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Abstract

Multi-label document classification (MLDC)
aims to allocate more than one label to each
document and attracts increasing attention in
many practical applications. However, previous
studies have failed to pay sufficient attention to
the lack of semantic information on labels and
the long-tail problem prevalent in the datasets.
Additionally, most existing methods focus on
optimizing document features, overlooking the
potential of high-quality label features to en-
hance classification performance. In this paper,
we propose a simple and effective paradigm for
MLDC. Regarding the problem of insufficient
label information and imbalance in the sample
size of categories, we utilize large language
models (LLMs) to semantically expand the la-
bel content and generate pseudo-samples for
the tail categories. To optimize the features of
both documents and labels, we design the con-
trastive learning boosted feature optimization
module facilitated by the similarity matrices.
Finally, we construct a label-guided feature se-
lection module to incorporate the optimized
label features into the input features to provide
richer semantic information for the classifier.
Extensive experiments have demonstrated that
our proposed method significantly outperforms
state-of-the-art baselines.

1 Introduction

Multi-label document classification (MLDC) has
attracted significant attention and in-depth study
due to its wide range of applications across various
fields, such as recommendation systems (Zhang
et al., 2019), sentiment analysis (Kamila et al.,
2022), and user profiling (Wen et al., 2023).

Previous MLDC methods have achieved promis-
ing results but still suffer from the following three
limitations. First, most of them fail to fully uti-
lize the semantic information of the labels. Al-
though Zhang et al. (2023) attempt to use label

*Corresponding author.

names as the inputs of the backbone models to ob-
tain label features, the problem is that label names
are usually concise. In some datasets (e.g., EUR-
Lex (Mencía and Fürnkranz, 2008)), most labels
are represented as IDs, leading to a serious lack
of semantic information. Second, current studies
require sophisticated designs to address long-tail
problems, posing challenges in terms of feasibility
and adaptability to diverse scenarios. Hüllermeier
et al. (2022) enhance the model performance on tail
labels by optimizing the loss function to allocate
more attention to the tail categories. Such meth-
ods are relatively complex to implement and may
not be suitable for all scenarios. Sang et al. (2022)
leverage the concept of transfer learning to acquire
general knowledge from the head-labels and then
transfer this knowledge to the tail-labels with fewer
samples. This approach typically requires consid-
erable effort in designing specialized modules for
feature transfer. Lastly, most current research con-
centrates on enhancing the document features while
neglecting the fact that label features can also sig-
nificantly improve classification performance. For
example, Xu et al. (2023) decompose multi-label
samples into multiple single-label samples, com-
pute label prototypes based on these single-label
samples, and optimize their embeddings in the la-
tent space using contrastive learning. Although Bai
et al. (2022) try to optimize latent representations
through contrastive learning based on the similarity
between label features and document features. It
ignores quantitative information related to labels
and documents, such as label co-occurrence and
label consistency across documents.

To address the problems mentioned above, we
propose an innovative framework called SEP-
MLDC, which optimizes document and label fea-
tures simultaneously. The framework is shown in
Figure 1, which consists of four modules: the label
semantic enhancement module, the data augmenta-
tion module, the feature optimization module, and
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Figure 1: The architecture of the proposed framework. The arrows in the figure show the data flow in the model.

the label-guided feature selection module. First,
the label semantic enhancement module aims to
solve the problem of insufficient label semantic in-
formation. In many MLDC datasets, labels may
appear as IDs or abbreviations, e.g., "7937.0" in
the EUR-Lex dataset and "cs.IR" in the AAPD
dataset (Yang et al., 2018). We leverage the rich
knowledge of LLMs to provide semantic interpre-
tations for labels, thereby obtaining more detailed
content for labels. Second, we employ the data
augmentation module to tackle the long-tail prob-
lem. Specifically, we leverage existing LLMs to
generate pseudo-samples for tail categories, en-
hancing data in these categories and alleviating the
effects of severe class imbalance. Third, we devise
a contrastive learning enhanced feature optimiza-
tion module based on two similarity matrices to
obtain superior document features and label fea-
tures. We construct a document similarity matrix
derived from label relationships and a label simi-
larity matrix derived from document relationships
to optimize document features and label features
based on contrastive learning respectively.

Finally, we aim to integrate label features with
document features to enhance the classifier’s ex-
pressive power. We design a label-guided feature
selection module that generates a specific repre-
sentation based on each label’s importance to the
document for the final classification.

Our contributions are as follows: (1) We leverage
LLMs to enhance label semantic information and
generate pseudo-samples for the tail categories. (2)
We propose a novel similarity matrices-enhanced
contrastive learning approach to optimize docu-
ment features and label features that are more dis-
criminative for classification. (3) We design a
label-guided feature selection module that uses op-
timized label features and document features to
generate representations for the final classification,
enriching the classifier’s input features. (4) Exper-
imental results show that our model can achieve
state-of-the-art performance in comparison with
other strong baselines.

2 Related Work

2.1 Multi-Label Document Classification

Multi-label classification (MLC) methods primar-
ily focus on enhancing representation learning
(Liu et al., 2017) and modeling label dependen-
cies (Yang et al., 2018; Tsai and Lee, 2020; Fallah
et al., 2023; Du et al., 2024). For instance, Du et al.
(2024) propose LD-SPN, a multi-label text classi-
fication method based on Set Prediction Networks
(SPN). It utilizes Graph Convolutional Networks
(GCN) to model label dependencies and introduces
the Bhattacharyya Distance to optimize the out-
put distributions. However, it neglects the fact
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that different labels may concentrate on distinct
tokens. Therefore, label-specific feature learning
(You et al., 2019; Xiao et al., 2019; Ma et al., 2021;
Zhang et al., 2021b,a; Mao et al., 2023), which
captures the unique characteristics of each label, is
a promising approach for improving label differen-
tiation. You et al. (2019) propose a label-specific
attention network that attends to different tokens
when predicting each label. But it neglects the
exploration of label relationships. Additionally,
Ma et al. (2021) utilize GCN to integrate label
information and model-adaptive interactions in a
label-specific manner. Zhang et al. (2021a) lever-
age correlation-guided representations to capture
high-order document-label correlations. Bai et al.
(2022) employ Variational Autoencoder (VAE) to
learn and align the embedding spaces of labels and
documents. However, these methods overlook the
significant impact of label semantic information on
the model and fail to leverage the potential bene-
fits of jointly optimizing both document and label
features.

2.2 Contrastive Learning

Contrastive learning (Oord et al., 2018; Chen et al.,
2020; Khosla et al., 2020) is an effective approach
for optimizing the feature space. The core idea
is to make an anchor sample close to its similar
samples (positive samples) and far from dissimilar
samples (negative samples) in the embedding space.
Contrastive loss is largely inspired by Noise Con-
trast Estimation (NCE) (Gutmann and Hyvärinen,
2010) and its form is generalizable. The original
contrastive loss only considers instance-level invari-
ance, using multiple views of the anchor instance
as its positive set. In this paper, we leverage la-
bel information to construct a similarity matrix for
documents enabling supervised contrastive learn-
ing on document features. Conversely, document
information is used to construct a similarity ma-
trix for labels, facilitating supervised contrastive
learning on label features. Document and label
features are optimized simultaneously to provide
the classification model with higher-quality feature
inputs.

3 The Proposed Method

3.1 Problem Definition

We use D to denote the training set, promptl and
promptD represent the prompts for expanding the
semantic information of the labels and to generate

the pseudo-samples for tail categories, respectively.
Individual documents in the dataset are denoted
by x. Y represents the label space associated with
the dataset. For each document xi, it corresponds
to a set of labels yi = [y1, . . . , yj , . . . , yL], where
yj ∈ {0, 1}, and yj = 1 indicates that the j-th label
is correlated with the document xi. L represents
the total number of all candidate labels. In the
testing phase, our core task is to predict all possible
relevant labels for a new document.

3.2 Label Semantic Enhancement
Some labels in the dataset are represented as IDs
or acronyms with ambiguous meanings, signifi-
cantly hindering the model’s ability to learn label
semantic information effectively. To enrich label
information, we design efficient prompts to guide
the LLM in expanding label content:

y∗j = LLM(promptl, yj), yj ∈ Y, (1)

where the LLM used here is GPT-4. We then com-
bine the original label with its expanded content
to create a more semantically explicit expression,
which will be fed into the backbone model. This
enables the model to capture label semantics more
comprehensively and accurately:

y′j =
[
yj ; y

∗
j

]
, yj ∈ Y. (2)

The expanded labels now contain richer seman-
tic content, allowing the model to better under-
stand their inherent meaning. Some examples of
expanded labels used in our dataset are provided in
Appendix A.

3.3 Data Augmentation for Tail Categories
The imbalanced class distribution in multi-label
datasets causes a severe long-tail phenomenon.
This makes models more likely to focus on head
categories with larger sample sizes while relatively
neglecting tail categories with fewer samples.

To enhance the model’s ability to learn the tail
category information more effectively, we leverage
existing LLMs to generate pseudo-samples for tail
categories Ytail, defined as categories with fewer
than 50 samples. Specifically, we use dataset in-
formation and expanded label content as prompts,
along with a sample from the corresponding cat-
egory as a demonstration. We then generate 50
pseudo-samples for each tail category and incorpo-
rate them into the training set for subsequent model
training:

xtyj = LLM(promptD, yj , xyj ), yj ∈ Ytail, (3)
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Dtail = {xtyj}, yj ∈ Ytail, (4)

where xyj denotes the sample of the tail category yj ,
xtyj represents the pseudo-sample of the tail cate-
gory t generated by the LLM. Here, we utilize GPT-
4 as the LLM. In promptD, we provide dataset
information and specify the requirements for the
expected pseudo-samples. The specific prompts
used in our study are provided in Appendix B.

3.4 Similarity Matrices Enhanced Contrastive
Learning

Label Similarity Matrix Based on Document
Consistency Refining label features in the latent
space by increasing the distance between irrelevant
labels and keeping relevant labels closer benefits
model classification.

We utilize supervised contrastive learning to opti-
mize the label representations in the latent space. A
label similarity matrix is constructed based on the
relationship between different labels that represent
the same document and is applied to contrastive
learning to refine label features.

In contrastive learning, constructing the positive
set and negative set for the anchor document is
crucial. We treat the anchor label yi as the positive
sample. Other labels {yj}, yj ∈ Ny are considered
as negative samples for label yi. Here, Ny denotes
the negative set for label yi.

The label similarity matrix Wy ∈ Rbs×bs is de-
fined as:

Wy = Lsame ◦Ay, (5)

Ayi = SyiE+ Sy − Lsamei , (6)

Lsame = YTY, (7)

Sy = sum(Y). (8)

Y ∈ Rbs×L represents the label matrix of the
documents, where bs is the batch size and L de-
notes the number of labels. The operator sum(·)
refers to summing matrix rows.
Sy ∈ Rbs denotes the number of labels as-

signed to each document. The element Lsameij

in Lsame ∈ Rbs×bs indicates the number of shared
labels between document xi and document xj . The
vector Lsamei corresponds to the i-th row of the
matrix Lsame.

Additionally, E denotes the identity matrix. The
element Ayij in Ayi ∈ Rbs represents the number
of documents assigned both label yi and label yj .
The operator ◦ denotes the element-wise division
between two matrices.

The contrastive learning loss of labels is defined
as L1:

L1=
1

L

∑

yi∈Y
−log




exp(eyi·eyi/τ)Wyii∑

yk∈Ny

exp(eyi·eyk/τ)Wyik


,

(9)
where τ is the temperature coefficient in contrastive
learning, and eyi = fθ(y

′
i) denotes the embedding

of the i-th label. The fθ used here is the pre-trained
Roberta-base model(Liu et al., 2019). The operator
· is the dot product between embeddings. The el-
ement Wyii refers to the value at the i-th row and
i-th column of the label similarity matrix.

This process encourages a more structured orga-
nization of label features in the latent space, ensur-
ing that highly relevant labels remain close while
irrelevant labels are distinctly separated.

Document Similarity Matrix Based on Label Co-
existence In multi-label document classification,
latent space feature representations often become
ambiguous and entangled, as these documents cor-
respond to multiple labels simultaneously. This
distinction is the fundamental difference between
multi-label and single-label classification.

Previous methods employ attention mechanisms
to compute label-specific document representations
and train models in single-label format. However,
these approaches overlook the advantages of incor-
porating label-relevant information.

In previous methods using contrastive learning,
documents sharing common labels, even if it’s just
one, are typically assigned to the positive set, while
all others are classified as negative. However, due
to the large number of labels, this kind of division
method hinders the learning of high-quality docu-
ment features, as the inconsistency of non-common
labels confuses the model. To address this problem,
we design a new strategy where only documents
with identical labels are added to the positive set
Px, while all other documents are placed in the
negative set Nx. Specifically, the label set yj of
the document xj in the positive set of the anchor
document xi must satisfy yj = yi. For documents
in the negative set, we compute a similarity matrix
based on the number of labels they share with the
anchor document and incorporate it into the con-
trastive learning process. The document similarity
matrix Wx ∈ RL×L is given by:

Wx = Docsame ◦Ax, (10)
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Dataset Ntrn Ntst Dvocab L Lavg Wtrn Wtst

AAPD 54,840 1,000 69,399 54 2.41 163.42 171.65
RCV1 23,149 781,265 47,236 103 3.18 259.47 269.23
EUR-Lex 11,585 3,865 171,120 3,956 5.32 1225.20 1248.07

Table 1: Data statistics. Ntrn, Ntst refer to the number of documents in the training and test sets, respectively.
Dvocab is the vocabulary size of documents. L is the number of labels. Lavg is the average number of labels per
document. Wtrn, Wtst refer to the average number of words per document in the training and test sets, respectively.

Axi = SxiE+ Sx −Docsamei , (11)

Docsame = YYT, (12)

Sx = sum(YT). (13)

The element in Sx ∈ RL represents the number
of documents tagged with each label. The element
Docsameij in Docsame ∈ RL×L denotes the num-
ber of documents tagged by both label yi and the
label yj . Docsamei refers to the i-th row of the
matrix Docsame. E is the identity matrix. The
element Axij in Axi ∈ RL represents the total
number of labels after de-emphasis corresponding
to documents xi and xj .

Similar to the label matrix, we construct the
document similarity matrix which is used in the
supervised contrastive loss to optimize document
features:

Lxi=
∑

xj∈Px

−log




exp(exi·exj/τ)Wxij∑

xk∈Nx

exp(exi·exk/τ)Wxik


, (14)

where exi = fθ(xi) represents the embedding of
the i-th document, and Wxij is the element in the
i-th row and j-th column of the document simi-
larity matrix. Given a batch of documents B, the
contrastive loss of documents can be expressed as:

L2 =
1

|B|
∑

xi∈B
Lxi . (15)

Different representation distances are estab-
lished based on the ratio of shared labels among
documents, effectively alleviating the issue of doc-
ument representations being easily confused in the
feature space.

By constructing the two similarity matrices, we
guide the model to optimize both label and doc-
ument features in the latent space through con-
trastive learning.

3.5 Label-Guided Feature Selection
In previous studies, researchers have concatenated
label features with document features and input
them into the model. This was done in an attempt
to enhance the predictive power of the classification
model through a more comprehensive representa-
tion. However, it has a significant limitation during
the testing phase: the absence of labels forces re-
searchers (Zhang et al., 2023) to replace the label
part with 0, which inevitably weakens the inter-
pretability of the model. Moreover, in multi-label
classification, directly concatenating labels with
document data is impractical due to the varying
number of labels associated with each document.

Inevitably, redundant information that is not
strongly correlated with the labels appears in the
document. To address this, we employ a label-
guided content querying mechanism to extract
high-quality features from the document features
ex ∈ Rbs×d and label features ey ∈ RL×d which
are optimized in Section 3.4.

We hope to learn a weight to reflect the impor-
tance of different labels to the document and use it
to aggregate the label features to obtain a document-
specific label representation:

ex
y = αey, (16)

α = softmax(exeTy ). (17)

Next, we concatenate ex
y with the document fea-

ture to create the input for the classifier fµ, which
is a multi-layer perception:

einput = [ex
y; ex]. (18)

Finally, we apply cross-entropy loss to all the
documents. In the multi-label setting, since a doc-
ument can have multiple labels, we must consider
all candidate labels for each document xi. The
classification loss is calculated as:

Lce=− 1

|D|
∑

xi∈D

L∑

j=1

yj logp(ypre=yj |einput), (19)
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Method P@1 P@3 P@5 N@3 N@5

XML-CNN 74.38 53.84 37.79 71.12 75.93
SGM 75.67 56.75 35.65 72.36 75.30
DXML 80.54 56.30 39.16 77.23 80.99
Attn-XML 83.02 58.72 40.56 78.01 82.31
EXAM 83.26 59.77 40.66 79.10 82.79
LSAN 85.28 61.12 41.84 80.84 84.78
HTTN 83.84 59.92 40.79 79.27 82.67
LDGN 86.24 61.95 42.29 83.32 86.85
LSFA 86.95 62.88 43.43 83.96 87.53

SEP-MLDC 90.30 64.56 43.08 85.72 88.93

Table 2: Comparison results on the AAPD dataset.

D = D ∪Dtail, (20)

where ypre is the label predicted by the model. D
denotes the set of original documents D and doc-
uments generated for the tail categories Dtail. By
combining equations (9), (15) and (19), the overall
loss of our proposed framework is:

L = Lce + βL1 + γL2, (21)

where β and γ are adjustable weight parameters.

4 Experiments

4.1 Experimental Settings

Datasets and Evaluation Metrics We evaluate
the proposed model on three MLTC datasets in-
cluding AAPD (Yang et al., 2018), RCV1 (Lewis
et al., 2004), and EUR-Lex (Mencía and Fürnkranz,
2008). Table 1 contains the statistics of these three
benchmark datasets. We follow the settings of pre-
vious works (You et al., 2019; Ma et al., 2021;
Xiao et al., 2021; Xu et al., 2023) to use precision
at k(P@k) and normalized discounted cumulative
gain at k(N@k) as evaluation metrics.

Parameter Settings We set the loss function pa-
rameters β and γ to 0.01. The temperature coef-
ficient τ in contrastive learning is set to 0.1. The
AdamW optimizer (Loshchilov and Hutter, 2019)
is used with an initial learning rate of 5 × 10−5

and a dropout rate of 0.5. All experiments are con-
ducted on a single 3090 GPU, and the experimental
results for each dataset are obtained by averaging
the results of ten trials.

4.2 Baselines

We compare our method with the following strong
baselines. XML-CNN (Liu et al., 2017) is a CNN-
based model using a dynamic max pooling scheme
to capture high-level features. SGM (Yang et al.,

Method P@1 P@3 P@5 N@3 N@5

XML-CNN 95.75 78.63 54.94 89.89 90.77
SGM 95.37 81.36 53.06 91.76 90.69
DXML 94.04 78.65 54.38 89.83 90.21
Attn-XML 96.41 80.91 56.38 91.88 92.70
EXAM 93.67 75.80 52.73 86.85 87.71
LSAN 96.81 81.89 56.92 92.83 93.43
HTTN 95.86 78.92 55.27 89.61 90.86
LDGN 97.12 82.26 57.29 93.80 95.03
LSFA 97.21 82.52 57.52 94.20 95.42

SEP-MLDC 98.06 85.64 61.36 94.33 94.92

Table 3: Comparison results on the RCV1 dataset.

Method P@1 P@3 P@5 N@3 N@5

XML-CNN 70.40 54.98 44.86 58.62 53.10
SGM 70.45 60.37 43.88 60.72 55.24
DXML 75.63 60.13 48.65 63.96 53.60
Attn-XML 79.66 64.88 52.99 68.66 62.33
EXAM 74.40 61.93 50.98 65.12 59.43
LSAN 79.17 64.99 53.67 68.32 62.47
HTTN 80.45 65.57 55.68 69.01 63.76
LDGN 81.03 67.79 56.36 71.81 66.09
LSFA 83.75 70.74 58.95 74.13 68.25

SEP-MLDC 85.88 71.94 59.52 76.16 68.83

Table 4: Comparison results on the EUR-Lex dataset.

2018) is a sequence generation model that models
the correlations between labels. DXML (Zhang
et al., 2018) is a deep embedding method that
models the feature and label space simultaneously.
Attn-XML (You et al., 2019) is a deep learning
model that uses multi-label attention to extract in-
formation for each label. EXAM (Du et al., 2019)
is a framework that employs the interaction mech-
anism to compute the word-level interaction sig-
nals. LSAN (Xiao et al., 2019) is a label-specific
attention model based on self-attention and label-
attention mechanisms. HTTN (Xiao et al., 2021)
is a head-to-tail network that transfers the meta-
knowledge from the head-labels to the tail-labels.
LDGN (Ma et al., 2021) is a graph convolution net-
work that incorporates category information and
models adaptive interactions of labels. LSFA (Xu
et al., 2023) is a prototype-based VAE-style feature
generation model to capture the intra-class seman-
tic variations from the head-labels and then apply
it to augment features for tail-labels.

4.3 Result Analysis
Tables 2, 3 and 4 report the experimental results
for the MLDC tasks on AAPD, RCV1, and EUR-
Lex datasets respectively. The best results are
highlighted in bold. From the results, we ob-
serve that SEP-MLDC performs significantly bet-
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Dataset AAPD EUR-Lex

Modules P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5

SEP-MLDC w/o LSE 85.2 61.29 39.43 82.02 85.66 76.44 65.73 52.94 71.24 63.23
SEP-MLDC w/o DATC 88.61 61.87 43.16 84.02 86.10 75.19 64.27 50.55 68.39 56.12
SEP-MLDC w/o SMCL 82.12 59.27 41.37 80.29 83.28 78.97 68.14 55.76 72.48 62.60
SEP-MLDC w/o LGFS 84.73 60.19 40.16 82.84 85.72 80.31 69.46 57.58 72.19 65.79

SEP-MLDC 90.30 64.56 43.08 85.72 88.93 85.88 71.94 59.52 76.16 68.83

Table 5: Ablation study on key components in SEP-MLDC. LSE denotes the label semantic enhancement module,
DATC stands for the module of data augmentation for tail categories, SMCL represents the feature optimization
module based on similarity matrices-enhanced contrastive learning, and LGFS refers to the label-guided feature
selection module.

ter than the other baselines, demonstrating the
superiority of our method. Specifically, for the
AAPD dataset (Table 2), SEP-MLDC improves
upon the most competitive baseline, LSFA, by
3.35%, 1.68%, 1.76%, and 1.40% in terms of
P@1, P@3, N@3, N@5 scores, respectively. For
the RCV1 dataset (Table 3), SEP-MLDC improves
upon LSFA by 0.85%, 3.12%, 3.84%, and 0.13% in
terms of P@1, P@3, P@5, N@3 scores. And for
the EUR-Lex dataset (Table 4), SEP-MLDC out-
performs LSFA by 2.13%, 1.20%, 0.57%, 2.03%,
and 0.58% on all metrics.

The main reason SEP-MLDC achieves such
a performance improvement is that it leverages
LLMs to semantically enrich the labels. This pro-
cess gives the labels a clearer and richer meaning
within the dataset, greatly enhancing their expres-
sive power. Additionally, LLMs are utilized to
generate pseudo-samples for tail categories. This
encourages the model to focus more on categories
with fewer samples, thereby mitigating the impact
of the long-tail problem. Furthermore, effectively
modeling both label relevance and document rele-
vance allows the model to learn more discrimina-
tive feature representations. Lastly, SEP-MLDC
integrates the label information that documents em-
phasize into the features to be classified. This inno-
vative approach significantly enhances the informa-
tion density of the features, further improving the
model’s performance.

4.4 Ablation Study
We analyze the impacts of key components in SEP-
MLDC. Table 5 shows the results evaluated on
AAPD and EUR-Lex datasets.

Label Semantic Enhancement After removing
the label semantic enhancement module, we di-
rectly input the original labels into the encoder to
obtain label features for subsequent modules. As

shown in Table 5, it is clear that the absence of la-
bel semantic information leads to a significant drop
in model performance on both the AAPD and EUR-
Lex datasets. This is especially evident in the EUR-
Lex dataset, where the absence of label semantic
information notably hinders performance due to
the large number of ambiguous labels, highlighting
the importance of label semantic enhancement.

Data Augmentation for Tail Categories As
shown in Table 5, the absence of the data augmenta-
tion module for tail categories leads to a noticeable
decline in model performance on both the EUR-
Lex and AAPD datasets. Notably, this effect is
more pronounced in the EUR-Lex dataset, where
P@1 drops by as much as 10.69%. This can be
attributed to the more severe long-tail problem in
EUR-Lex compared to AAPD, as the EUR-Lex
dataset contains a significantly larger number of
tail categories. From this perspective, the tail cate-
gory data augmentation module plays a crucial role
in effectively mitigating the long-tail issue.

Similarity Matrices Enhanced Contrastive
Learning Table 5 shows a notable decrease in
model performance when the two similarity matri-
ces module is removed, with a drop of 8.18% in the
P@1 metric for the AAPD dataset and 6.91% for
the EUR-Lex dataset, underscoring its importance.
By modeling both label and document relation-
ships, we construct a label similarity matrix and
a document similarity matrix. These matrices are
used in the corresponding feature contrastive learn-
ing to optimize label and document representations,
thereby making the feature distribution in the latent
space more coherent.

Label-Guided Feature Selection From Table 5,
we observe that the label-guided feature selection
module is second only to the similarity matrices-
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Figure 2: Label-label inner-products.

enhanced feature optimization module in terms
of importance. This module enriches the input
features by providing more valuable information,
thereby improving classification performance.

4.5 Performance on Tail Categories

To further evaluate the effectiveness of the SEP-
MLDC in alleviating the long-tail problem, we
compare its performance against other baselines
using PSP@k, which amplifies the impact of rare
labels by applying inverse propensity weighting. It
adjusts the emphasis on rare labels by assigning
them higher weights.

We conduct performance experiments on tail cat-
egories in the EUR-Lex dataset, where the long-tail
issue is particularly severe. Table 6 shows that SEP-
MLDC significantly outperforms the baselines in
tail label classification. This is expected, as SEP-
MLDC effectively addresses the data sparsity of
tail labels by leveraging LLMs to generate pseudo-
samples for these labels.

Method PSP@1 PSP@3 PSP@5

LSAN 36.41 41.27 43.42
HTTN 38.96 43.28 45.74
LSFA 42.50 48.03 50.69

SEP-MLDC 44.93 51.84 53.78

Table 6: Performance on tail-categories on the EUR-Lex
dataset.

4.6 Visualization

We conduct a thorough analysis of the label rep-
resentations learned by the model, as shown in
Figure 2. This figure illustrates a map of the inner-
product weights of partial label embeddings from
the AAPD dataset. The heatmap visualization pro-
vides an intuitive representation of the relation-
ships among labels, where the intensity of the col-
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Figure 3: Document-document inner-products.

ors directly reflects the strength of their correla-
tion. Notably, labels like "cs.IT" and "math.IT"
are often annotated together on the same docu-
ments. These labels are represented by darker
shades on the map, indicating a high degree of
co-occurrence and strong correlation. In contrast,
labels like "math.PR" and "cs.AI", which never ap-
pear together in the training set, exhibit low feature
similarity and are depicted in lighter hues. This
observation suggests that the learned label embed-
dings have effectively captured the inter-label cor-
relations. Additionally, the optimized label features
serve as a beneficial adjunct for selecting document
features.

As shown in Figure 3, a heatmap depicts the
feature similarity among samples from the AAPD
dataset. The heatmap reveals that the first five doc-
uments exhibit a high degree of feature similarity,
whereas x7, x8, and x9 from another cluster char-
acterized with elevated similarity. In contrast, x6
and x10 are observed in isolation, exhibiting mini-
mal feature similarity and little correlation with the
other documents. Notably, the label sets of x6 and
x10 are entirely distinct from the others, with no
overlapping labels. It is worth noting that when the
feature similarity between the documents exceeds
or equals a threshold value of 0.8, their label sets
are found to be identical. These observations con-
firm that the discriminability of document features
within the latent space is significantly enhanced af-
ter the feature optimization. The problem of feature
ambiguity is alleviated. Specifically, the similar-
ity matrices-enhanced contrastive learning module
helps bring document features with similar label
sets closer together.

5 Conclusion

In this paper, we first introduce a semantic expan-
sion strategy for labels through LLMs, aiming to
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enrich their content and diversity. With the assis-
tance of LLMs, we enhance the number of tail cat-
egories by generating pseudo-samples for the tail
categories. Then we propose the similarity matri-
ces, an innovative approach applied in contrastive
learning, to optimize the feature representation of
both documents and labels. The label-guided fea-
ture selection module is designed to fuse relevant
label features for the document, enriching the in-
formation and aiding model classification. Exper-
iments demonstrate that our method outperforms
state-of-the-art approaches.

Limitation

In our approach, we utilize LLMs to semantically
enrich labels and generate samples for tail cate-
gories, which inevitably increases the experimental
cost in terms of both time and financial investment.
Moreover, the design of the prompt has a significant
impact on the quality of the tail category samples
generated by LLMs. In future work, we plan to ex-
plore the use of open-source large language models.
Our goal is to strike a balance between time and
computational costs by employing techniques such
as batch processing and fine-tuning. Additionally,
we will develop a set of prompt templates suitable
to various multi-label datasets.
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A Examples of Label Semantic
Enhancement

Table 7 shows the prompts we constructed for se-
mantic expansion of the AAPD and EUR-Lex la-
bels, along with some of the expanded label content.

B Prompts of Data Augmentation for Tail
Categories

In Table 8, we demonstrate the data for tail labels
generated with the assistance of LLMs, as well as
the prompts employed.
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Dataset Prompt_Label Label_Original Label_Improved

AAPD

The AAPD dataset is a typical
multi-label text classification
dataset sourced from ArXiv
academic papers, containing
titles and abstracts, with
ArXiv’s subject categories as
labels. Please explain the
meaning of {label} in the
AAPD dataset in one sentence,
using no more than 30 tokens
and unrelated information.

stat.ML The content of the paper is related to the
fields of statistical machine learning.

math.PR
Probability in mathematics, focusing
on the study of probability theory and
stochastic processes.

cs.CE
The field of probability in mathematics,
focusing on the study of probability the-
ory and stochastic processes.

physics.data-an

The content of the paper involves data
analysis, statistical methods, and prob-
ability in the field of physics, encom-
passing the study and interpretation of
physical phenomena through statistical
techniques or data-driven approaches.

quant-ph

Related to the field of quantum physics,
covering various directions such as the-
oretical research, experimental tech-
niques, and quantum information sci-
ence.

EUR-Lex

The EUR-Lex dataset is a
legal document dataset used
for multi-label text
classification, containing legal
texts, regulations, and other
legal documents from the
European Union. Each
document in the dataset is
associated with one or more
labels that represent different
areas of law. Please explain
the meaning of {label} in the
EUR-Lex dataset in one
sentence, using no more than
30 tokens and unrelated
information.

7937.0
The legal topic "agricultural structure"
under the category of "Agriculture and
Fisheries".

accession_criteria
The specific conditions or standards that
a country must meet to join the Euro-
pean Union.

access_to_the_courts
The legal topic concerning the right or
ability of individuals or entities to seek
judicial redress or remedy in courts.

accounting_system
Laws and regulations related to the sys-
tem of recording and summarizing busi-
ness and financial transactions.

administrative_expenditure

Legal topics related to the costs of run-
ning a government or organization, in-
cluding salaries, supplies, and overhead
expenses.

Table 7: Examples of label semantic enhancement. In the prompt, the placeholder {label} should be replaced with
the corresponding label from the dataset when it is used.

Dataset Prompt_Data

AAPD

Example: {document}. Please refer to the above example and then write an article abstract
meeting the following criteria:
1. The abstract belongs to the fields of {label1}, . . . , {labeln}. {label1} represents {text1},
. . . , {labeln} represents {textn}.
2. The length is approximately {m} tokens.
3. Keep a similar essay writing style, requiring rigor and no mistakes.
4. Describe from several aspects: research background, problems to be solved, proposed methods,
and results.

EUR-Lex

Example: {document}. Please refer to the above example and then write an EU legal document
meeting the following criteria:
1. Documents usually include legal provisions, regulations, directives, resolutions, rulings, etc.
Each document contains the content of the legal text (such as title, summary or complete legal
text).
2. The legal document belongs to the {label1}, . . . , {labeln} fields. {label1} represents
{text1}, . . . , {labeln} represents {textn}.
3. The length is approximately {m} tokens.
4. Maintain a similar legal document writing style, requiring rigor, no errors, and conformity to
actual conditions.
5. Pick a random date in the past.

Table 8: Prompts of data augmentation for tail categories. In practice, {document} is replaced with tail samples.
{labeln} represents a label of {document}, where n is the number of assigned labels. The corresponding content
{textn}, expanded through the label semantic enhancement module, is added to the prompt to enrich the information
and enhance its expressiveness. {m} specifies the desired sample length.
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