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Abstract
The next token prediction loss is the dominant
self-supervised training objective for large lan-
guage models and has achieved promising re-
sults in a variety of downstream tasks. How-
ever, upon closer investigation of this objec-
tive, we find that it lacks an understanding of
sequence-level signals, leading to a mismatch
between training and inference processes. To
bridge this gap, we introduce a contrastive pref-
erence optimization (CPO) procedure that can
inject sequence-level information into the lan-
guage model at any training stage without ex-
pensive human labeled data. Our experiments
show that the proposed objective surpasses the
next token prediction in terms of win rate in the
instruction-following and text generation tasks.

1 Introduction

Next token prediction is now the predominant way
for pre-training and supervised fine-tuning (SFT)
of large language models (LLM). This loss function
can be easily scaled up to train models with trillions
of parameters and tokens, and it has demonstrated
the ability to generate coherent and contextually rel-
evant text. Let P be the unknown target language
distribution and let Q be the distribution of our
model at hand. The goal of next token prediction
is to minimize the forward-KL divergence between
P and Q. This training process only supervises
the prediction of one token at a time, given the full
context of the ground truth. On the other hand, dur-
ing inference, the model needs to generate a whole
sequence (for a given prompt) relying on its own
prior predictions. This mismatch between the train-
ing and inference stage is known as exposure-bias
in the literature of RNN and sequence-to-sequence
model (Bengio et al., 2015; Ranzato et al., 2015).

In other words, next token prediction injects only
token-level information into the model, but miss-
ing sequence-level signal. The latter requires a
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generation of a longer horizon, which often relies
on reinforcement learning algorithms; for exam-
ple, reinforcement learning with human feedback
(RLHF) (Ouyang et al., 2022); and is computation-
ally expensive. In this work, we ask the following
question: Can we introduce sequence-level infor-
mation in LLM pre-training / SFT with a small
computational cost?

We answer the question affirmatively with
our proposed CONTRASTIVE PREFERENCE

OPTIMIZATION (CPO) method. The goal of CPO
is to improve generation quality. Unlike RLHF,
the proposed CPO method does not require hu-
man preference information as the training signal.
While we demonstrate CPO in the SFT case, the
loss can be seemlessly applied to the late stage of
pretraining as well.

2 Related work

LLMs trained with next token prediction loss (Rad-
ford et al., 2019; Chung et al., 2022; Sanh et al.,
2021; Zhou et al., 2023) have demonstrated many
fascinating capabilities, including the ability to per-
form zero-shot or few-shot tasks (Radford et al.,
2019; Brown et al., 2020) and the ability to reason
(Wei et al., 2022).

Several works have investigated the shortcom-
ings of MLE and exposure bias. Arora et al. (2022)
measured the accumulation of errors in language
generation due to exposure bias. Schmidt (2019)
connected exposure bias to generalization. Wang
and Sennrich (2020) studied how exposure bias
leads to hallucination in neural machine translation.
To mitigate exposure bias, there exists a long line
of work that has explored sequence-level training
methods. Bengio et al. (2015); Ranzato et al. (2015)
proposed to train RNN with RL or RL-related algo-
rithms rather than teacher-forcing. BRIO Liu et al.
(2022) targeted the summarization task with the
ROUGE signal. Pang and He (2020) trained the lan-
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guage models with an offline RL algorithm. There
also exists a line of works that generate samples
during training and mix the samples with ground
truth data (Shen et al., 2015; Zhang et al., 2019;
Duckworth et al., 2019).

Recently, RLHF (Stiennon et al., 2020; Ouyang
et al., 2022) and its supervised version DPO
(Rafailov et al., 2023) were developed for align-
ment. They are effectively sequence-level train-
ing techniques. These algorithms require a pair of
preferred and rejected samples, which are usually
gathered by human labeling. The RL approach to
language modeling is also closely related to energy-
based models (EBM) (Korbak et al., 2022; Deng
et al., 2020). This EBM form has also been studied
in controlled text generation Kumar et al. (2022).
Pace et al. (2024) also consider synthetic data gen-
eration, but their purpose is to improve reward mod-
eling in RLHF rather than sequence-level training.

3 Proposed approach

Consider a sentence of T tokens x =
{x1, . . . ,xT } ∈ X , we use π(x) to represent the
distribution of x under some language policy π.
In particular, we write πθ for a distribution that is
parameterized by θ, where θ is usually the set of
trainable parameters of the LLM; we write πref for
a reference distribution that should be clear given
the context. Inspired by DPO, we introduce our
CPO objective:

LCPO (πθ, πref) = E
(x,y1)∼D

y2,...,yK∼A


log

exp

(
β log

πθ(y1|x)
πref(y1|x)

)

∑K
j=1 exp

(
β log

πθ(yj |x)
πref(yj |x)

)


 . (1)

Here (x,y1) is the ground truth prefix-continuation
pair from the natural language distribution D, and
y2, . . . ,yK are K − 1 negative continuations sam-
pled from a to-be-discussed distribution A. The
derivation is deferred to the appendix. If some rank-
ing of the data quality is presented, i.e. τ : [K] →
[K] where τ(i) < τ(j) means yi is preferred over
yj , we also have the following CPO objective with
ranking:

LCPO (πθ, πref) = E
τ,(x,y1)∼D
y2,...,yK∼A



log

K∏

k=1

exp

(
β log

πθ(yτ(k)|x)
πref(yτ(k)|x)

)

K∑

j=k

exp

(
β log

πθ(yτ(j)|x)
πref(yτ(j)|x)

)



. (2)

Unlike RLHF or DPO, which require human
preference data y1 ≥ y2 ≥ · · · ≥ yK , CPO re-
quires only ground truth data (x,y1) ∼ D, and
K−1 synthetic negative samples y2, . . . ,yK ∼ A.

Possibly, we can also get a ranking among the K−1
synthetic samples in a fully automatic way. On a
high level, CPO implicitly rewards the ground truth
more than the synthetic negative samples.

We consider four ways to generate synthetic
data. (1) autoregressive negatives (AN): We
use the language model to autoregressively
generate the negative samples given a prefix.
We fixed the synthetic data generation strat-
egy to be top-k sampling with k = 50. (2)
batch negatives (BN): given a batch of prefixes
and continuations {xi,yi}bi=1, the negative sam-
ples to the prefix xi are composed of {yj}j ̸=i. (3)
meanfield negatives (MN): given a sequence y =
{y1, . . . , yT }, we randomly select c percent of the
positions {t1, . . . , tj} ⊆ [T ], and substitute each
yti independently based on πθ(yti |y1, . . . , yti), i.e.
we independently resample c% of the tokens ac-
cording to their original autoregressive distribution.
(4) truncation negatives (TN): for each ground
truth continuation, we truncate them at a random
position and append an extra EOS token at the end.

In our experiments, we observe that CPO can
often benefit from a ranking among K samples,
where the ranking is based on their cosine similarity
to the ground truth. Let e1, . . . , eK be the embed-
dings of given sequences y1, . . . ,yK and without
loss of generality assume that e1 is the ground truth,

we define τ(i) < τ(j) if ⟨ei,e1⟩
∥ei∥∥e1∥ >

⟨ej ,e1⟩
∥ej∥∥e1∥ , with

the lower ranking index indicating the better sam-
ple. Using the objective eq. (2), this process gives
us denser signals during training and can lead to
better downstream performance.

4 Experimental Setup

Throughout this section, BN, AN, MN, TN rep-
resents batch negatives, autoregressive negatives,
meanfield negatives, and truncation negatives re-
spectively. MixN represents a mixed negative sam-
pling strategy for which the details can be found
in its context. We use ANR for models trained
with autoregressive negatives and ranking signals,
similarly we can denote MixNR, etc. We always
randomly swap 15% tokens using MN. Although
this choice is mainly heuristic, such a ratio appears
quite frequently since BERT (Wettig et al., 2022).

Task and model. We consider two tasks in this
paper. The first is an instruction-following task,
trained and evaluated on the Dolly dataset (Conover
et al., 2023). This dataset is composed of 15011
total instruction and response pairs. We train with
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Figure 1: The effect of different generation configura-
tion during inference and different negative sampling
methods during training. Unless otherwise specified,
greedy decoding is used. Win rate is evaluated by GPT-
3.5 against the ground truth continuations.

Table 1: The win rate of GPT2-XL against the ground
truth, samples generated by greedy decoding, evaluated
by GPT-3.5.

MLE PSS DPO ANR MIXNR

α - - - - 0 0.5 0.7 0.9

WinRate 0.471 0.086 0.383 0.506 0.476 0.479 0.487 0.485

7505 sequences and test with the rest 7506. We
use pre-trained GPT2-XL (Radford et al., 2019)
and OpenLlama-3B(Touvron et al., 2023; Geng
and Liu, 2023) as the base model. The second is
an open-ended text generation task on Wikidump
data (Foundation). We train the OpenLlama-3B
model to predict 85% tokens per sample given the
leading 15% tokens.

Baselines. We consider three main baselines:
MLE, DPO, and parallel scheduled sampling (PSS,
(Duckworth et al., 2019)). Importantly, the differ-
ence between DPO and CPO lies in their negative
samples. For DPO, we query GPT-3.5 to generate
unhelpful response to the Dolly instructions. PSS
is trained to sample 3 sequences for each training
data, and each token is replaced with p = 0.5 (see
Duckworth et al. (2019) for more details).

Training details. Throughout the experiment, we
fix the learning rate to be 1e−5, we use the AdamW
optimizer with weight decay of 0.05. We keep the
batch size to be 64. Unless otherwise specified,
for the baseline model, we train GPT2-XL and
OpenLlama-3B with the next token prediction loss
for 2000 steps. Using these models as the reference
model πref , we continue to train with the CPO
objective either with or without ranking signals,
with β = 5, for 1000 steps. For both models,
each training data in a batch contains 11 negative
samples in total. For MixN and MixNR, we also
use a negative sample size of 11, consisting of
3 BN, 5 MN, and 3 TN. The MLE models used

for evaluation are continually trained for the same
number of steps from the reference model, like the
CPO models. All experiments are conducted on
two AWS machines, each with 8 A100 GPUs.
Evaluation. As discussed in Goyal et al. (2022),
almost all automated evaluation metrics have been
shown to not align with human evaluations in the
modern era of LLMs, so we decide to use GPT
(Brown et al., 2020) as the evaluator. See the query
template in the appendix. For efficiency, we gen-
erate and evaluate 1000 samples chosen from the
7506 test set. A similar template is used for Wiki
text generation, see the detail in the appendix. Dur-
ing inference, we consider greedy decoding, top-p
and top-k sampling, as well as beam search.
Weight-space ensemble. Previous works (Liu
et al., 2022) have also suggested to combine the
auxilliary loss function with the MLE training ob-
jective αLMLE + LCPO, the downside of combin-
ing loss functions in this way is that for a different
choice of α one will have to retrain the model. To
investigate the importance of loss combination, we
instead perform a weight-space ensemble (Worts-
man et al., 2022). In particular, denote θCPO and
θMLE the model parameters trained solely with
CPO or MLE respectively, we generate with the
interpolated weights θ = αθMLE + (1− α)θCPO.

5 Experimental Analysis

5.1 Instruction-Following Task
Our proposed CPO method with various negative
sampling strategies consistently outperforms the
MLE baseline models on the Dolly instruction-
following task. Using greedy sampling with GPT2-
XL, the CPO model has a clear margin over the
MLE model, and CPO+ANR has a 3.5% higher
win rate, see table 1. Note that CPO incurs very
little computation overhead during the actual train-
ing: the overhead only comes a larger batch size,
and even if we generate the negative samples au-
toregressively, it is a one-time offline cost.

The improvement in OpenLlama-3B is more sig-
nificant: CPO+ANR has a 13.8% higher win rate
than the MLE baseline, and CPO+MixNR has a
9.8% higher win rate in table 2. We also observe
that weight-space ensemble has a positive impact
on the model. Heuristically, for OpenLlama-3B, a
smaller α is preferred (more emphasis on the CPO
weights) (table 2), but the reverse holds for GPT2-
XL (table 1). We hypothesize that the choice of α
should depend on the model: if the model is more
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Table 2: The win rate of OpenLlama-3B trained with CPO and MLE against the ground truth data in Dolly, sampled
by greedy decoding, evaluated by GPT-3.5. MLE1, ANR and AN are trained for 200 steps, the rest models are
trained for 1000 steps. The best CPO model outperforms the MLE baseline by 13.8% win rate.

MLE1 PSS DPO ANR AN MLE2 MIXNR MIXN

α - - - - - - 0 0.1 0.3 0.5 0.7 0.9 -

WinRate 0.505 0.270 0.555 0.643 0.56 0.522 0.608 0.620 0.614 0.610 0.601 0.550 0.576

Table 3: OpenLlama-3B’s win rate against the ground
truth continuation on Wikidump. The model is trained
with either MLE or CPO+BNR. Weight ensemble is
adopted. The best CPO model outperforms the MLE
baseline by 3% win rate.

MLE BNR

α - 0 0.5 0.7 0.9

WinRate 0.508 0.455 0.505 0.5 0.538

capable, then it can benefit more from CPO. Here,
we show the existence of a good α, and we leave
further exploration to future research.

Comparison with DPO and PSS. The proposed
CPO method performs better than other two base-
line methods: DPO and PSS (see Table 2). We
believe that DPO performs poorly because un-
helpful/irrelevant continuations (even generated by
ChatGPT) do not provide a very strong signal as
human generated samples. Unlike in alignment,
where the toxic/harmful samples provide a clear in-
dication of what not to generate, here it is not clear
what DPO can gain from merely a single irrelevant
sample. On the other hand, CPO can benefit from
larger negative sample size.

Sampling Strategy. In addition to greedy decod-
ing, we also experiment with different choice of
sampling strategies. In all settings, CPO has con-
sistently demonstrated superior performance over
MLE, see fig. 1.

Effect of different negative samples. We per-
form a study on the effects of different negative
sampling strategies; the results are presented in
fig. 1. We first train the OpenLlama-3B model
with MLE loss for 1000 steps, then continue to
train with CPO for 200 steps. For all ground truth
sequences, we use 4 negative sequences. In this
setting, we always use the ranking information to
train CPO. We observe that the effects of BNR and
TNR on the reward model preference are similar
and that they perform slightly better than MNR.
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Figure 2: MAUVE score of MLE and CPO on Wiki
data.

Table 4: MAUVE score of MLE and CPO on Wiki data.

MLE CPO BNR

α - 0 0.1 0.3 0.5 0.7 0.9

WinRate 0.524 0.610 0.627 0.673 0.645 0.651 0.668

5.2 Open-ended Text Generation Task

We further test OpenLlama-3B’s ability on an
open-ended text generation task with CPO. Using
Wikidump data (Foundation), for each test sample,
we take its first 15% tokens as the prefix and train
the model with CPO on the rest 85%. For nega-
tive sampling, we use four BNR examples. The
results in table 3 show that CPO can improve the
model’s win rate against the MLE baseline by 3%.
We observe that increasing α improves the score,
the opposite of the instruction-following task. It
is likely because the negative samples here are too
noisy, since only 15% prefixes are provided.

Additionally, we test the MAUVE score (Pillutla
et al., 2021) of MLE and CPO compared to the
ground truth. See the results in fig. 2 and table 4.

6 Conclusions and Limitations

In this paper, we propose an auxiliary CPO loss
function for LLM training, which can be used with
or without ranking signals, depending on the qual-
ity of the negative samples. We investigated several
ways to generate negative samples. One limita-
tion of this work is that the synthetic data are very
noisy unless generated autoregressively; it is inter-
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esting to explore other ways to efficiently generate
high-quality negative data beyond the autoregres-
sive fashion.
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A Appendix

A.1 A brief introduction to DPO, RLHF, and
EBM

The equivalence of RLHF and EBM For the
completeness of this paper, we include the result of
the equivalence between RLHF and EBM. For the
full proofs, we refer the reader to (Rafailov et al.,
2023; Korbak et al., 2022).

The RLHF objective is the following:

max
πθ

Ex∼D,y∼πθ(y|x)[r(x,y)]

− βDKL

(
πθ(y|x)||πref(y|x)

)
,

(3)

where x ∼ D is a given prefix, y ∼ πθ(y|x) is
a sampled continuation from the trainable model
πθ, and r(x,y) ∈ R is the reward. Meanwhile,
we want to control the divergence between πθ and
πref , where πref is usually an already pretrained or
finetuned LLM. The RLHF optimum is achieved at
the following EBM:

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x,y)

)
,

(4)

where Z(x) =
∑

y πref(y|x) exp
(

1
β r(x,y)

)
is

the partition function.
Rafailov et al. (2023) assume that the preference

over two sequences yw and yl given x is parame-
terized by the Bradley-Terry model:

P (yw ≻ yl|x) =
er(x,yw)

er(x,yl) + er(x,yw)
.

Under the Bradley-Terry model, DPO establishes
the equivalence between the original RLHF objec-
tive eq. (3) and the following supervised objective:

LDPO(πθ;πref) =

E(x,yw,yl)∼D
[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
,

(5)

where σ(·) is the Sigmoid function.
They also generalize the formulation to the

Plackett-Luce model, where we have a linear order-
ing τ(·) among K sequences:

LDPO (πθ, πref) =

E
τ,x∼D
y1,...,yK


log

K∏

k=1

exp

(
β log

πθ(yτ(k)|x)
πref(yτ(k)|x)

)

∑K
j=k exp

(
β log

πθ(yτ(j)|x)
πref(yτ(j)|x)

)


 .

(6)
Here, τ(1), . . . , τ(K) induce a ranking among K
sequences.
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A.2 Derivation of the CPO objective function
Here we give a full derivation of the CPO objective
function in eq. (1).

Let y1, . . . ,yK be K continuations of a given
prefix x. Without loss of generality, let y1 be the
best candidate. We are interested in the MLE of the
event P (y1 is the best among K candidates|x).

We start from the sequence-level (RLHF) objec-
tive, notice that here r(·) is a reward over language
quality, not human preference.

max
πθ

Ex∼D,y∼πθ(y|x)[r(x,y)]

− βDKL

(
πθ(y|x)||πref(y|x)

)
,

(7)

Its optimum is achieved at the following EBM:

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x,y)

)
,

(8)

where Z(x) =
∑

y πref(y|x) exp
(

1
β r(x,y)

)
is

the partition function. See the proof in (Rafailov
et al., 2023; Korbak et al., 2022).

Now we consider the natural extension of the
Bradley-Terry model to K candidates:

P (y1 is the best among K candidates|x)

=
exp

(
r∗(x,y1)

)
∑

k∈[K] exp
(
r∗(x,yk)

) . (9)

Now assuming we have the optimal policy π∗,
we can reparameterize r by rearranging eq. (8):

r∗(x,y) = β log
π∗(y | x)
πref(y | x) + β logZ(x).

(10)

Plugging eq. (10) into eq. (9), we get eq. (1).

A.3 Query template of Dolly and Wiki text
generation

The query template for the Dolly instruction-
following is the following: “For the following
query to a chatbot, which response is
more helpful?\n Query: {}\n Response A:
{}\n Response B: {}\n State only "A" or
"B" to indicate which response is more
helpful.\n More helpful:”

The template for Wiki is the following: “For
the following prefix, which continuation
is better?\n Prefix: {}\n Continuation A:
{}\n Continuation B: {}\n State only "A"
or "B" to indicate which continuation is
more helpful.\n Better:”

A.4 DPO generation template and example
When generating unhelpful responses for DPO,
we query GPT with the following template:
Given the ground truth instruction and
response, can you generate a not helpful
response?\n Instruction: {}\nResponse:
{}\nNot helpful response:.

One example of the generated response is
the following: instruction: When did Virgin
Australia start operating? chosen response:
Virgin Australia commenced services on
31 August 2000 as Virgin Blue, with two
aircraft on a single route. rejected re-
sponse: Virgin Australia definitely exists
and has airplanes that fly to different
places.

A.5 Connection to noise contrastive
estimation

Noise contrastrive estimation (NCE) (Gutmann and
Hyvärinen, 2010) is a novel estimation technique
introduced to tackle the computational infeasibility
of traditional likelihood-based methods in large-
scale machine learning models, particularly those
involving high-dimensional data. NCE diverges
from typical maximum likelihood estimation by
transforming the problem into a classification task,
which is deeply connected to both DPO and CPO.
In NCE, the model is trained to distinguish between
real data and noise/synthetic data. Beyond binary
classification, RankingNCE 1 also trains the model
to rank the real data higher than all noise samples
(Ma and Collins, 2018).

There are two important distinctions between
CPO and NCE. First, instead of training the model
to distinguish between real data and noise (at which
any reasonable language model should already be
good), we train the model to distinguish better than
a reference model does, hence making the model
better at recognizing natural text. Second, we also
introduce a denser ranking signal by incorporat-
ing the similarity among embeddings of different
samples. The experiments in this paper demon-
strate that such a dense training signal consistently
improves text generation quality.

1Despite the name, it means the model is ranking the real
data highest among all data, rather than learning a total order-
ing.
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