu, Ruolin Wang, Junyi Wang, Fei Shao, and
Kerun Wang. 2024. A survey: knowledge graph en-
tity alignment research based on graph embedding.
Artificial Intelligence Review, 57(9):1–58.

Qi Zhu, Hao Wei, Bunyamin Sisman, Da Zheng, Chris-
tos Faloutsos, Xin Luna Dong, and Jiawei Han.
2020. Collective multi-type entity alignment be-
tween knowledge graphs. In Proceedings of The
Web Conference 2020, pages 2241–2252.

Renbo Zhu, Meng Ma, and Ping Wang. 2021. Raga:
relation-aware graph attention networks for global
entity alignment. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 501–
513. Springer.

A Proof of Proposition 1

Proof. Initially, consider an undirected connected
graph scenario where ∆oo is a sub-matrix of the
Laplacian matrix ∆. Given that sub-Laplacian ma-
trices of undirected connected graphs are invert-
ible (Rossi et al., 2022), thus ∆oo is non-singular.
The spectral properties of eigenvalues in undi-
rected graphs suggest similar non-singularity for
directed graphs (Maskey et al., 2023).

For general cases, assume an ordered represen-
tation of the adjacency matrix for a disconnected
graph as:

A = diag(A1, . . . ,Ar) (28)

Here, Ai, i = 1, . . . , r, represents each connected
component. The gradient flow in equation (7) is
applicable to each connected component indepen-
dently for disconnected graphs.

B Proof of Proposition 2

Proof. Commencing with the initial entity fea-
tures X(0) generated by EA encoders and applying
equation (11), we iterate:
(
x
(k)
s

x
(k)
o

)
=

(
I 0

Ãos Ãoo

)(
x
(k−1)
s

x
(k−1)
o

)

=

(
x
(k−1)
s

Ãosx
(k−1)
s + Ãoox

(k−1)
o

) (29)

Given the stationary nature of the seed alignment
entity features xs, we have the equation x

(k)
s =

x
(k−1)
s = xs. The focus then shifts to the conver-

gence of xo::

x(k)
o = Ãosxs + Ãoox

(k−1)
o (30)

Expanding and analyzing the limit for the station-
ary state, we find:

lim
k→∞

x(k)
o

= Ãosxs + lim
k→∞

k∑

i=2

Ãi−1
oo Ãosxs + lim

k→∞
Ãk

oox
(0)
o

= lim
k→∞

Ãk
oox

(0)
o + lim

k→∞

k∑

i=1

Ãi−1
oo Ãosxs

(31)
Spectral graph theory provides critical insights
into the properties of the Laplacian matrix ∆. It
establishes that the eigenvalues of ∆ are confined
within the range [0,2). This spectral characteristic
has direct implications for the matrix Ã = I−∆,
whose eigenvalues are consequently within the
range (-1,1]. A pivotal aspect of this discussion, as
elucidated in Proposition 1, is the non-singularity
of ∆oo. The absence of 0 as an eigenvalue of ∆oo

implies that Ã’s eigenvalues strictly occupy the
interval (-1,1), thereby excluding the endpoints.
This spectral behavior significantly influences the
convergence properties of the iterative process.
Specifically, the limit lim

k→∞
Ãn

oox
(0)
o approaches

0. Furthermore, the summation lim
k→∞

∑k
i=1 Ã

i−1
oo

converges to (I − Ãoo)
−1 = ∆−1

oo . By integrat-
ing these insights, the long-term behavior of the
iterative solution can be articulated as:

lim
k→∞

x(k)
o = ∆−1

oo Ãosxs (32)

Therefore, when the number of iterations N is suf-
ficiently large, the entity features in x

(N)
o approxi-

mate ∆−1
oo Ãosxs.

C Searching Alignment Results

To identify alignment results, rather than use the
popular distance metric of Cross-domain Similar-
ity Local Scaling (CSLS) (Lample et al., 2018) to
search the alignments in most works, we follow
(Mao et al., 2022a) and (Mao et al., 2022b) to for-
malize the entity alignment problem as an assign-
ment problem to enforce the one-to-one alignment
constraint. Before giving the mathematical defi-
nition, it assumes |Es| = |Et| = nt to simplify

4532

Table 4: Statistics of the DBP15K and SRPRS datasets,
highlighting SRPRS as sparse KGs typical of real-
world scenarios.

Datasets Entity Relation Triple

DBPZH−EN
Chinese 19388 1701 70414
English 19572 1323 95142

DBPJA−EN
Japaense 19814 1299 77214
English 19780 1153 93484

DBPFR−EN
French 19661 903 105998
English 19993 1208 115722

SRPRSFR−EN
French 15000 177 33532
English 15000 221 36508

SRPRSDE−EN
German 15000 120 37377
English 15000 222 38363

the process. In addition, it uses SIM ∈ Rnt×nt

to represent the cosine similarity matrix and com-
pute it between testing entities in two KGs with
the entity embeddings. Thus, we attempt to solve
the following optimization problem:

arg max
P∈Pnt

⟨P, SIM⟩ (33)

where Pnt is a set of permutation matrices with
shape of Rnt×nt

. Actually, we can directly ob-
tain the optimal solution P ⋆ by Sinkhorn opera-
tion(Cuturi, 2013).

P ⋆ = lim
τ→0+

Sinkhorn(
SIM

τ
) (34)

where the operation of Sinkhorn is as follows:

Sinkhorn(X) = lim
k→+∞

Sk(X)

Sk(X) = Nc(Nr(S
k−1(X)))

(35)

where S0(X) = exp(X), Nr(X) = X ⊘
(X1nt1⊤nt) and Nc(X) = X ⊘ (1nt1⊤ntX) are the
row and column-wise normalization operators of a
matrix, ⊘ denotes the element-wise division, 1nt

is a column vector of ones. Though we can only
obtain an approximate solution with a small k in
practice, we empirically found that the approxi-
mate solution is enough to obtain a good align-
ment performance. Considering that the assump-
tion of nt = |Es| = |Et| is easily violated, a
naive reduction is to pad the similarity matrix with
zeros such that its shape becomes Rnt×nt

where
nt = max(nt

1, n
t
2).

D Dataset

DBP15K (Sun et al., 2017) comprises three cross-
lingual subsets from multilingual DBpedia. Each

subset contains 15,000 entity pairs. SRPRS (Guo
et al., 2019). Similar to DBP15K in terms of the
number of entity pairs but with fewer triples. Table
4 lists the statistics of the DBP15K and SRPRS
datasets. We also test TFP on DWY (Sun et al.,
2019) dataset with more entities, which is listed in
Table 6.

E Experiment Details

E.1 Evaluation Metrics

Following most previous works (Ji et al., 2022;
Zeng et al., 2021a; Mao et al., 2022b, 2020a; Wang
et al., 2024), our evaluation employs cosine simi-
larity for EA and H@k and MRR metrics for a
thorough evaluation.

H@k measures the proportion of correctly
aligned entities ranked within the top k positions:

H@k =
1

|St|

|St|∑

i=1

I[ranki ≤ k] (36)

where ranki is the ranking of the first accurate
alignment for query entity i, I indicates correct-
ness (I = 1 if ranki ≤ k, else 0), and St is the
set of test alignments. MRR evaluates the average
of reciprocal ranks of the first correct answer for
queries, reflecting the model’s precision across a
set of queries:

MRR =
1

|St|

|St|∑

i=1

1

ranki
(37)

E.2 Implementaion Hyperparameters

The output dimensions d and other hyper-
parameters of all encoders adhere to their original
settings in their papers: Dual-AMN (d = 768),
RREA(d = 600), MRAEA (d = 600), AlignE
(d = 75), RSN (d = 256), and TransEdge
(d = 75). The iteration k is set to their best re-
sults, which details described in Section 6.3. Other
hyper-parameters remain the same for all datasets
and methods: relation scale dimension dr = 512,
entity scale dimension de = 16.

F Decoding on other Encoders

Table 5 and Table 7 show the TFP decoding on the
AlignE and MRAEA. TFP achieves performance
comparable to SOTA with minimal time con-
sumption. Among the evaluated encoders, Dual-
AMN demonstrates superior performance across

4533

Table 5: Supplementary for decoding on MRAEA and AlignE. DATTI cannot decode MRAEA and RREA, as both
entity and relation embeddings are required, whereas these encoders provide only entity embeddings.

Datasets DBPFR−EN DBPJA−EN DBPZH−EN SRPRSFR−EN SRPRSDE−EN

Model H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

G
N

N

MRAEA 71.63 94.28 80.02 68.70 93.19 77.66 68.70 92.94 77.43 43.44 75.10 53.85 56.18 51.47 64.87
+Hun 80.33 - - 76.54 - - 78.04 - - 45.29 - - 58.70 - -

+ Sinkhorn 78.00 96.10 84.72 75.91 95.03 82.98 76.29 94.51 83.04 46.11 75.39 55.80 59.29 82.17 67.03
+LightEA 74.88 95.85 82.50 71.52 94.32 79.98 71.81 93.51 79.70 44.28 75.14 54.64 57.94 82.61 66.40

+TFP 75.45 95.87 83.04 74.26 94.98 82.08 74.40 94.54 81.82 46.06 75.55 55.89 58.83 81.89 66.78

Tr
an

sl
at

io
n

AlignE 53.36 86.55 64.93 50.12 83.91 61.58 50.96 82.30 61.70 34.33 65.44 44.68 44.07 69.43 52.70
+Hun 64.16 - - 58.41 - - 60.37 - - 37.24 - - 50.15 - -

+ Sinkhorn 63.29 90.01 72.73 58.93 87.81 68.84 60.37 86.09 96.33 38.22 68.21 48.16 51.28 74.38 59.37
+DATTI 58.55 85.96 68.01 55.62 82.80 64.80 57.50 82.70 66.15 39.15 69.12 49.19 53.55 75.59 61.29

+LightEA 69.82 93.53 78.21 66.40 92.02 75.53 66.30 90.12 74.75 42.00 72.90 52.30 55.74 80.57 64.43
+TFP 68.45 91.96 76.81 64.59 90.77 73.76 66.98 89.78 74.89 42.11 71.80 51.98 55.44 78.61 63.48

Figure 4: Hyper-parameter experiments of TFP decoding the DualAMN on DBP15K.

all datasets, underscoring the efficacy of GNN en-
coders. Interestingly, TransEdge shows notable
success on the DBP15K dataset but underperforms
on SRPRS. This can be attributed to TransEdge’s
reliance on existing edge semantic information for

entity dependency capture, a feature less prevalent
in the sparser KGs like SRPRS. Conversely, GNN-
based models exhibit robustly, highlighting their
aptitude for handling sparse topologies.

Table 7 provides the complete time cost. A

4534

Table 6: Experimental results on DWY dataset.

Datasets
DWYDBP−WD DWYDBP−Y G

Entity Relation Triple Entity Relation Triple

DBP 100K 302 428952 100K 330 463294
Other 100K 31 502563 100K 220 448774

Models H@1 H@10 MRR H@1 H@10 MRR

MTransE 23.8 50.7 33 22.7 41.4 29
GCN-Align 49.4 75.6 59 59.8 82.9 68

RSNs 60.7 79.3 67.3 68.9 87.8 75.6
BootEA 69.2 89.0 76.1 73.3 85.9 79.5

TransEdge 72.3 92.4 79.6 79.2 93.6 83.2

MRAEA 74.2 93.5 82.3 82.2 96.0 87.3
+TFP 77 95.2 83.7 85.0 97.5 89.6

Dual-AMN 83.0 96.4 88.1 88.4 98.0 92.0
+TFP 89.5 98 92.7 92 98.9 94.6

Table 7: Complete main results of execution time (s).

Dataset DBP15K

Model
Translation-based GNN-based

AlignE RSN TransEdge MRAEA RREA DualAMN

Encoding 2087 3659 1625 1743 323 177
Hun 12.2 13.4 8.0 12.4 12.3 12.2

DATTI 6.4 8.6 6.1 6.2 6.0 6.6
LightEA 12.5 12.8 12.5 12.8 13.1 13.4

TFP(CPU) 13.9 14.2 12.9 16.6 16.3 17.7
TFP(GPU) 4.8 4.8 4.7 5.9 5.7 5.1

Dataset SRPRS

Encoding 1190 1279 1625 558 276 163
Hun 13.5 12.7 12.5 13.8 13.1 13.3

DATTI 4.4 5.4 4.7 4.1 4.3 4.1
LightEA 10.4 12.3 12.1 10.7 11.2 11.3

TFP(CPU) 8.1 9.2 12.9 10.6 11.0 11.4
TFP(GPU) 4.2 3.7 4.7 4.6 3.8 4.6

Figure 5: Execution time (seconds) on DBP15K across
propagation iterations number k.

comparative observation reveals that TFP’s appli-
cation is expedited on translation-based encoders
relative to GNN-based ones. This acceleration
is attributable to the varying entity embedding di-
mensions discussed in Section E.2. The output di-
mension for GNN-based encoders, particularly for
MRAEA and Dual-AMN, is set at d = 600 and
d = 768, respectively, which is larger than that of
the translation-based encoders. This discrepancy
in dimensionality directly influences the time effi-
ciency of TFP, as demonstrated by the faster per-

formance on translation-based models.

G Hyper-parameters

Figure 4 presents the full performance results for
varying propagation rounds K and dimensions de
and dr. Figure 5 provides the execution time
(in seconds) on DBP15K for different values of
k (number of propagation iterations). All experi-
ments were conducted using DualAMN for encod-
ing.

4535

