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Abstract
Natural language understanding over tabular
data is crucial for data discovery tasks such as
joinable and unionable table search. State-of-
the-art approaches adopt large language models
(LLMs) trained over massive text corpora to as-
sess the table semantic relatedness, typically
following a pretrain-and-finetune paradigm
with labeled tabular data. Recent studies in-
corporate auxiliary tasks such as entity resolu-
tion and column type classification in the fine-
tuning phase to improve the performance. How-
ever, there is a lack of studies on how different
supervisions complement or even contrast each
other, leading to a suboptimal performance on
the final data discovery tasks. In this paper, we
propose a simple yet effective multi-task fine-
tuning framework named DISCOVERGPT that
holistically discovers and leverages the intricate
relationships among the supervisions to opti-
mize the model performance on the data discov-
ery task. Moreover, DISCOVERGPT is plug-
and-play that allows a broad range of open-
domain auxiliary tasks to be incorporated, by
utilizing the generative power of LLMs. We
demonstrate the usability and effectiveness of
DISCOVERGPT with baseline comparisons and
ablation studies. DISCOVERGPT outperforms
the top baseline by up to 7% in F1 score1.

1 Introduction

With the ever-increasing volume of open data scat-
tered on the Internet as well as closed data owned
by enterprise organizations, discovering relation-
ships such as joinable and unionable relation be-
tween tables becomes a fundamental task to enable
a holistic view of the data for many downstream
applications, ranging from data governance, data
exploration to data integration (Fan et al., 2023a;
Paton et al., 2024; Chapman et al., 2020). As the
tables are created, ingested, organized and main-
tained by different personnel using various data

∗Work done during an internship at Amazon Web Services.
1We will release our code and data upon acceptance.
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Figure 1: DISCOVERGPT vs. previous methods.

systems, they are becoming inevitably inconsistent
and messy. Automatically identifying relationships
that are not already defined can be extremely chal-
lenging due to both syntactic and semantic discrep-
ancies in the data. LLMs have laid the foundation
for the representation learning-based related table
discovery approaches (Dong et al., 2021; Khati-
wada et al., 2023; Hu et al., 2023). These methods
typically leverage the LLM as the first layer to
convert tabular data into dense vector representa-
tions with rich semantic information for the later
matching procedure. The LLMs are often further
fine-tuned to better understand the nature of tabular
data and data discovery task.
State-of-the-art methods and their limitations.
The forefront of technology is divided into two
main categories: 1) Table pre-training meth-
ods, which typically utilize table metadata re-
construction (e.g., TAPAS (Herzig et al., 2020),
TUTA (Wang et al., 2021)) or content prediction
approaches (e.g., TABBIE (Iida et al., 2021)) to en-
hance LLMs’ understanding of table content, and
2) Table task-assisted training methods, such as
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Starmie (Fan et al., 2023b), Unicorn (Tu et al.,
2023), and Table-GPT (Li et al., 2023), introduce
auxiliary tasks and their corresponding training ob-
jectives, enabling the model to understand tabular
data from different perspectives and granularities.
Although these methods can improve LLMs’ capa-
bility to comprehend tabular data and further adapt
to specific tasks through fine-tuning, they share
common issues. 1) These methods overlook the
complementarity between different tasks. For in-
stance, the interactions among tasks on different
levels are neglected during the training. As shown
in Figure 1, prior methods fail to consider that the
“Country” and “GEC” columns could be implic-
itly matched in the Entity Matching task during
the training of the Schema Matching task. This
oversight led the model to an incorrect prediction
that these two columns as unrelated (i.e., False) in
the Column Relatedness Prediction task. 2) The
tasks used for pre-training and auxiliary training
involve table content classification, requiring pre-
defined labels, which limits the applicability in
open-domain and few-shot training tasks. Using
Figure 1 as an example, the Schema Classifica-
tion task is limited to predefined labels, which hin-
ders its ability to generalize from “Country” to
“Nation” in open-domain downstream tasks. This
limitation leads to erroneous predictions as well.
Our approach. We introduce DISCOVERGPT to
address the aforementioned issues. 1) By consid-
ering the intricate interactions between different
levels of tasks such as cells, rows, columns, and
tables, DISCOVERGPT adaptively assigns weights
to different tasks through the exchange of infor-
mation between them. As shown in Figure 1, DIS-
COVERGPT effectively established the relationship
between “Country” and “GEC” by facilitating in-
formation exchanged between the Entity Match-
ing and Schema Matching tasks during training.
This allows the model to accurately predict their
relatedness in the Column Relatedness Prediction
task. Here, answers often require reasoning across
multiple tables, a process that DISCOVERGPT en-
hances by accurately capturing inter-table relation-
ships. 2) We extend table-assisted training tasks
to a broader range of open-domain auxiliary ones,
such as Row Population and Column Population,
that do not require any labels. As illustrated in
Figure 1, the open-domain Schema Prediction task
is not confined to predefined labels. For the same
column, it can simultaneously predict “Country”

and “Nation” classes, thereby accurately predict-
ing the columns as related. Moreover, to construct
a dataset for the general-domain data discovery
task and enhance the model robustness, we utilize
real-world tables and further introduce a series of
real-world noise, such as table word abbreviations,
misspellings, and omissions, into these tables. We
employed manual annotations to label 2,167 en-
tries, indicating the relatedness between columns
across different tables.
Contributions. Our main contributions are three-
fold: (1) We proposed a multi-task fine-tuning
framework DISCOVERGPT that discovers and
leverages intricate interactions among sub-tasks
for data discovery task. (2) DISCOVERGPT is
plug-and-play, in which we incorporate a variety of
open-domain auxiliary tasks that utilize the genera-
tive power of LLMs. (3) We conducted extensive
experimental evaluations to demonstrate the effec-
tiveness of DISCOVERGPT, which outperforms the
best performing baseline by up to 7% in F1 score.

2 Preliminary

Column Relatedness Prediction (CRP) determines
whether two columns from two different tables are
related based on semantic similarity or underly-
ing relationships. Specifically, we consider the
scenario where only a small amount of labeled
training data is available. We define a database
table as T . For each table T ∈ T , it is com-
posed of m columns {t1, t2, · · · , tm}. Similar to
previous studies (Dong et al., 2023), given two
database tables T, T ′, CRP can determine whether
any column t ∈ T can be joined with any col-
umn t′ ∈ T ′. We adopt S(T, t, T ′, t′) to represent
the text transformed by the quadruple (T, t, T ′, t′).
The trained language model fLM takes it as in-
put and outputs the CRP result r(T, t, T ′, t′) =
fLM (S(T, t, T ′, t′)) ∈ {true, false}, where true
indicates that the two columns can be joined based
on semantic similarity or underlying relationships,
and false indicates they cannot be joined.

3 Multi-task Learning For Column
Relatedness Prediction

The ability to predict column relatedness is crucial
for effective data discovery, especially when deal-
ing with large datasets. The CRP task requires a
substantial amount of labeled data for training accu-
rate prediction models. However, annotating such

359



}
Rank Country Gold

1 France 9
2 Italy 5

Rank Sales Country
1 $ 100, 000 Italy
2 $ 54, 000 France

Column Relatedness Prediction

(Table, Column)

(Table, Column)

True
Corrupted Cell Detection

(Table, Cell) True

Rank Country Gold
1 France 9
2 Italy 129.2

Schema Matching
(Schema) (Schema)True

Earth-and-Atmospheric-Sciences Earth-and-Space-Sciences

Column Population

(Table) Silver

Rank Country Gold
1 France 9
2 Italy 5

Name City Age
David Smith Atlanta 18

Name Age City
John Smith 18 Atlanta

Row Population

(Table, Column) 3
Rank Country Gold

1 France 9
2 Italy 5

Schema Prediction

(Table, Column) Year
? City Rank

2001 Erfurt #2
2002 Berlin #4

Entity Matching

False

Row Level
Column Level

(Schema)(Schema)

Figure 2: Illustrations of Column Relatedness Prediction and the six sub-tasks (Corrupted Cell Detection, Schema
Matching, Column Population, Row Population, Entity Matching, and Schema Prediction).

data is labor-intensive, requiring domain expertise
and extensive resources. Moreover, different do-
mains may have unique characteristics and require-
ments, necessitating the re-annotation of data for
each specific domain. This complexity poses a
challenge in building robust CRP models across
multiple domains.

3.1 Task Formalization

To overcome the limitations of labeled data avail-
ability, we propose utilizing unlabeled data to gen-
erate sub-task data for training CRP models. From
the perspective of understanding database table row
and column information, we propose six sub-tasks,
as illustrated in Figure 2. For the CRP and these
six sub-tasks, we provide definitions.
(1) Column Relatedness Prediction refers to the
task of determining whether two columns from
different tables are related or can be joined based
on their semantic similarity or underlying relation-
ship. We formalize CRP as the process of decid-
ing whether there exists a meaningful connection
between two columns in distinct tables. For exam-
ple, a CRP task in Figure 2 determines whether
the “Country” column in the first table and the
“Country” column in the second table are related,
indicating a potential join between these columns.
(2) Corrupted Cell Detection aims to detect
whether each cell value in a given table is corrupted
or not. This task involves identifying any inconsis-
tencies, errors, or anomalies present in the table’s
cell values. For instance, in Figure 2, the Corrupted
Cell Detection task would flag the cell value “129.2”
in the “Gold” column as corrupted.
(3) Schema Matching refers to the task of deter-

mining whether two schemas point to the same
subject or have a matching relationship. Here, we
use the term “schema” to denote the names of entity
attributes in a database table. Given two schemas
as input, the goal is to predict whether they cor-
respond to the same concept or entity. In the ex-
ample provided in Figure 2, the Schema Match-
ing task would determine that the schemas “Earth-
and-Atmospheric-Sciences” and “Earth-and-Space-
Sciences” match, indicating a shared subject.
(4) Column Population involves identifying addi-
tional columns that can be added to a given table.
Given a table as input, the task is to generate new
column suggestions that complement the existing
columns. In the provided example in Figure 2, the
Column Population task would suggest adding a
“Silver” column to the table based on the existing
“Rank”, “Country”, and “Gold” columns.
(5) Entity Matching focuses on determining
whether two different tuples/rows from separate
tables refer to the same real-world object. By
comparing the attribute values of the tuples, the
task aims to identify if they represent the same en-
tity. In the given example in Figure 2, the Entity
Matching task would determine whether the tuple
with the name “David Smith,” age “18”, and city
“Atlanta” matches with the tuple having the name
“John Smith”, age 18, and city “Atlanta”.
(6) Schema Prediction involves predicting the
masked column name in a table based on the table
header, row content, and one of the column names
being masked. The task requires understanding
the context and semantics of the table to infer the
missing column name. In the provided example in
Figure 2, the Schema Prediction task would predict
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Dataset Name Train Validation Test

Column Population 5,000 1,667 1,667
Row Population 5,000 1,667 1,667

Corrupted Cell Detection 5,000 1,667 1,667
Entity Matching 5,000 1,667 1,667

Schema Matching 5,000 1,667 1,667
Schema Prediction 5,000 1,667 1,667

Column Relatedness Prediction 500 - 1,667

Table 1: Dataset Statistics for 6 Subtasks and Target
Task Constructed from NYC Open Data.

“Year” as the masked column name based on the
given table information.
(7) Row Population focuses on predicting the next
possible value for a specific column in a given table.
By analyzing the existing values in the column, the
task aims to generate predictions for the subsequent
entry. In the provided example in Figure 2, the
Row Population task would predict “3” as the next
possible value for the “Rank” column based on the
existing values in the table.

3.2 Data Generation

We constructed the training, validation, and test
datasets for 6 sub-tasks using tables from NYC
Open Data in an unsupervised manner. The train-
ing set comprises 2,709 distinct tables. The vali-
dation and test sets involve 30 tables from various
domains, which were cropped and augmented with
noise (misspelled table cells, missing words, etc.)
yielding 3,150 distinct tables (a half for validation
and the other half for testing). Each sub-task’s train-
ing data consists of 5,000 entries, while the test and
validation sets each contain 1,667 entries. The data
for this task was generated by specific rules and
then corrected by human to ensure data quality.
This CRP task consists of 500 training entries and
1,667 test entries. Please refer to Appendix 8.1 for
more details. We provide the dataset statistics for
our 6 sub-tasks and CRP task in Table 1.

The six sub-tasks proposed in our paper encom-
pass both classification and text generation tasks.
We utilize the LLM-base model, which is a versa-
tile text generation model capable of distinguishing
different sub-tasks based on input prompt prefixes.
Figure 3 shows the various prefixes we use to dis-
tinguish different tasks.

The DiscoverGPT is pretrained on natural lan-
guage text rather than structured text. To aid the
model in better understanding tabular information,
we convert each row in the table into natural lan-
guage sentences. For example, for the first row in
the table corresponding to CRP task in Figure 3,
the entities can be represented using the sentence
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Figure 3: Forms of input and output for the six subtasks
and the CRP task in the DiscoverGPT.

pattern “The ... is ...” as follows: (The Rank is 1.
The Country is France. The Gold is 9.). Similarly,
we represent the entire table as the following string:
((The Rank is 1. The Country is France. The Gold
is 9.) (The Rank is 2. The Country is Italy. The
Gold is 5.)). For details on the conversion of ta-
bles to strings in the 6 sub-tasks and the target task,
please refer to Appendix 8.3.

3.3 Preliminary Experiments

We conducted preliminary experiments to evaluate
the impact of each sub-task individually and the
combined effect of all six sub-tasks on the CRP
task. The results in Table 2 demonstrated that uti-
lizing any of the sub-tasks, as well as training on
all six sub-tasks simultaneously, led to improved
F1 scores, indicating that each sub-task contributes
positively to the overall objective.

Sub-Task Precision Recall F1
None 82.42 87.39 84.83

Corrupted Cell Detection 86.84 91.53 89.12
Schema Matching 86.93 90.28 88.57

Column Population 87.25 91.81 89.47
Row Population 87.04 89.41 88.21
Entity Matching 86.82 91.38 89.04

Schema Prediction 86.19 89.90 88.01
All 88.24 94.56 91.29

Table 2: Performance on the CRP task after adopting
different subtasks (based on the LLaMA2-7B model).

Note that there is a collaborative interaction
among different tasks, allowing them to comple-
ment and enhance each other’s performance. Ad-
ditionally, given the varying significance of each
sub-task to the target task, CRP, treating all tasks
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as equally important fails to facilitate their mu-
tual enhancement and may also lead to potential
overfitting. Specifically, sub-tasks that present ex-
cessive difficulty are assigned lesser importance
as overtraining on these could lead to overfitting,
ultimately detracting from the overall objective.

3.4 Self-Adaptive Weighted Multi-task
Learning

To address this issue, we can manually set weights
that reflect the importance of the six sub-tasks:

Lmanual(W ) =
c∑

i=1

wiLtaski(W ), (1)

where c = 6 is the number of sub-tasks, Ltaski(W )
is the loss function for training the DISCOVERGPT
model on the i-th sub-task, which is the cross-
entropy loss for classification tasks.

However, manually adjusting the six weight pa-
rameters would require a significant amount of time.
If we treat the six weights as trainable parame-
ters, the values of wi (i ∈ {1, 2, · · · , 6}) would
gradually decrease to 0, resulting in loss function
Lmanual(W ) = 0 and preventing proper training.

To enable different tasks to complement each
other and reflect the importance of each task by
automatically adjusting the weights of six tasks
through training, we adopted a training method in
which the weights can converge to non-zero val-
ues. First, we introduce a concept similar to “tem-
perature” to modify the classification task results.
A higher “temperature” leads to more evenly dis-
tributed classification results, with lower relevance
to the model’s output and lower training intensity.
We use σ > 0 to represent the “temperature”, and
the modified probability of the true label being c
given the input x and the model weights W can be
expressed using the following Softmax function:

p(y = c|x,W ) = Softmax

(
1

σ2
fW (x)

)

c

∈ [0, 1]k, (2)

where k is the number of labels, fW (x) ∈ Rk is
the model output on the input x, and Softmax(1/
σ2 · fW (x))c ∈ [0, 1] is the c-th element in the
vector Softmax(1/σ2 · fW (x)) ∈ [0, 1]k.

After performing Maximum Likelihood Estima-
tion (MLE) on p(y|x,W ), we obtain the corre-

sponding loss function:

Lone(W ) =− log p(y = c|x,W )

=− log Softmax

(
1

σ2
fW (x)

)

c

=
1

σ2
LCE

one(W )

− 1

σ2
log

k∑

i=1

exp
(
fW (x)i

)

+ log
k∑

i=1

exp

(
1

σ2
· fW (x)i

)
,

(3)

where LCE
one(W ) = − log Softmax(1/σ2 ·

fW (x))c is the cross-entropy loss function for clas-
sification purposes, and fW (x)i ∈ R is the i-th
element of the vector fW (x) ∈ Rk. However, this
loss function is computationally expensive. To re-
duce this cost, we assume that our sub-tasks are
reasonably set in terms of difficulty. In this sce-
nario, σ will not be heavily updated and will remain
close to 1. When σ ≈ 1, the following equation
approximately holds true:

k∑

i=1

exp

(
1

σ2
· fW (x)i

)

≈ σ ·
(

k∑

i=1

exp
(
fW (x)i

)) 1
σ2

.

(4)

Incorporating Eq. 4 into Eq. 3 yields an approxi-
mation of the loss function:

Lapp
one(W ) =

1

σ2
LCE

one(W ) + log σ, (5)

which is a concave function with respect to σ. This
ensures that both σ and 1/σ2 can converge to non-
zero values.

Similarly, for text generation tasks of length L,
its loss function is the average of L individual clas-
sification task cross-entropy losses. When σ ≈ 1,
loss of the predicting the sequence of length L with
“temperature”, Lseq(W ), satisfies:

Lseq(W ) ≈ 1

L

L∑

j=1

Lapp
onej (W )

=
1

σ2
LCE

seq (W ) + log σ

=Lapp
seq (W ),

(6)

where Lapponej (W ) is the cross-entropy loss function
for predicting the j-th token, LCE

seq (W ) is the aver-
age cross-entropy loss for predicting all L tokens,
and Lappseq (W ) is the approximation of the sequence
prediction loss when σ ≈ 1.
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Model Base Model Sub-task Algorithm Accuracy Precision Recall F1

Unicorn (Zero-shot) RoBERTa × × 50.00 50.00 100.00 66.67
Starmie (Finetuned) RoBERTa Unicorn × 80.56 81.27 79.61 80.43

AutoTUS (Finetuned) RoBERTa Unicorn × 80.98 80.90 81.71 81.30
Unicorn (Finetuned) RoBERTa Unicorn × 81.80 84.53 77.94 81.82

TABBIE LLaMa2-7B Corrupt Cell Detection × 86.14 86.68 88.33 87.50
Table-GPT LLaMa2-7B Table-GPT × 87.66 87.25 93.62 90.32

DiscoverGPT

T5-base Ours × 85.66 87.13 85.39 85.44
T5-base Ours SAW 92.74 92.96 92.65 92.72

Falcon-7b Unicorn × 85.24 92.35 75.96 83.36
Falcon-7b Unicorn SAW 91.06 94.37 86.81 90.43
Falcon-7b Ours × 87.82 80.83 98.27 88.70
Falcon-7b Ours SAW 93.94 93.71 93.83 93.77

LLaMa2-7B Ours × 88.38 88.24 94.56 91.29
LLaMa2-7B Ours AutoSTL 90.12 90.45 90.88 90.66
LLaMa2-7B Ours AdaTask 91.53 91.70 91.62 91.66
LLaMa2-7B Ours SAW 94.53 94.17 95.05 94.61
LLaMa2-13B Ours × 89.82 86.39 97.15 91.45
LLaMa2-13B Ours SAW 95.01 94.82 95.72 95.17

Table 3: Performance of the CRP task. “Sub-task” represents the “Sub-task Training Dataset”. “Algorithm” indicates
the specific adaptive learning method used for each model. “SAW’ stands for the use of Self-Adaptive Weights.
In the “Sub-task” column, “Unicorn” refers to the training dataset used in the Tu et al. (2023), comprising 7 data
matching tasks, “Table-GPT” represents the dataset we reproduced according to the description in the Li et al.
(2023). “Ours” represents the dataset used in this study, consisting of 6 types of sub-tasks.

During the training of the LLM model, the loss
function for multiple sequence prediction is equal
to the average cross-entropy loss for each token
in each sequence. Therefore, following the same
derivation process as above, we can obtain the ap-
proximation of the loss function for a single sub-
task when σ ≈ 1:

Lapp
task(W ) =

1

σ2
LCE

task(W ) + log σ, (7)

where LCE
task(W ) is the average cross-entropy loss

for predicting all sequences in this task.

4 Experimental Evaluation

Dataset. In our comparison of DISCOVERGPT
(T5-base) with DISCOVERGPT (Falcon-7b), we
utilized the dataset from six sub-tasks and the tar-
get task CRP, as detailed in Section 3.2, for training,
while the target task CRP was also used for test-
ing. Moreover, we ensured a nearly 1:1 ratio of
positive to negative examples in each classification
task. For the comparison between Unicorn and
DISCOVERGPT (Falcon-7B), the Unicorn model
was trained using the complete training dataset of
seven data matching tasks. To draw a parallel with
DISCOVERGPT, the DISCOVERGPT (Falcon-7B)
was also pretrained on these seven data matching
tasks and then fine-tuned on the target task CRP.
Metric. In the evaluation process, we primarily
utilize metrics including F1 Score, Accuracy, Pre-
cision, and Recall. It’s important to note that in the

task of binary classification (“true” and “false”),
Micro F1 is functionally identical to Macro F1.
Baselines. To validate the effectiveness of the
sub-task and Self-Adaptive Weight method we pro-
posed, we compared our method with Unicorn (Tu
et al., 2023), TABBIE (Iida et al., 2021), Starmie
(Fan et al., 2023b), AutoTUS (Hu et al., 2023)
and Table-GPT (Li et al., 2023), as well as self-
adaptive multi-task learning baselines such as Au-
toSTL (Zhang et al., 2023b) and AdaTask (Yang
et al., 2023). It should be noted that other baseline
models utilize an encoder-decoder network struc-
ture designed specifically for single-table struc-
tures, which makes them incomparable directly
with DISCOVERGPT.

4.1 Main Result

In Table 3, we compared the performance of Uni-
corn (Zero-shot), Unicorn (Finetune on target task
CRP) and DISCOVERGPT (Falcon-7b trained on
Unicorn dataset and finetuned on target task CRP).
Additionally, it contrasts the predictive perfor-
mances of DISCOVERGPT (T5-base) and DIS-
COVERGPT (LLMs like Falcon-7B, LLaMa2-7B
and LLaMa2-13B), examining the impact of using
LLMs with and without self-adaptive weights. We
derive the following insights from the result:
•When only a limited portion of the Unicorn train-
ing data is utilized, the DISCOVERGPT models
based on T5-base and Falcon-7b demonstrate su-
perior performance compared to Unicorn. This
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indicates enhanced transfer learning capabilities
within our framework.
• Self-adaptive weights (SAW) are highly effec-
tive compared to other adaptive learning tech-
niques. Across T5-base, Falcon-7b, LLaMa2-7B,
and LLaMa2-13B models, SAW consistently leads
to an F1 score improvement ranging from 5% to
7% over models without adaptive weights. When
comparing SAW with AutoSTL and AdaTask, the
SAW-enhanced models exhibit an F1 score advan-
tage of approximately 3% to 4%, as demonstrated
by LLaMa2-7B achieving an F1 score of 94.61 with
SAW, compared to 91.66 with AdaTask. These re-
sults highlight SAW’s ability to more effectively
adapt to task difficulties, significantly reducing
overfitting on challenging tasks and further boost-
ing performance on the target task CRP.
• Falcon-7B, LLaMa2-7B, and LLaMa2-13B each
demonstrate their efficiency by requiring fewer sub-
task data than T5-base to attain comparable F1
scores on the target task. This efficiency reflects
the enhanced prior knowledge and superior gener-
alization abilities inherent in LLMs.
• The adaptive weight method, while effective,
yields diminishing returns in performance enhance-
ment as the model size increases. The improve-
ment observed in T5-base is more pronounced than
in LLMs. We believe this is because the tabular
knowledge in the subtask data we input may have
already been encompassed during the pre-training
phase of the LLMs.

4.2 Analysis of Sub-task Complementarity

CCD SM CP EM SP RP
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89.12

89.04 88.57

89.53 90.05 89.47
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89.5

90.0

90.5

91.0

Figure 4: Complementarity matrix of 6 sub-tasks, each
sub-task is represented by its corresponding acronym
(based on the LLaMA2-7B model).

To assess how the six sub-tasks complement
each other, we conducted experiments where we
trained using only one or two tasks at a time. We
then documented the F1 scores on the target task
CRP, as depicted in the task complementarity ma-
trix in Figure 4. In this matrix, the F1 scores on the

diagonal represent outcomes from pre-training on
a single sub-task followed by training and testing
on the column relatedness prediction task. The F1
scores in other positions reflect the results of jointly
pre-training on two sub-tasks and then proceeding
to train and test on the column relatedness predic-
tion task. Note that in these experiments, we did
not implement self-adaptive weight adjustments,
meaning that σ remained fixed at 1.

The three sub-tasks (CCD, SM, CP) designed to
enhance the model’s comprehension of columns are
grouped into set C, while the sub-tasks focused on
row understanding (EM, SP, RP) are categorized as
set R. As depicted in Figure 4, the training results
using tasks from both C and R show higher average
and median F1 scores, 90.22 and 90.25 respectively,
compared to the results from other settings which
have an average of 89.31 and a median of 89.30.
This observation led us to experimentally prove that
tasks focusing on column understanding and those
concentrating on row understanding complement
each other, enhancing overall model performance.

4.3 Analysis of DISCOVERGPT’s Latency and
Scalability

Token Length Acc. (%) Prec. (%) Rec. (%) F1 (%) Latency (ms)

256 90.28 86.85 92.47 91.14 178
512 92.44 92.59 93.05 92.82 387
1024 94.13 94.42 95.12 94.77 824

Table 4: Performance and Latency of DISCOVERGPT
across Different Token Lengths.

To evaluate the scalability of DISCOVERGPT
w.r.t. the latency, we conducted experiments by
varying token lengths, representing different row
and column configurations. The results demon-
strate DISCOVERGPT’s ability to handle increas-
ing data sizes with reasonable response times.

Table 4 shows that as token length increases,
both accuracy and F1 scores improve consistently,
indicating that DISCOVERGPT effectively utilizes
the additional information from larger tables. For
example, with 256 tokens, the model achieves an
accuracy of 90.28% and an average latency of 178
ms, while at 1024 tokens, accuracy rises to 94.13%
with a latency of 824 ms. This scaling pattern
suggests that performance gains are balanced with
acceptable latency increases, demonstrating the
model’s robustness and efficient handling of larger
datasets. DISCOVERGPT thus maintains an effec-
tive trade-off between accuracy and response time,
making it suitable for applications with different
data sizes.
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SAW Weights F1EM CCD SM SP RP CP

× 0.9673 0.9956 0.9795 0.9369 0.9109 0.9239 95.07
✓ 0.9563 0.9377 0.9567 0.9316 0.9282 0.9354 95.38

Table 5: The weights of the 6 sub-tasks when F1 is
maximized in the sub-task weight space searching.

4.4 Analysis of the Dependency of Target
Tasks on Sub-tasks

We have proven in Section 3.3 that sub-task train-
ing has a positive effect on the target task. In order
to quantify the dependence of the target task on
different sub-tasks, we use Gaussian Process Mini-
mization (GPM) to maximize F1 on the target task
CRP to search the sub-task weight space, and ana-
lyze the sub-task weights when F1 is maximized.
GPM is particularly effective for optimizing hyper-
parameters in scenarios where each evaluation of
the function is costly. It requires an objective func-
tion f , a function g to minimize f , and a set of
variable space X , upon which f depends. In our
context, we define X as the weights of the six sub-
tasks. The function f is set as the negative of the
F1 score on the target task test set, following pre-
training and target task training. To expedite the
search, our exploration is limited to the range of
[0.9, 1]6. We give the detailed algorithm process of
GPM in Appendix 8.2.

To manage training overhead, we focused our
experiments on LLaMa2-7B-base. The results after
sampling 30 times are shown in Table 5. The first
row of Table 5 shows that the weights assigned
to the classification sub-tasks are higher than that
for the text generation sub-tasks. This implies that
the target task CRP is more dependent on the clas-
sification sub-tasks. This finding aligns with the
results from the self-adaptive weight adjustment us-
ing LLaMa2-7B-base DISCOVERGPT, as seen in
the second row of Table 5. Furthermore, this consis-
tency underscores the effectiveness of self-adaptive
weight adjustment in the training process.

5 Related Works

Related Table Discovery. Related table discovery
methods focus on identifying relationships such as
joinble and unionable between the tables in a data
repository. Early works (Zhu et al., 2019, 2016)
assumed that the relationships can be identified
by examining the exact string match and focused
on designing indexing and data compression meth-
ods to support efficient discovery. In a data lake
scenario where there exists inconsistency in data
representation, many works (Dong et al., 2023,

2021; Fernandez et al., 2018; Khatiwada et al.,
2023; Hu et al., 2023; Chen et al., 2023b) explored
the idea of using dense representation to resolve
the syntactical mismatch in a semantic embedding
space. Zhu et al. (2017); Li et al. (2024b); Lou et al.
(2024) found the relationships with consideration
of the data transformation lineage. Most of the
learning-based solutions focused on optimizing the
effectiveness by focusing on one discovery task.

Data tasks with LLM. Recent studies showed that
LLMs, as general problem solvers , demonstrated
their strength in addressing problems such as en-
tity resolution, schema matching, error detection in
tabular data for data cleaning, data imputation for
repairing dirty data sources (Narayan et al., 2022;
Zhang et al., 2023a; Chen et al., 2023a) due to
the ability to process natural language and having
the prompt interface that allows developer to effec-
tively define the task for them. However, they are
limited by the high compute cost and the domain
knowledge absent from the LLM training process
(Arefeen et al., 2024). The existing works mostly
focused on prompt engineering by designing effi-
cient prompting strategy to save cost and providing
and selecting domain knowledge for effective do-
main adaption. Fan et al. (2023c); Li et al. (2024a)
studied efficient prompting strategy with demon-
strating example selection for entity resolution. Ay-
cock and Bawden (2024) employed topic models
to select in-context examples, enhancing transla-
tion quality across multiple domains and language
pairs. Sheetrit et al. (2024) proposed a LLM-based
solution for schema matching with schema pruning
and searching algorithm to reduce the computation.

6 Conclusion

We present DISCOVERGPT, a multi-task fine-
tuning framework that tackles related table dis-
covery problem by discovering the relationships
between different supervisions to maximize the
performance gain. DISCOVERGPT takes a holistic
approach to leverage a wide range of supervisions
together in one training job and seamlessly discov-
ers and optimizes the relationships among these
supervisions. It is a plug-and-play framework with
the ability to incorporate a wide range of auxiliary
tasks by leveraging the generative power of LLMs.
Experimental evaluations with up to 7% improve-
ment in F1 score demonstrate the superiority of
DISCOVERGPT, comparing against baselines.
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7 Limitation

The limitations of this study involves two differ-
ent aspects: technical constraints and application-
based constraints: 1) On the technical front, we
primarily focused on experimenting the proposed
methods and framework for data discovery tasks
as the main tasks. The effectiveness of the techni-
cal proposals for arbitrary main tasks on relational
tables was not studied. In this regard, the general-
izability of DISCOVERGPT to other main tasks is
unclear. 2) In terms of applications, the data em-
ployed in our experiments are sourced from NYC
Open Data. Beyond the open data, certain domain-
specific data, such as those in finance, healthcare
and energy, are yet to be incorporated. Addition-
ally, we have exclusively focused on tabular data
in English, thus expanding our method to support
multi-lingual tabular data is a potential avenue for
future research.
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8 Appendix

8.1 Data Generation for Column Relatedness
Prediction

To prevent data leakage, we use different tables to
generate the training and testing dataset. We use
3150 tables derived from 20 foundational tables
to generate the training dataset, and 450 tables de-
rived from another set of 10 foundational tables to
generate the testing dataset. These foundational
tables were sourced from NYC Open Data.

The process of generating tables from founda-
tional tables involves the following steps.

(1) Each foundational table was horizontally di-
vided into three tables with the same number of
rows. For each table. 10%, 20%, · · · , 100% rows
are selected to generate tables with varying num-
bers of rows.

(2) We then use the four following settings to
inject noise into cell values and column names of
the generated tables: 1) injecting noise into both
cell values and column names, 2) only injecting
noise into cell values, 3) only injecting noise into
column names, and 4) no noise injection at all. The
order of rows was randomly shuffled.

(3) For each table, we generate 4 positive sam-
ples and 4 negative samples to ensure class balance
in the generated data. We take the generation of
training data from 3150 tables as an example.

① Firstly, for each of the 3150 tables, we gen-
erate 2 positive samples. Any column of a table
can be used to generate a positive sample with it-
self. We randomly select two columns from the
same table to generate these two samples. For ex-
ample, from a table randomly selected from the
3150 tables, Table 1, one of its columns (denoted
as Column A) can be paired with itself to create
positive samples: (Table 1, Column A) and (Table
1, Column A).

② For two tables originating from the same foun-
dational table, we can generate two positive and
two negative samples. We randomly select two
columns from the foundational table to generate
two positive samples. For instance, if Table 1 and
Table 2 come from the same foundational table,
and Column A in Table 1 and Column B in Table 2
both originate from the same column of the founda-
tional table, then (Table 1, Column A) and (Table
2, Column B) make up a positive sample.

③ If Column A in Table 1 and Column B in
Table 2 do not originate from the same column in
the foundational table, then (Table 1, Column A)

and (Table 2, Column B) form a negative sample.
We randomly select two sets of columns, A and B,
that do not come from the same column to create
two negative samples.

④ Finally, we randomly select two tables origi-
nating from different foundational tables, denoted
as Table 1 and Table 2. Any column from Table 1
paired with any column from Table 2 will consti-
tute a negative sample. We construct two negative
samples in this way.

(4) For each sample, we randomly shuffle the
order of the columns and remove 0% to 50% of the
columns to further increase the noise. We randomly
select 5,000 entries to keep for training data and
1,667 for testing data, maintaining a 1:1 ratio of
positive to negative samples.

For all generated positive column pairs, we addi-
tionally employed a manual annotation process to
avoid potential noisy data. Specifically, we hired
five annotators, each holding a bachelor’s degree
and possessing fluent English skills and data analy-
sis capabilities. These annotators were tasked with
determining whether two columns were indeed re-
lated; unrelated column pairs were discarded. Each
data point was labeled by three annotators simul-
taneously, and labels were retained based on the
majority rule principle. Instances of inconsistent
labeling occurred in approximately 17% of cases.
All annotators received compensation based on the
data they labeled.

8.2 Detailed algorithm process of Gaussian
Process Minimization

Algorithm 1 Gaussian Process Minimization

InitialPoints← InitialPointsGenerator(n,X)
xi = Initial Points, yi = {f(x) for x in xi}
optimizer← Optimizer(Initial Points)
for i← 0, 1, · · · , n− 1 do

x← Optimizer
y ← f(x)
xi ← xi ∪ {x},yi ← yi ∪ {y}

end for
x∗ = argminx∈xi f(x)
y∗ = minx∈yi f(x)
return x∗, y∗

The Initial Points Generator generates the initial
set of n points in the variable space X , and the
optimizer minimizes f(x) using Gaussian process.
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8.3 Example of Table Conversion to Strings
We present the inputs and labels for 6 sub-tasks
and 1 target task to demonstrate how this approach
transforms tables into natural language:
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Task Name Input Label

Column Related-
ness Prediction

determine relatedness between c1 of t1 and c2 of t2: c1:B
or c2:borough t1((The LOTY is Store/Commercial. The
INCIZ is 10018. The INADDR is 63 WEST 38 STREET.
The STN is WEST 38 STREET. The CRSTR1 is 5 AV-
ENUE. The CRST2 is AVENUE OF THE AMERICAS.
The INTST1 is 5 AVENUE. The INTEST2 is AVENUE
OF THE AMERICAS. The ADTY is ADDRESS. The Ci
is NEW YORK. The La is WEST 38 STREET. The FACT
is nan. The Sta is In Progress. The DD is nan. The
RESOLDESCR is nan. The RESOACTUPDD is 2023-
04-08T00:47:12.000. The COMMUBOA is 05 MANHAT-
TAN. The B is 1008400006.0. The Bor is MANHAT-
TAN. The XCOORSTPL is 988509.0. The YCOORSTAPL
is 213168.0. The OPDCHAT is MOBILE.) t2((The cre-
ated_date is 2023-04-07T22:R8:30.000. The closed_date
is 2023-04-07T12:57:30.000. The agency is NYPD. The
agency_name is New York Ci47 Police Departnent. The
complaint_type is Iplegal Parking. The descriptor is
Blocked Hydranr. The location_type is Syreet/Sidewalk.
The incident_zip is 10472. The incident_address is 1328
COMMONWEALTH AVENIE. The street_name is COM-
MONW2ALTB AVENUE. The cross_street_1 is EAST 272
STREET. The cross_street_2 is EAST 164 STREET. The
intersection_street_1 is EAST 17Q STREET. The intersec-
tion_street_2 is EAST 174 SRREET. The address_type is
ADDRESS. The city is BRONX. The landmark is CON-
MONWSALTH AVENUE. The facility_type is nan. The
status is Closed. The due_)

true
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Corrupted Cell De-
tection

examine cell value corruption: t1((The district is 1. The
grade is 3. The year is 2013. The category is Econ Disadv.
The number_tested is 615. The mean_scale_score is 292.
The level1_n is 278. The level1_ is 45.2. The level2_n is
207. The level2_ is 33.7. ) (The district is 1. The grade
is 3. The year is 2014. The category is Econ Disadv. The
number_tested is 594. The mean_scale_score is 286. The
level1_n is 306. The level1_ is 51.5. The level2_n is 176.
The level2_ is 29.6. ) (The district is 1. The grade is
3. The year is 2015. The category is Econ Disadv. The
number_tested is 467. The mean_scale_score is 289. The
level1_n is 215. The level1_ is 46.0. The level2_n is 144.
The level2_ is 30.8. ) (The district is 1. The grade is 3. The
year is Econ Disadv. The category is Econ Disadv. The
number_tested is 459. The mean_scale_score is <pos> 305.
The level1_n is 142. The level1_ is 30.9. The level2_n is
155. The level2_ is 33.8. ) (The district is 1. The grade
is 3. The year is 2017. The category is Econ Disadv. The
number_tested is 456. The mean_scale_score is 303. The
level1_n is 144. The level1_ is 31.6. The level2_n is 144.
The level2_ is 31.6. ) (The district is 1. The grade is
4. The year is 2013. The category is Econ Disadv. The
number_tested is 602. The mean_scale_score is 294. The
level1_n is 215. The level1_ is 35.7. The level2_n is 254.
The level2_ is 42.2. ) (The district is 1. The grade is
4. The year is 2014. The category is Econ Disadv. The
number_tested is 587. The mean_scale_)

false

Schema Matching determine if c1 and c2 refer to same schema: c1(filing),
c2(filing)

true
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Column Population predict next column name: t1((The objectid is 646. The a is
748. The service_category is Vaccines. The service_type is
Flu Vaccine (Influenza). The walk_in is Yes. The insurance
is Yes. The children is No. The facility_name is Newtown
Pharmacy. The address is 28-04 31st Street. ) (The objectid
is 70. The a is 224. The service_category is Vaccines.
The service_type is Flu Vaccine (Influenza). The walk_in
is Yes. The insurance is Yes. The children is No. The
facility_name is Walgreens Drug Store. The address is
84-20 Broadway. ) (The objectid is 810. The a is 840.
The service_category is Vaccines. The service_type is Flu
Vaccine (Influenza). The walk_in is Yes. The insurance is
Yes. The children is Yes. The facility_name is Homecrest
Clinic. The address is 1601 AVENUE S. ) (The objectid is
630. The a is 659. The service_category is Vaccines. The
service_type is Flu Vaccine (Influenza). The walk_in is Yes.
The insurance is Yes. The children is No. The facility_name
is Medcare Health Inc.. The address is 260 Kings Highway.
) (The objectid is 366. The a is 182. The service_category
is Vaccines. The service_type is Flu Vaccine (Influenza).
The walk_in is Yes. The insurance is Yes. The children
is No. The facility_name is Duane Reade. The address
is 949 3RD AVE. ) (The objectid is 139. The a is 127.
The service_category is Vaccines. The service_type is Flu
Vaccine (Influenza). The walk_in is Yes. The insurance is
Yes. The children is No. The facility_name is Duane Reade.
The address is 10309 LIBERTY AVE. ) (The objectid is
761. The a

city

Entity Matching determine if e1 and e2 refer to same entity: e1(The dbn
is 01M184. The location_name is P.S. 184m Shuang
Wen. The location_category is K-8. The administra-
tive_district is 1. The removals is 0. The principal is
0. The superintendent is 0. The expulsions is 0. The
sy1718_total_removals is 0. ) e2(The female_1 is 201. The
grade_10 is 195. The grade_9 is 31. The grade_12 is 102.
The grade_11 is 149. The year is 2015-16. The female_2 is
0.42138364779874216. The category is English Language
Learners. The total_enrollment is 477. The district is 1. )

false

Schema Prediction predict missing column name: t1((The permitno is 101.
The expiration_date is 2004-03-31. The effectivedate is
2004-02-23. The

companyname
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Row Population predict cell value: t1( R. The hispanic_students_with_2
is R. The white_students_with_2_or is R. The
multi_racial_students_with is R. ) (The dbn is 01M020.
The location_name is P.S. 020 Anna Silver. The
location_category is Elementary. The administra-
tive_district is 1. The american_indian_alaskan_native
is R. The asian_students_with_2_or is R.
The black_students_with_2_or is R. The his-
panic_students_with_2 is R. The white_students_with_2_or
is R. The multi_racial_students_with is R. ) (The dbn
is 01M034. The location_name is P.S. 034 Franklin D.
Roosevelt. The location_category is K-8. The adminis-
trative_district is 1. The american_indian_alaskan_native
is R. The asian_students_with_2_or is R.
The black_students_with_2_or is R. The his-
panic_students_with_2 is 6. The white_students_with_2_or
is R. The multi_racial_students_with is R. ) (The dbn is
01M063. The location_name is The STAR Academy -
P.S.63. The location_category is Elementary. The adminis-
trative_district is 1. The american_indian_alaskan_native
is R. The asian_students_with_2_or is R.
The black_students_with_2_or is R. The his-
panic_students_with_2 is R. The white_students_with_2_or
is R. The multi_racial_students_with is R. ) (The
american_indian_alaskan_native is <blank>. )

R
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