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Abstract
Automatic radiology report generation has at-
tracted considerable attention with the rise of
computer-aided diagnostic systems. Due to the
inherent biases in medical imaging data, gen-
erating reports with precise clinical details is
challenging yet crucial for accurate diagnosis.
To this end, we design a disease description
graph that encapsulates comprehensive and per-
tinent disease information. By aligning visual
features with the graph, our model enhances
the quality of the generated reports. Further-
more, we introduce a novel informed prompt-
ing method which acts as an implicit bag-of-
words planning for surface realization, increas-
ing the accuracy of short-gram predictions. No-
tably, the informed prompting succeeds with
a three-layer decoder, reducing the reliance
on conventional prompting methods that re-
quire extensive model parameters. Extensive
experiments on two widely-used datasets, IU-
Xray and MIMIC-CXR, demonstrate that our
method outperforms previous state-of-the-art
models.1

1 Introduction

The heavy workload faced by radiologists fre-
quently results in reduced diagnostic accuracy.
However, recent breakthroughs in image caption-
ing have paved the way for automated Radiology
Report Generation (RRG), providing a promising
solution to this pressing issue. A large body of
research(Chen et al., 2020; Song et al., 2022; Jin
et al., 2024) in this domain leverages the encoder-
decoder architecture, which first converts images
into visual representations and then translates these
representations into diagnostic reports, leading to
significant advancements in the field.

Despite notable progress has been achieved, gen-
erating reports with accurate clinical details re-
mains challenging due to the inherent biases in

1The disease description graph and model’s code are avail-
able at: https://github.com/chentaohuang/DDGIP

medical imaging data. To address this, knowledge
graphs (Zhang et al., 2020; Jain et al., 2021) have
been introduced in the field. However, these graphs
are limited by inherent challenges, such as a lack of
detailed clinical knowledge or difficulties in practi-
cal application, which hinder their ability to effec-
tively incorporate relevant clinical information into
RRG. Additionally, prompting has emerged as a
promising solution to this challenge. In particular,
PromptMRG (Chang et al., 2024) and DKP (Bu
et al., 2024b) have been introduced to integrate
prompts into report generation, leading to signifi-
cant improvements in the generation of clinically
accurate reports. However, such success depends
on extensive model parameters, which constrains
its broader applicability.

To mitigate the aforementioned limitations, we
introduce a radiology report generation frame-
work called DDGIP, leveraging Disease Descrip-
tion Graph and Informed Prompting to effectively
capture disease-specific information in report gen-
eration. First, we design a general Disease Descrip-
tion Graph (DDG) which comprises nodes from
five key domains: disease, topic, location, un-
certainty, and severity, encapsulating systematic
and detailed clinical information. Aligning visual
features with this graph can enhance the quality
of the generated reports to a large extent. Next,
we propose an Informed Prompting (IP) method,
wherein the prompt is informed by Cross-Modal
Alignment (CMA) and Bag-Of-Words (BOW) plan-
ning, thereby succeeding in RRG with a three-layer
decoder and overcoming the need for extensive
model parameters. The IP acts as an implicit BOW
planning method, working in synergy with DDG
for surface realization with clinical details. Over-
all, our proposed framework excels in generating
high-quality reports that deliver detailed disease
descriptions with improved fluency.

Our contributions can be summarized as follows:
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• We design an innovative DDG that provides
clinical information for radiology report gen-
eration. This graph proves to contribute to en-
hancing the quality of generated reports from
both quantitative and qualitative perspectives;

• We propose a novel IP method, which reduces
the need for extensive model parameters in
prompting while achieving significant perfor-
mance with a three-layer decoder. Addition-
ally, this method could function as an implicit
BOW planning for surface realization.

2 Related work

Radiology report generation. Leveraging the
latest advancements in computer vision and natu-
ral language processing, a variety of innovative
approaches (Jing et al., 2017; Li et al., 2019;
Chen et al., 2020; Liu et al., 2022) have emerged
to integrate radiology images with free-text data,
thereby enabling the automatic generation of radi-
ology reports. The AlignTransformer (You et al.,
2021) was developed to hierarchically align vi-
sual features with disease tags. Cross-modal align-
ment has also gained attention in the field of
RRG. XPRONET(Wang et al., 2022a) established
a shared subspace for effective cross-modal align-
ment based on prototypes. Similarly, trainable
cross-modal feature matrices (Chen et al., 2022;
Qin and Song, 2022; Shen et al., 2024) have been
utilized to enhance alignment. Additionally, con-
trastive attention techniques (Liu et al., 2021b;
Song et al., 2022) have achieved remarkable results
by comparing target images with normal or similar
images. Furthermore, advanced nonlinear attention
mechanisms (Wang et al., 2022b, 2023), leverag-
ing bilinear pooling, have been explored to cap-
ture fine-grained descriptions. (Bu et al., 2024a)
proposed EKAgen for generating instance-specific
expert knowledge for each query image, extracted
from a knowledge support system grounded in re-
port embeddings. Moreover, prompting methods
have been introduced to advance the field of RRG.
PromptMRG (Jin et al., 2024) was introduced to
generate diagnosis-aware prompts based on pre-
dicted diseases, providing essential guidance for
report generation. Bu et al. (2024b) introduced
the Dynamic Knowledge Prompt framework to pro-
vide instance-level pulmonary lesion knowledge as
prompts. Despite significant improvement, many
models still struggle with omitting crucial clinical
details in their generated reports.

Knowledge graph in RRG. Conveying essen-
tial clinical information is crucial for RRG. Conse-
quently, various studies have focused on designing
knowledge graphs to enhance report generation. To
improve the accuracy of positive disease keywords
in generated reports, Zhang et al. (2020) devised a
general graph comprising 20 common abnormali-
ties and their respective anatomical locations to aid
in the generation process. Liu et al. (2021a) pro-
posed PPKED, which leverages the preconstructed
graph (Zhang et al., 2020) and retrieved reports
to distill prior knowledge. Building on precon-
structed graph (Zhang et al., 2020), Li et al. (2023)
expanded it by adding additional nodes derived
from specific retrieved RadGraph (Jain et al., 2021)
triplets from similar reports, resulting in dynamic
graphs. Utilizing the RadGraph (Jain et al., 2021)
dataset, Yang et al. (2022) constructed a general
graph and extracted triplets from the reports of sim-
ilar images as specific knowledge. Huang et al.
(2023) designed a general symptom graph, integrat-
ing it with visual and contextual features to incorpo-
rate clinical knowledge. Hou et al. (2023) treated
disease tags as observation plans and introduced a
planning-based model called ORGAN. They sub-
sequently constructed observation graphs based on
plans to facilitate tree reasoning. Although graph-
based methods have achieved notable success, the
existing two mainstream graphs possess the limi-
taions that impede their effectiveness in injecting
clinical information. The general graph (Zhang
et al., 2020) offers only coarse-grained knowledge.
In contrast, RadGraph (Jain et al., 2021) contains
over million entities, but posing a significant dif-
ficulty in utilizing this vast information to assist
RRG.

3 Method

3.1 Disease description graph
To address the limitations of existing graphs (Zhang
et al., 2020; Jain et al., 2021), we design a gen-
eral graph to strike a balance between knowledge
comprehensiveness and generalization, offering de-
tailed disease-specific knowledge.

The Comprehensive Annotation of Diseases
(CAD)-Chest dataset2 (Zhang et al., 2023) is de-
rived from MIMIC-CXR radiology reports. It in-
cludes fine-grained labels about disease name, re-
port name, severity grading, diagnostic uncertainty,
and location. The report name labels encompasses

2https://physionet.org/content/cad-chest/1.0/
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Figure 1: An example of the transformation from CAD labels to their corresponding part of disease description
graph.

different clinical representations of the same dis-
ease. For instance, atelectasis can be referred to as
collapse, volume loss, or atelectasis itself, among
other variations. For better understanding, we refer
to report name as topic throughout the paper.

To construct the disease description graph, these
labels are first transformed into nodes that belong
to five distinct domains: disease, topic, severity,
uncertainty, and location. Then the topic nodes
serve as anchors, and all possible co-occurrences
between these anchors with other nodes are treated
as edges, resulting in the disease description graph
G. The graph detailedly provides the clinical in-
formation for each disease in radiology reports in
a systematic manner. In the graph, each disease
node connects to one or more topic nodes, and each
topic node links to various severity, uncertainty,
and location nodes. The adjacency matrix of the
disease description graph G is denoted as A. A
portion of this graph with its construction process
is shown in the Figure 1.

3.2 Report generation with disease
description graph

Disease description graph encoding. The frame-
work of DDGIP is depicted in Figure 2. As
shown on the left side of Figure 2, we utilize a
Transformer-based graph encoder (Vaswani et al.,
2017) to encode the topic graph, employing the dis-
ease description graph G and its adjacency matrix
A to derive the encoded node representation N:

N = Encoderg(Embed(G), A). (1)

In this process, each node is embedded using an
embedding layer Embed prior to encoding, while
A serves as the self-attention mask, facilitating in-

formation transfer exclusively between connected
nodes.

Visual features encoding. To effectively capture
the essence of the input image X , we implement
a Convolutional Neural Network CNN alongside
a Multilayer Perceptron MLP to extract its visual
features:

X = {x1, . . . , xN} = MLP (CNN(X)), (2)

where xi denotes the i-th visual feature in X. These
features are further processed by a Transformer-
based visual encoder:

hv = Encoderv(X), (3)

which enhances their contextual relevance and
yields the visual representations hv.

Vision-graph alignment. Leveraging the ex-
tracted visual features X, we align them with the
graph through Cross Attention (CA), integrating
the visual features with the node representations as
graph attention:

halign = FFN(CA(X,N,N)). (4)

This results in the aligned visual representation
halign, merging knowledge from the visual fea-
tures with the DDG.

Report generation. With the initial hidden state
h1 as the input of the Decoder, the entire procedure
of our decoder can be expressed as follows:

h2 = MMHA(h1,h1,h1), (5)

h3 = CA(h2,halign,halign), (6)

h4 = CA(h3,hv,hv), (7)

p(yl|y1:l−1, X) = Softmax(Wh4
l + b), (8)
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where MMHA represents the masked multi-head
self-attention and h1,h2,h3,h4 are temporary hid-
den states in the decoding phase. W ∈ R|V |×d is
the weight matrix, and b ∈ R|V | is the bias vector,
with |V | representing the vocabulary size and d rep-
resenting the model size. For the sake of simplicity,
we omit modules from the standard Transformer
such as Layer Normalization and Feed-Forward
Network.

3.3 Informed prompting

Visual prompting (Wu et al., 2024) has been widely
adopted in large vision-language models, achieving
notable success across various tasks. However, its
effectiveness often relies on large-scale data and
extensive model parameters, which limits its appli-
cability in RRG. Generally, visual prompting aims
at optimizing the objective P (Y |P,X) where Y
represents the text, X represents the image, and P
represents the prompt derived from X . However,
prompting can be seen as the process of planning
the words to be generated, which suggests that tex-
tual data may facilitate the prompt-learning process
more efficiently than visual data. Therefore, we in-
troduce a variational inference strategy to learn the
prompt using textual data while aligning the vi-
sual modality with the textual one. This approach
serves as a "shortcut" enabling efficient prompt
learning without the need for large datasets and
extensive model parameters. Besides, we intro-
duce the BOW planning task to enrich the prompt
with word distribution information for surface re-
alization. This informed prompt is designed to
synergize with the DDG, enabling the generation
of reports with precise disease descriptions. In con-
clusion, we propose a novel and efficient method:
informed prompting, leveraging cross-modal align-
ment (Najdenkoska et al., 2022) and bag-of-words
planning (Fu et al., 2019; Hu et al., 2022).

Cross-modal alignment. We treat RRG as a pro-
cess of generating a report Y for the given image
X . From a probabilistic perspective, the goal of
optimization in the process is to maximizing the
conditional log-likelihood: logP (Y |X). Next, we
incorporate the latent variable θ into the conditional
log-likelihood, we have:

logp(Y |X) =

∫
q(θ)log

p(Y, θ|X)

q(θ)
d(θ)

+DKL(q(θ)||p(θ|Y,X)),

(9)

where q(θ) represents the variational distribu-
tion to approximate the posterior distribution
p(θ|Y,X). By minimizing the KL divergence term,
DKL(q(θ)||p(θ|Y,X)), we get the ELBO of the
log-likelihood:

logp(Y |X) ≥
∫

q(θ)log
p(Y, θ|X)

q(θ)
d(θ)

= ELBO,

(10)

which can be formulated as:

ELBO = E(logp(Y |θ,X))

−DKL(q(θ)||p(θ|X)).
(11)

Then we incorporate the text modality into the train-
ing process by conditioning the variational distribu-
tion q(θ) on the ground-truth report Y , as q(θ|Y ).
Based on the ELBO, we derive the objective func-
tion with respect to a report Y as follows:

LELBO =−
L∑

l=1

[
1

K

K∑

k=1

logp(yl|y1:l−1, θ
{k}, X)]

+ αDKL[q(θ|Y )||p(θ|X)],

(12)

where θ{k} denotes the k-th of K Monte Carlo
samples, while α acts as a hyperparameter for con-
trolling its impact in training.

For the sake of computational efficiency, we
compute the average of the K samples of latent
variable as θ, which is then employed to assist
generation. As a result, the objective function is
simplified to:

LELBO =−
L∑

l=1

[logp(yl|y1:l−1, θ,X)]

+ αDKL[q(θ|Y )||p(θ|X)],

(13)

where the first term represents the negative condi-
tional log-likelihood loss, while the second term
accounts for the KL divergence between the varia-
tional distribution q(θ|Y ) and the true distribution
p(θ|X), utilized to align the image modality with
the text modality. During training, the samples are
drawn from q(θ|Y ), whereas during inference, the
samples are drawn from p(θ|X).

Prompt deriving. Before introduce the informed
prompt, we parameterize q(θ|Y ) and p(θ|X) as:

q(θ|Y ) = N(θ|htg, σ2
t I), (14)

p(θ|X) = N(θ|hvg, σ2
vI), (15)
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Figure 2: The overall framework of DDGIP, where CMA refers to the cross-modal alignment. The dotted line
indicates the global text representation ht

g is only available in training stage.

where σt and σv symbolize the standard devia-
tions as learnable parameters, and htg represents
the global textual representation while hvg repre-
sents the global visual representation.

To obtain htg, we transforme ground-truth report
Y into textual features through a embedding pro-
cess:

Y = {y1, . . . , yL} = Embed(Y ) + P, (16)

where yl represents the l-th textual feature in Y and
P represents the positional embeddings, adding po-
sitional context to each word. These embedded tex-
tual features are then encoded using a Transformer-
based text encoder to obtain the textual representa-
tions ht:

ht = {ht1, . . . , htL} = Encodert(Y), (17)

with the global textual representation htg being dis-
tilled into the mean value of ht.

To derive hvg , we revisit the visual features en-
coding process. Starting with the visual features
X, the global visual feature xg is obtained by aver-
aging X. The encoding process then proceeds as
follows:

[hvg,h
v] = Encoderv([xg,X]). (18)

To get the informed prompt, we samples θ us-
ing the reparameterization trick. Given the mean
value θ of the latent variable samples, the informed
prompt hip is derived by processing θ through a
Feed-Forward Network FFN , expressed as:

hip = FFN(θ). (19)

The derived informed prompt is then concatenated
with shifted tokens. In generation, each token at-
tends the previously generated words and the in-
formed prompt as guidance.

During training, samples are drawn from q(θ|Y ),
whereas during inference, they are drawn from
p(θ|X). The distribution p(θ|X) is optimized to
align with q(θ|Y ) by minimizing the KL diver-
gence, ensuring that the prompt is effectively in-
formed through cross-modal alignment.

Bag-of-words planning task informing. Here
we introduce the BOW planning task into the learn-
ing process to ensure that the prompt hip is in-
formed by word distribution information. The
BOW of the report Y is defined as a categorical
distribution across the entire vocabulary:

P (Y |hip) = softmax(MLP (Decoder(hip))),
(20)

where MLP : Rd → R|V | denotes a multi-layer
perceptron and Decoder represents our decoder.
The objective of the task is to maximize the log-
likelihood of correctly predicting the occurrence of
each word in the report:

LBOW = − 1

L

L∑

l=1

logp(yl|hip), (21)

where p(yl|hip) represents the estimated probabil-
ity of the l-th word in the BOW. From this stand-
point, the informed prompting serves as an implicit
BOW planning method for surface realization.
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We holistically optimize our model by combin-
ing the objective function LELBO with the BOW
planning loss LBOW :

L = LELBO + βLBOW , (22)

where β govern the impact of the BOW planning,
acting as hyper-parameters.

4 Experiments

4.1 Datasets
We conduct experiments on two widely-used
medical report generation datasets (i.e., IU-
Xray (Demner-Fushman et al., 2016) and MIMIC-
CXR (Johnson et al., 2019) ) to evaluate our pro-
posed model. For a fair comparison, we adopt the
settings in R2GEN (Chen et al., 2020) to prepro-
cess the reports.

IU-Xray3 is the most widely-used public Chest
X-ray dataset provided by Indiana University, con-
taining 3,955 radiology reports and 7,470 chest X-
ray images. Following the previous research (Chen
et al., 2020), we split the data into training, valida-
tion, and testing sets with a ratio of 7:1:2.

MIMIC-CXR4 is the largest public dataset in
report generation provided by the Beth Israel Dea-
coness Medical Center, which includes 377,110
chest X-ray images and 227,827 reports. We adopt
the official train/validation/test splits.

Given that the reports in IU-Xray are consider-
ably simpler than those in MIMIC-CXR, for IU-
Xray we begin by filtering out nodes and their cor-
responding edges that are not present in the reports,
subsequently constructing the disease description
graph. The disease description graph for IU-Xray
consists of 109 nodes—20 for disease, 40 for topic,
12 for uncertainty, 23 for location, and 14 for
severity—totaling 1,349 edges. In contrast, the
disease description graph for MIMIC-CXR com-
prises 156 nodes—26 for disease, 58 for topic,
30 for uncertainty, 24 for location, and 18 for
severity—and includes a total of 2,116 edges.

4.2 Evaluation metrics
To evaluate our model, we employ a comprehensive
set of metrics derived from the domains of natural
language generation (NLG) and clinical efficacy
(CE). The adopted NLG metrics include widely rec-
ognized captioning metrics such as BLEU-n (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,

3https://openi.nlm.nih.gov/
4https://physionet.org/content/mimic-cxr-jpg/2.0.0/

2005), and ROUGE-L (Lin, 2004), following the
standard evaluation protocols. For the CE metrics,
we use CheXpert (Irvin et al., 2019) to annotate the
generated reports from the MIMIC-CXR dataset
and compare them against the disease labels in the
ground-truth reports.

4.3 Experimental setup
We utilize the ResNet-101 (He et al., 2016) pre-
trained on ImageNet (Deng et al., 2009) as the vi-
sual feature extractor. Each encoder and decoder is
configured with 3 layers, while the Graph Encoder
is designed with 2 layers. Each multi-head atten-
tion block contains 8 attention heads. Our model
dimensionality d is set to 512.

For training, we conduct 15 epochs for the IU-
Xray dataset and 5 epochs for the MIMIC-CXR
dataset, with batch sizes of 32 and 64, respectively.
The best checkpoints are selected based on the
BLEU-4 on the validation set. The learning rates
are set to 5e-5 for the visual extractor and 1e-4
for other parameters. We decay the learning rate
by a factor of 0.9/0.8 per epoch for each dataset
and set the beam size to 3. The parameters α and
β are set to 0.0008 and 0.05 respectively. The
standard deviations σt and σv are initialized to 0.1.
We use monotonic annealing schedule (Bowman
et al., 2015) to learn the KL divergence term of loss.
Sampling number K is set to 7. All experiments
are conducted on an NVIDIA GeForce RTX 3090
GPU.

4.4 Quantitative results
To demonstrate the effectiveness of our model, we
compare DDGIP against several state-of-the-art
methods. Table 1 presents the outcomes of NLG
and CE metrics on the IU-Xray and MIMIC-CXR
datasets. The results demonstrate that DDGIP sur-
passes other baseline models, establishing a new
state-of-the-art benchmark and showcasing the ef-
fectiveness and generalizability of our approach.
Specifically, in terms of natural language genera-
tion, DDGIP achieves the highest scores on BLEU-
2 and BLEU-3 across both datasets, highlighting
its superiority in short-gram predictions. More-
over, our BLEU-1 score of 0.433 outperforms the
second-best result by a significant 1.4% margin
on MIMIC-CXR, indicating that our model ex-
cels in generating reports with precise terminology.
Additionally, DDGIP achieves the top METEOR
score of 0.167, further solidifying its effectiveness.
These advancements could contribute to the collab-
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Dataset Model
NLG metrics CE metrics

BL-1 BL-2 BL-3 BL-4 MTR RG-L Precision Recall F1-score

IU-XRAY

R2Gen (Chen et al., 2020) 0.470 0.304 0.219 0.165 - 0.371 - - -
PPKED (Liu et al., 2021a) 0.483 0.315 0.224 0.168 - 0.376 - - -

KnowMat (Yang et al., 2022) 0.496 0.327 0.238 0.178 - 0.381 - - -
DCL (Song et al., 2022) - - - 0.163 0.193 0.383 - - -

METrans (Wang et al., 2023) 0.483 0.322 0.228 0.172 0.192 0.380 - - -
KIUT (Huang et al., 2023) 0.525 0.360 0.251 0.185 0.242 0.409 - - -

ORGAN (Huang et al., 2023) 0.510 0.346 0.255 0.195 0.205 0.399 - - -
PromptMRG (Jin et al., 2024) 0.401 - - 0.098 0.160 0.281 - - -

EKAgen (Bu et al., 2024a) 0.526 0.361 0.267 0.203 0.214 0.404 - - -
DKP (Bu et al., 2024b) 0.507 0.344 0.245 0.181 0.214 0.398 - - -

DDGIP 0.513 0.365 0.269 0.202 0.226 0.411 - - -

MIMIC-CXR

R2Gen (Chen et al., 2020) 0.353 0.218 0.145 0.103 0.142 0.270 0.333 0.273 0.276
PPKED (Liu et al., 2021a) 0.360 0.224 0.149 0.106 0.149 0.284 - - -

KnowMat (Yang et al., 2022) 0.363 0.228 0.156 0.115 - 0.284 0.458 0.348 0.371
DCL (Song et al., 2022) - - - 0.109 0.150 0.284 0.471 0.352 0.373

METrans (Wang et al., 2023) 0.386 0.250 0.169 0.124 0.152 0.291 0.364 0.309 0.311
KIUT (Huang et al., 2023) 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321

ORGAN (Huang et al., 2023) 0.407 0.256 0.172 0.123 0.162 0.293 0.416 0.418 0.385
PromptMRG (Jin et al., 2024) 0.398 - - 0.112 0.157 0.268 0.501 0.509 0.476

EKAgen (Bu et al., 2024a) 0.419 0.258 0.170 0.119 0.157 0.287 0.517 0.483 0.499
DKP (Bu et al., 2024b) 0.418 0.260 0.172 0.120 0.159 0.291 0.496 0.461 0.478

DDGIP 0.433 0.266 0.172 0.117 0.167 0.288 0.508 0.529 0.518

Table 1: Comparison with SOTA methods on the IU-XRAY and MIMIC-CXR datasets with NLG and CE metrics.
The best results are in bold. The second-best results are underlined. - indicates that the metric was not measured in
the cited paper.

oration between DDG and IP to generate detailed
descriptions of disease. Notably, DDGIP outper-
forms other graph-based models (PPKED, Know-
Mat, DCL, KIUT, ORGAN) as well as prompt-
based models (PromptMRG, DKP).

In terms of clinical efficacy, our model also
outperforms other baselines. Notably, DDGIP
achieves the highest Recall score of 0.529, lead-
ing the second-best result by a 2.0% improvement,
demonstrating its superior ability to diagnose ab-
normalities. However, a gap remains in the Preci-
sion score between DDGIP and the top-performing
model, EKAgen. In future work, incorporating
planning on the topic nodes of DDG could help
mitigate this gap and further enhance the quality of
the generated reports.

4.5 Ablation study

Analysis of DDGIP. We perform ablation studies
to elucidate the contributions of our proposed DDG
and IP. The results are presented in Table 2. For
our base model, we utilize a vanilla Transformer. A
comparison between the Base and the Base+DDG
reveals an overall improvement, particularly on
BLEU-n scores, indicating that graph-aligned vi-
sual features improves the accuracy of generated
content, boosting its quality. When we analyze the
Base+IP, we observe substantial advancements in

BLEU-1 and BLEU-2 scores, demonstrating that
IP effectively guides the generation of short grams.
Improvemnts in BLEU-4 and METEOR scores sug-
gest that IP also enhances the fluency of the gen-
erated reports. Furthermore, the combination of
DDG and IP showcases their synergistic effect, pro-
pelling DDGIP to achieve state-of-the-art results.

Analysis of informed prompting. Recognizing
the crucial impact of informed prompting, we con-
duct a thorough analysis of its performance. Ini-
tially, we examine the contributions of CMA and
BOW planning within the informed prompting.
As indicated in Table 3, the most significant ad-
vancements arise from CMA, while BOW plan-
ning yields modest overall improvements. The ef-
fectiveness of CMA confirms that the variational
inference strategy can serve as a "shortcut" for
prompt learning, significantly reducing the need
for large datasets and extensive parameters. No-
tably, when comparing model (a) in Table 3 with
the Base in Table 2, we find that merely integrat-
ing a non-informed prompt to the decoder could
result in slight development. Next, we explore
the effects of informed prompting across different
decoder designs. The results shown in Table 4 illus-
trate that informed prompting in the decoder-only
structure leads to generate accurate short-gram out-

3890



Dataset Model BL-1 BL-2 BL-3 BL-4 MTR RG-L

IU-Xray

Base 0.393 0.258 0.189 0.146 0.172 0.362
Base+DDG 0.456 0.310 0.231 0.182 0.194 0.385

Base+IP 0.515 0.359 0.260 0.198 0.221 0.407
DDGIP 0.513 0.365 0.269 0.202 0.226 0.411

MIMIC-CXR

Base 0.314 0.198 0.136 0.099 0.130 0.275
Base+DDG 0.336 0.211 0.145 0.107 0.138 0.280

Base+IP 0.420 0.255 0.164 0.111 0.163 0.282
DDGIP 0.433 0.266 0.172 0.117 0.167 0.288

Table 2: Ablation study of DDGIP, where DDG refers to the Disease Description Graph and IP refers to the Informed
Prompting. The best results are in bold.

Dataset Model CMA BOW Planing BL-1 BL-2 BL-3 BL-4 MTR RG-L

IU-Xray

(a) % % 0.401 0.264 0.192 0.148 0.174 0.370
(b) % ! 0.420 0.276 0.200 0.153 0.180 0.372
(c) ! % 0.507 0.347 0.250 0.194 0.218 0.403
(d) ! ! 0.515 0.359 0.260 0.198 0.221 0.407

MIMIC-CXR

(a) % % 0.317 0.199 0.137 0.101 0.131 0.275
(b) % ! 0.321 0.202 0.139 0.103 0.132 0.276
(c) ! % 0.418 0.254 0.163 0.110 0.161 0.281
(d) ! ! 0.420 0.255 0.164 0.111 0.163 0.282

Table 3: Ablation study of informed prompting. In experiments, models without CMA sample θ from p(θ|X)
during both the training and inference stages. The best results are in bold.

Dataset Decoder BL-1 BL-2 BL-3 BL-4 MTR RG-L

IU-Xray
A 0.393 0.258 0.189 0.146 0.172 0.362
B 0.483 0.334 0.243 0.182 0.208 0.403
C 0.515 0.359 0.260 0.198 0.221 0.407

MIMIC-CXR
A 0.314 0.198 0.136 0.099 0.130 0.275
B 0.404 0.233 0.143 0.093 0.158 0.266
C 0.420 0.255 0.164 0.111 0.163 0.282

Table 4: Ablation study of decoder designs. In this study,
Decoder A represents the vanilla transformer decoder,
Decoder B refers to the decoder-only structure which
excludes Cross Attention but incorporates the informed
prompt, and Decoder C signifies the vanilla transformer
decoder incorporated with the informed prompt. The
best results are in bold.

Graph variants BL-1 BL-2 BL-3 BL-4 MTR RG-L
DDG w/o disease 0.415 0.277 0.205 0.162 0.178 0.376
DDG w/o location 0.410 0.273 0.201 0.159 0.177 0.371

DDG w/o uncertainty 0.435 0.285 0.203 0.153 0.179 0.367
DDG w/o severity 0.423 0.279 0.205 0.158 0.180 0.370

DDG 0.456 0.310 0.231 0.182 0.194 0.385

Table 5: Ablation study of the domain nodes in DDG
on the IU-Xray dataset. The best results are in bold.

puts on both datasets, although it exhibits weaker
performance on BLEU-4 for MIMIC-CXR, which
is a larger and more complex dataset. However,
by integrating informed prompting into a vanilla
Transformer decoder, we have successfully ad-
dressed this limitation, boosting the BLEU-4 score
on MIMIC-CXR from 0.093 to 0.111.

Edge BL-1 BL-2 BL-3 BL-4 MTR RG-L
Undirected 0.455 0.306 0.225 0.173 0.192 0.380

Directed 0.456 0.310 0.231 0.182 0.194 0.385

Table 6: Ablation study of the edge connections in DDG
on the IU-Xray dataset. The best results are in bold.

Analysis of disease description graph. To ex-
plore the impact of the disease description graph,
we conduct ablation studies to evaluate the effect
of each individual component. The results for the
graph variants, presented in Table 5, reveal that
each domain of the DDG plays a pivotal role in
enhancing performance, with the domain working
synergistically to improve the model’s efficacy. Ad-
ditionally, the results for edge connections, shown
in Table 6, indicate that directed edges outper-
form undirected ones. This can be explained by
the fact that undirected edges connect irrelevant
topic nodes through uncertainty, severity, and
location nodes, reducing the distinction between
topic nodes and introducing challenges in training.

4.6 Qualitative analysis
To intuitively illustrate the effectiveness of the pro-
posed DDG and IP, we present a qualitative exam-
ple in Figure 3. As shown, our model, assisted
by the disease description graph, generates reports
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Figure 3: A qualitative example showcasing our model, along with the generated reports and their corresponding
representations in the disease description graph.

that are not only more clinically accurate but also
pertinent to the details of diseases, featuring de-
scriptions such as "minimal" and "left lung
bases". Furthermore, with the aid of the informed
prompt, the model accurately generates phrases
like "a small amount of left pleural fluid
in the right lower lobe" and "small left
pleural effusion", significantly enhancing the
quality of the generated reports.

However, despite these successes, a notable
error must be addressed. Topics such as
"consolidation" and "cardiomegaly" are ei-
ther omitted or incorrectly generated in the report.
This highlights the need for better alignment be-
tween visual features and the graph. In future work,
incorporating planning on the topic nodes of DDG
is expected to address this challenge.

5 Conclusion

In this study, we present an innovative framework
DDGIP for radiology report generation which lever-
ages the disease description graph and informed
prompting. The disease description graph is de-
signed to inject detailed disease-specific knowledge
into report generation. Additionally, we propose
an informed prompting method to guide the gener-
ation, enhancing the precision and fluency of gen-
erated content. The synergistic effect between the
disease description graph and informed prompting
results in a significant improvement in the qual-
ity of the generated reports. Experimental results
on the IU-Xray and MIMIC-CXR datasets demon-

strate that our approach achieves state-of-the-art
performance.

Limitation. The primary limitation of our frame-
work is the occasional omission or inaccuracy in
generating certain clinical topic descriptions, which
may affect the clinical efficacy. Looking ahead, we
aim to integrate planning on the topic nodes of
DDG, thereby enhancing vision-graph alignment
and boosting the model’s clinical efficacy to ad-
dress this challenge.

Ethics Statement

The IU-Xray (Demner-Fushman et al., 2016) and
MIMIC-CXR (Johnson et al., 2019) datasets have
undergone automatic de-identification to ensure
patient privacy. The proposed system aims to auto-
mate the generation of radiology reports, thereby
alleviating the workload for radiologists. However,
we have observed instances where the system may
inaccurately generate or omit disease descriptions,
leading to potential diagnostic errors. If the sys-
tem learns from additional private datasets after
deployment, there are risks of personal informa-
tion leakage through the generated reports. To
mitigate these risks and enhance privacy protec-
tion, further anonymization technologies should be
implemented. Therefore, we encourage users to
carefully consider the ethical implications of the
generated outputs in real-world applications.

3892



Acknowledgments

This research was partly funded by the National
Natural Science Foundation of China (Grant Nos.
62361027 and 62161011), the Key Research and
Development Plan of Jiangxi Provincial Science
and Technology Department (Key Project) (Grant
No. 20223BBE51036), the Humanity and So-
cial Science Fund of Ministry of Education of
China (Grant No. 23YJA870005), the Natural
Science Foundation of Jiangxi Provincial Depart-
ment of Science and Technology (Grant Nos.
20232BAB202022 and 20232BAB202004), the
Humanity and Social Science Foundation of the
Jiangxi Province (Grant No. 22TQ01), the Grad-
uate Innovation Foundation Project of Jiangxi
Province (Grant No. YC2023-S477).

References
Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An

automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the acl workshop on intrinsic and extrinsic evaluation
measures for machine translation and/or summariza-
tion, pages 65–72.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Bengio.
2015. Generating sentences from a continuous space.
arXiv preprint arXiv:1511.06349.

Shenshen Bu, Taiji Li, Yuedong Yang, and Zhiming
Dai. 2024a. Instance-level expert knowledge and ag-
gregate discriminative attention for radiology report
generation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 14194–14204.

Shenshen Bu, Yujie Song, Taiji Li, and Zhiming Dai.
2024b. Dynamic knowledge prompt for chest x-ray
report generation. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 5425–5436.

Kaiyan Chang, Songcheng Xu, Chenglong Wang,
Yingfeng Luo, Tong Xiao, and Jingbo Zhu. 2024.
Efficient prompting methods for large language mod-
els: A survey. arXiv preprint arXiv:2404.01077.

Zhihong Chen, Yaling Shen, Yan Song, and Xiang Wan.
2022. Cross-modal memory networks for radiology
report generation. arXiv preprint arXiv:2204.13258.

Zhihong Chen, Yan Song, Tsung-Hui Chang, and
Xiang Wan. 2020. Generating radiology reports
via memory-driven transformer. arXiv preprint
arXiv:2010.16056.

Dina Demner-Fushman, Marc D Kohli, Marc B Rosen-
man, Sonya E Shooshan, Laritza Rodriguez, Sameer
Antani, George R Thoma, and Clement J McDon-
ald. 2016. Preparing a collection of radiology ex-
aminations for distribution and retrieval. Journal
of the American Medical Informatics Association,
23(2):304–310.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Yao Fu, Yansong Feng, and John P Cunningham. 2019.
Paraphrase generation with latent bag of words. Ad-
vances in Neural Information Processing Systems,
32.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Wenjun Hou, Kaishuai Xu, Yi Cheng, Wenjie Li, and
Jiang Liu. 2023. Organ: observation-guided radi-
ology report generation via tree reasoning. arXiv
preprint arXiv:2306.06466.

Zhe Hu, Hou Pong Chan, Jiachen Liu, Xinyan Xiao,
Hua Wu, and Lifu Huang. 2022. Planet: Dy-
namic content planning in autoregressive transform-
ers for long-form text generation. arXiv preprint
arXiv:2203.09100.

Zhongzhen Huang, Xiaofan Zhang, and Shaoting Zhang.
2023. Kiut: Knowledge-injected u-transformer for
radiology report generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 19809–19818.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu,
Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund,
Behzad Haghgoo, Robyn Ball, Katie Shpanskaya,
et al. 2019. Chexpert: A large chest radiograph
dataset with uncertainty labels and expert comparison.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 590–597.

Saahil Jain, Ashwin Agrawal, Adriel Saporta,
Steven QH Truong, Du Nguyen Duong, Tan Bui,
Pierre Chambon, Yuhao Zhang, Matthew P Lungren,
Andrew Y Ng, et al. 2021. Radgraph: Extracting
clinical entities and relations from radiology reports.
arXiv preprint arXiv:2106.14463.

Haibo Jin, Haoxuan Che, Yi Lin, and Hao Chen. 2024.
Promptmrg: Diagnosis-driven prompts for medical
report generation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
2607–2615.

Baoyu Jing, Pengtao Xie, and Eric Xing. 2017. On
the automatic generation of medical imaging reports.
arXiv preprint arXiv:1711.08195.

3893



Alistair EW Johnson, Tom J Pollard, Nathaniel R Green-
baum, Matthew P Lungren, Chih-ying Deng, Yifan
Peng, Zhiyong Lu, Roger G Mark, Seth J Berkowitz,
and Steven Horng. 2019. Mimic-cxr-jpg, a large pub-
licly available database of labeled chest radiographs.
arxiv 2019. arXiv preprint arXiv:1901.07042.

Christy Y Li, Xiaodan Liang, Zhiting Hu, and Eric P
Xing. 2019. Knowledge-driven encode, retrieve,
paraphrase for medical image report generation. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 33, pages 6666–6673.

Mingjie Li, Bingqian Lin, Zicong Chen, Haokun Lin,
Xiaodan Liang, and Xiaojun Chang. 2023. Dynamic
graph enhanced contrastive learning for chest x-ray
report generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 3334–3343.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Fenglin Liu, Shen Ge, Yuexian Zou, and Xian Wu. 2022.
Competence-based multimodal curriculum learn-
ing for medical report generation. arXiv preprint
arXiv:2206.14579.

Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian
Zou. 2021a. Exploring and distilling posterior and
prior knowledge for radiology report generation. In
Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 13753–
13762.

Fenglin Liu, Changchang Yin, Xian Wu, Shen Ge, Yuex-
ian Zou, Ping Zhang, and Xu Sun. 2021b. Con-
trastive attention for automatic chest x-ray report
generation. arXiv preprint arXiv:2106.06965.

Ivona Najdenkoska, Xiantong Zhen, Marcel Worring,
and Ling Shao. 2022. Uncertainty-aware report gen-
eration for chest x-rays by variational topic inference.
Medical Image Analysis, 82:102603.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Han Qin and Yan Song. 2022. Reinforced cross-modal
alignment for radiology report generation. In Find-
ings of the Association for Computational Linguistics:
ACL 2022, pages 448–458.

Hongyu Shen, Mingtao Pei, Juncai Liu, and Zhaoxing
Tian. 2024. Automatic radiology reports generation
via memory alignment network. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 4776–4783.

Xiao Song, Xiaodan Zhang, Junzhong Ji, Ying Liu, and
Pengxu Wei. 2022. Cross-modal contrastive attention
model for medical report generation. In Proceedings

of the 29th International Conference on Computa-
tional Linguistics, pages 2388–2397.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jun Wang, Abhir Bhalerao, and Yulan He. 2022a. Cross-
modal prototype driven network for radiology report
generation. In European Conference on Computer
Vision, pages 563–579. Springer.

Zhanyu Wang, Lingqiao Liu, Lei Wang, and Luping
Zhou. 2023. Metransformer: Radiology report gener-
ation by transformer with multiple learnable expert
tokens. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
11558–11567.

Zhanyu Wang, Mingkang Tang, Lei Wang, Xiu Li, and
Luping Zhou. 2022b. A medical semantic-assisted
transformer for radiographic report generation. In
International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages
655–664. Springer.

Junda Wu, Zhehao Zhang, Yu Xia, Xintong Li,
Zhaoyang Xia, Aaron Chang, Tong Yu, Sungchul
Kim, Ryan A Rossi, Ruiyi Zhang, et al. 2024. Visual
prompting in multimodal large language models: A
survey. arXiv preprint arXiv:2409.15310.

Shuxin Yang, Xian Wu, Shen Ge, S Kevin Zhou, and
Li Xiao. 2022. Knowledge matters: Chest radiology
report generation with general and specific knowl-
edge. Medical image analysis, 80:102510.

Di You, Fenglin Liu, Shen Ge, Xiaoxia Xie, Jing Zhang,
and Xian Wu. 2021. Aligntransformer: Hierarchical
alignment of visual regions and disease tags for med-
ical report generation. In Medical Image Computing
and Computer Assisted Intervention–MICCAI 2021:
24th International Conference, Strasbourg, France,
September 27–October 1, 2021, Proceedings, Part
III 24, pages 72–82. Springer.

Mengliang Zhang, Xinyue Hu, Lin Gu, Tatsuya Harada,
Kazuma Kobayashi, Ronald Summers, and Yingying
Zhu. 2023. Cad-chest: Comprehensive annotation of
diseases based on mimic-cxr radiology report.

Yixiao Zhang, Xiaosong Wang, Ziyue Xu, Qihang Yu,
Alan Yuille, and Daguang Xu. 2020. When radiol-
ogy report generation meets knowledge graph. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 34, pages 12910–12917.

3894


