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Abstract

Although large language models rely on para-
metric knowledge to achieve exceptional per-
formance across various question-answering
tasks, they still face challenges when address-
ing knowledge-based long-tail questions. Aug-
mented generation techniques, such as chain-
of-thought prompting and retrieval augmenta-
tion, can effectively enhance the ability of these
models to answer long-tail questions. How-
ever, improving accuracy through augmented
generation often results in significant latency
within question-answering systems. This pa-
per addresses the issue of "when and how to
augment the input" by proposing an adaptive
question routing framework. This framework
employs a query router to select the most ap-
propriate augmentation path at the right time,
thereby enhancing both the accuracy and effi-
ciency of question-answering systems. Exten-
sive comparative experiments on benchmarks
such as AmbigNQ, HotpotQA, MMLU-STEM,
and PopQA demonstrate that our method sur-
passes existing approaches in both accuracy
and efficiency. Furthermore, this paper intro-
duces two metrics for evaluating adaptive ques-
tion augmentation methods and presents a new
benchmark for adaptive question augmentation,
aiming to advance the field.

1 Introduction

Since the release of ChatGPT by OpenAI, we have
witnessed the remarkable achievements of large
language models in the field of Natural Language
Processing (NLP) (Brown et al., 2020)(OpenAI,
2023). These models have demonstrated impres-
sive competitiveness in various NLP tasks, such as
intent recognition, entity answering, and reading
comprehension. However, their hallucination prob-
lem limits their applicability in certain critical areas
(Zhou et al., 2021). This issue is comparable to an
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Figure 1: Performance comparison using GPT-3.5
across AmbigNQ, Hotpot, and PopQA datasets. Query
expansion (orange bars) takes nearly ten times longer
than direct answers (blue bars) but achieves only a mod-
erate increase in accuracy (green vs. red lines).

overly enthusiastic assistant who, despite possess-
ing extensive knowledge, refuses to acknowledge
new information. The assistant is overly familiar
with the trained corpus and question patterns and
confidently responds to every user query, regard-
less of whether it truly understands the answer or
processes the query correctly. This behavior con-
tributes to the hallucination issue in large language
models.

Research indicates that appropriately reformulat-
ing queries plays a crucial role in reducing hallu-
cinations in large language models (Shuster et al.,
2021). This paper focuses exclusively on three
types of query reformulation methods: query ex-
pansion, query rewriting, and query processing
guidance. Query expansion involves incorporating
additional elements into the original query, such
as keywords, paragraphs, or even possible answers
related to the question. Recent work shows that
augmenting LMs with nonparametric memories
(i.e., retrieved text chunks) enables much smaller
models to match the performance of larger mod-
els. Query rewriting means breaking down com-
plex questions, rephrasing ambiguous and vague
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questions, and so on. When the abstract parts of
a query are reduced, or the query expression is
transformed into a form that the model is familiar
with and can understand, the hallucination problem
can be significantly alleviated. Properly guiding
the model in processing the query refers to prompt
engineering techniques used to unleash the model’s
potential. These methods typically do not alter the
original query but instead guide the model to cor-
rectly understand and analyze the problem through
in-context learning.

As shown in Figure 1, query expansion in par-
ticular can improve the accuracy of large language
models’ responses. However, the efficiency of
these improvements is quite low, indicating that
query expansion is unnecessary for most queries.
So understanding when and how to reformulate the
query is crucial for balancing accuracy improve-
ment and resource consumption. In particular, we
aim to address the following research questions:Do
we need to reformulate every query to reduce hal-
lucinations? If not, when should we reformulate
a query?If query reformulation is needed, which
methods should we use to balance reducing hallu-
cinations and conserving resources?

This paper investigates these three questions and
makes the following main contributions:

1. We propose a query reformulation frame-
work for efficiently reducing hallucinations
for large language models. It adaptively se-
lects the most suitable reformulation method
for the input query to balance latency and ac-
curacy.

2. We introduce new metrics for evaluating adap-
tive query reformulation methods.

3. We construct a query reformulation dataset,
serving as a new benchmark for adaptive
query reformulation methods.

2 Related work

Query expansion Query expansion methods can
be categorized into two types based on the scale
of expansion: keyword-enhanced query expansion
and context-enriched query expansion. Keyword-
enhanced query expansion primarily involves
adding keywords related to the original query, fo-
cusing on enhancing the immediate relevance of the
query. Yang and Lin (2019) used semantic match-
ing techniques to search for a series of weighted
expansion keywords to address the vocabulary mis-
match problem in axiomatic information retrieval.

Jaleel et al. (2004) selected the top 200 most prob-
able words from relevance models as expansion
keywords, effectively improving recall in the sec-
ond retrieval process. Jagerman et al. (2023) pro-
posed using large language models to generate new
keywords, thereby improving retrieval recall and
Mean Reciprocal Rank (MRR). Roy et al. (2016)
proposed an automatic query expansion method
using word embeddings and KNN.

Context-enriched query expansion provides
broader contextual information to the original
query, including related background stories, def-
initions, examples, and even possible answers,
thereby offering a more comprehensive query con-
text. Wang et al. (2023) proposed the Query2doc
method, which uses large language models to gen-
erate pseudo-documents for query expansion. Gao
et al. (2022) proposed the HyDE method, which
generates hypothetical documents and uses an un-
supervised contrastive encoder for zero-shot dense
retrieval. Mao et al. (2020) used large language
models to generate three types of context (titles,
sentences, and answers) to enhance queries, sig-
nificantly improving the accuracy of downstream
models in answering open-domain questions.
Query rewriting Query rewriting is a method
of transforming the original query into a form
that is easier to retrieve or understand, involv-
ing paradigms such as problem decomposition,
redundancy removal, and disambiguation. Ma
et al. (2023) developed a novel Rewrite-Retrieve-
Read framework that enhances the performance of
retrieval-augmented LLMs. Mao et al. (2023) de-
veloped the LLM4CS framework to leverage large
language models for interpreting search intents in
conversational queries. Peng et al. (2023) designed
the BEQUE framework to address the semantic
gap in long-tail query rewriting for E-commerce
search.
Query processing guidance Query processing
guidance aims to establish a framework for how
large language models (LLMs) should think and
handle queries. Wei et al. (2022) explore how chain-
of-thought prompting enhances the performance
of LLMs in managing complex query processing
tasks. Dhuliawala et al. (2023) propose the Chain-
of-Verification (CoVe) method to reduce halluci-
nations in LLMs. Zheng et al. (2023) introduce
STEP-BACK PROMPTING, a technique that im-
proves LLMs’ reasoning capabilities by guiding
them to abstract high-level concepts and princi-
ples from specific details, thereby solving complex
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tasks more effectively.

3 Methodology

In this section, we detail the proposed adaptive
query reformulation method for large language
models. Please refer to Figure 2 for the overall
framework flowchart.

3.1 Preliminaries

We first introduce the five query reformulation
methods that are part of the stage preceding the
use of large language models to answer questions.

3.1.1 Direct answer
Given a large language model and a query q, we do
not perform any preprocessing on q. Instead, we
use a tokenizer to convert q into a sequence of to-
kens [t1, . . . , tn], which are then processed by the
LLM to generate an answer [a1, . . . , an] = LLM(q).
Directly inputting the unprocessed query into the
LLM serves as a simple and fast baseline method
in our framework. However, it only leverages the
model’s parametric knowledge and is highly influ-
enced by the query’s format as understood by the
model. This strategy is typically best for straight-
forward and general questions.

3.1.2 Add CoT before QA
Compared to having the language model answer
directly, prompting the language model to output a
lengthy but well-structured response often results
in higher accuracy. The chain-of-thought (CoT)
prompting method involves adding prompts to the
original query to generate a chain of thought. This
new query allows the instruction-following lan-
guage model to fully utilize its parametric knowl-
edge and enhance its reasoning abilities. It can be
considered a form of query processing guidance.
It does not modify the query itself but guides the
language model to produce an answer step-by-step.

3.1.3 Query Rewrite before QA
Queries input by ordinary users often contain ambi-
guities, typos, grammatical errors, or are overly
complex. The presentation of the query—such
as its structure, phrasing, and word choice—can
significantly affect the accuracy of the language
model’s response, even without changing the prob-
lem’s difficulty. We select an instruction-following
language model or fine-tune a smaller language
model to act as a query rewriter, transforming the
original query q into a more understandable form

q′ for the subsequent base model. This rewriting
process aims to improve the accuracy of the query
responses, represented as q′ = Rewriter(q). The
language model then processes the rewritten query
to generate an answer, [a1, . . . , an] = LLM(q′).

3.1.4 Query Expansion before QA
Many questions cannot be answered solely by re-
lying on the model’s internal knowledge. In such
cases, it is necessary to actively retrieve external
knowledge to supplement the query. For example, a
language model trained on data before 2023 cannot
answer questions about events occurring in 2024.
In this scenario, we initialize a retriever and use the
query q as the input to the retriever. The retriever re-
turns a set of relevant documents d = retriever(q)
from an external knowledge base (e.g., Wikipedia)
based on the query. These relevant documents are
then combined with the original query to form an
expanded query q′ = q ⊕ d, which is input into
the language model. The language model then pro-
cesses the expanded query to generate an answer,
[a1, . . . , an] = LLM(q′). This process is a classic
Retrieval-Augmented Generation (RAG) method.

3.1.5 Self-Knowledge Guided QA
Due to the limitations of the maximum reasoning
capabilities of QA LLMs and the currently avail-
able query reformulation methods, we acknowl-
edge that some questions cannot be answered by
the downstream language model, regardless of the
query reformulation method used. For such cases,
we propose a special reformulation method that
incorporates a specific "don’t know" prompt to
guide the QA language model’s self-knowledge1.
This approach enhances the QA language model’s
awareness of its own limitations and reduces the
hallucination of fabricated facts.

Formally, given a query q that the language
model is unable to answer, we reformulate it by
adding a "don’t know" prompt, resulting in q′ =
q + " don’t know". The language model then pro-
cesses the reformulated query to generate an an-
swer, [a1, . . . , an] = LLM(q′), where the presence
of the "don’t know" prompt guides the model to
appropriately acknowledge its limitations.

This method aims to reduce the instances of
the model producing hallucinated or fabricated an-
swers by making it explicitly aware of when it lacks

1Self-knowledge refers to the model’s awareness of its
own limitations and understanding of when it can’t provide a
correct answer.
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Figure 2: Flowchart of our adaptive query reformulation method.

sufficient information to provide a correct response.

3.2 Adaptive Query Reformulation
Framework

In this section, we formally introduce the adaptive
query reformulation framework. Our intuition is
that (1) different queries require distinct optimal
reformulation strategies, and (2) selecting the most
appropriate method in advance can significantly en-
hance the accuracy of subsequent model responses
while reducing latency. The overall framework pro-
cess is as follows: input the query, select the best
reformulation method, reformulate the query, and
then the large language model provides the answer.

3.2.1 Adaptive Query Routing

The core of this framework is the adaptive selec-
tion of the most suitable reformulation method for
the input query. We achieve this by pre-training a
lightweight language model specifically for clas-
sifying raw queries, allowing us to route differ-
ent queries to their most appropriate reformula-
tion paths. Specifically, given a query q, we deter-
mine the suitable reformulation method m using
the QueryRouter as follows: m = QueryRouter(q).
The construction of this router involves two stages:
pre-training and fine-tuning.

During the pre-training stage, like most tradi-
tional language models, the lightweight language
model undergoes self-supervised training on a large
amount of unsupervised data to acquire the basic
ability to understand normal query sentences (Rad-
ford and Narasimhan, 2018). Given an unsuper-
vised corpus of tokens U = {u1, . . . , un}, we use
a standard language modeling objective to maxi-
mize the following likelihood:

L1(U) =
∑

i

logP (ui | ui−k, . . . , ui−1; Θ) (1)

where k is the size of the context window, and
the conditional probability P is modeled using a
transformer variant with parameters Θ.

During the fine-tuning stage, we first construct
the query routing dataset through the following
steps: (1) Each question in the training set is pro-
cessed through all available routing paths to gener-
ate corresponding responses. (2) For each question,
the path that produces the correct answer with the
shortest response time2 is designated as the ground-
truth label. If a question remains unanswered cor-
rectly after applying the first four reformulation
methods from the preliminary phase, it is automat-
ically assigned label 0, corresponding to the fifth
reformulation method. (3) To enhance the dataset,
each question is paraphrased into a semantically
similar variant while preserving the original label.
(4) Low-quality samples are systematically filtered
out using rule-based scripts and manual verifica-
tion to ensure dataset quality and consistency. After
constructing the dataset, we fine-tune the model as
a query router using the following loss function:

L2 = −
C∑

i=1

yi log(ŷi) (2)

where C represents the total number of classes (in
this case, 5, corresponding to labels 0 through 4),
yi denotes the one-hot encoded ground-truth label,
and ŷi corresponds to the predicted probability for
each class.

3.2.2 Query Reformulation

After routing the input query to the appropriate
reformulation method, the query enters the refor-
mulation stage.

2This measurement begins when a question is input into
the system and ends when the last token of the answer is
generated by the large language model.
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As shown in Figure 2, if the question is straight-
forward, such as a common knowledge question
like query1, it is directly fed into the QA LLM
for an answer. However, if the query involves
mathematical or logical reasoning, such as query2,
the reformulation stage adds the classic prompt
"Think step by step..." before the query to guide
the downstream QA LLM to generate a chain of
thought. If the query is deemed ambiguous, syntac-
tically ill-formed or too complex such as query3, a
query rewriter is invoked during the reformulation
stage. This rewriter refines vague or underspecified
queries to enhance clarity, restructures grammati-
cally incorrect inputs for better readability, or de-
composes inherently complex queries into simpler
sub-queries New_Query3.

If the question cannot be answered using the QA
LLM’s parametric knowledge, such as query4, it
will be routed to the Query Expansion path.

If the query router determines that the above
methods cannot enable the QA LLM to answer
correctly, the query is routed to the self-knowledge
guidance path. In this path, the query is augmented
with prompts such as "don’t know" to suppress
the hallucination of the downstream large language
model.

4 Experimental Setups

In this section, we provide a detailed introduction
to the benchmarks, metrics, baselines, framework
components, and implementation.

4.1 Benchmarks

AmbigNQ focuses on the inherent ambiguity
present in open-domain question answering. This
benchmark involves an open-domain question an-
swering task that requires the prediction of a set
of question-answer pairs (Min et al., 2020). Each
pair features a plausible answer coupled with a
disambiguated rewrite of the original question, em-
phasizing the clarification of ambiguous inquiries.
HotpotQA is a question answering benchmark that
requires multi-hop reasoning across multiple doc-
uments to answer questions (Yang et al., 2018). It
provides a diverse set of questions and sentence-
level supporting facts to guide reasoning, and in-
cludes novel comparison questions that challenge
systems to analyze and compare detailed facts.
MMLU-STEM is a subset of the MMLU bench-
mark (Hendrycks et al., 2020), focusing on STEM
subjects ranging from basic topics like high school

biology to advanced areas like machine learning. It
evaluates models in zero-shot and few-shot settings,
testing their knowledge and problem-solving skills
across various educational levels.
PopQA is an open-domain QA dataset with entity-
centric QA pairs sourced from Wikidata (Mallen
et al., 2022). Questions are generated using tem-
plates and cover a variety of entities, highlighting
their popularity. The dataset aims to assess lan-
guage models’ ability to handle entities of varying
popularity.

4.2 Metrics

For the benchmarks AmbigNQ, HotpotQA, and
PopQA, we use the accuracy metric following the
standard evaluation protocol in similar works. Here,
accuracy is defined as the proportion of outputs that
contain the correct answer (ground truth answer).
For the MMLU-STEM benchmark, since it con-
sists of multiple-choice questions, we use the Exact
Match (EM) metric, where EM is the proportion of
outputs that exactly match the answer.

Furthermore, for the adaptive query reformula-
tion framework, task performance and resource
consumption must be balanced. However, the aca-
demic community currently lacks corresponding
efficiency evaluation metrics. Based on this, we
propose two metrics for evaluating adaptive query
reformulation: the time consumed per correct an-
swer and the time consumed per accuracy improve-
ment.

The first metric, Time per Correct Answer (TCA),
is defined as the total time consumed in answering
all questions in the dataset divided by the number
of correct answers:

TCA =
Ttotal

Ncorrect
(3)

where Ttotal is the total time consumed and Ncorrect
is the number of correct answers. The second met-
ric, Time per Accuracy Improvement (TAI), is de-
fined as the difference in time between using the
query reformulation method and not using it, di-
vided by the difference in accuracy achieved with
and without the query reformulation method:

TAI =
Tmethod − Tbaseline

Amethod −Abaseline
(4)

where Tmethod and Tbaseline are the total times con-
sumed with and without the query reformulation
method, respectively, and Amethod and Abaseline are
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the accuracies achieved with and without the query
reformulation method, respectively.

Samples Content
1 {"question": "Who plays the doc-

tor in Dexter season 1?", "an-
swer": ["Tony Goldwyn", "Gold-
wyn"], "method_choice": 2}

... ...
16000 {"question": "The Visitors falls

under which genre?", "answer":
["Pop music"], "method_choice":
3}

Table 1: The format of the query routing dataset.
Method choice: 0 represents Beyond ability, 1 repre-
sents Direct answer, 2 represents Add CoT, 3 represents
Query rewrite, and 4 represents Query expansion.

4.3 Framework Component

QueryRouter We use BERT-base (110M) and
BERT-large (335M) pretrained on the SQuAD and
GLUE datasets as the base models for Query-
Router.
Rewriter We follow the implementation from (Ma
et al., 2023), using T5-large (738M) as the query
rewriter, responsible for decomposing complex
questions and reformulating ambiguous ones.
Retriever We use Bing v73 as the retriever in our
framework.It retrieves up to 5 relevant documents
for each query, with a maximum of 800 tokens per
document.
QA LLM We choose GPT-3.5-turbo-16k4 as the
QA LLM for the final stage of the framework. It
performs reading comprehension and prediction
with few-shot or zero-shot in-context learning.

4.4 Implementation Details

Here we detail the implementation specifics of our
experiments.
Fine-tuning Following the procedure outlined in
Section 3.2.1, we constructed a fine-tuning dataset
and augmented it using GPT-3.5, combined with
manual filtering, resulting in a dataset containing
16,000 query routing samples. The specific data for-
mat is shown in Table 1. We performed supervised
fine-tuning (SFT) on BERT-base and BERT-large
models using this new dataset, with hyperparame-
ters detailed in Table 2.

3https://api.bing.microsoft.com/v7.0/search
4https://api.openai.com/v1/chat/completions

Prompts We employed zero-shot or few-shot in-
context learning for tasks related to data augmenta-
tion, query reformulation, and QA stages. Detailed
prompts are provided in A.

Hardware Setup All experiments were conducted
on a single A100 GPU and two 4090 GPUs.

Experiments We conduct both baseline and com-
parative experiments to evaluate the effectiveness
of our framework. The experiments include four
parts: a comparison with individual query reformu-
lation methods, a comparison with other adaptive
query reformulation approaches, an analysis of the
impact of replacing the query router, and an eval-
uation of the effect of replacing the QA system.
Detailed results are presented in Section 5.

Hyperparameter Value
Number of Epochs 5
Train Batch Size per Device 8
Warmup Steps 600
Weight Decay 0.005
Max Length 512
Learning Rate 5e-5
Optimizer AdamW

Table 2: Key hyperparameters used in fine-tuning BERT.

5 Results and Analyses

5.1 Comparison with Baselines

Table 3 presents the main results of our method
compared to the baselines. As shown in the table,
the CoT, QE, and QR query reformulation meth-
ods all improve Acc and EM compared to direct
answering. In terms of improving Acc and EM
efficiency, the CoT method outperforms the QR
method, and the QR method outperforms the QE
method. The primary reason is that invoking a
retriever is more time-consuming than language
model inference. Our method surpasses the afore-
mentioned three methods in both accuracy (or EM)
and efficiency because it integrates the advantages
of these methods and adaptively selects the least
time-consuming query reformulation method that
can improve Acc or EM. This result demonstrates
that our approach is a more fine-grained query re-
formulation method rather than applying a uniform
approach for all queries.
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Dataset Metrics Direct answer Add CoT Query expansion Query rewrite Query routing (Ours)

Acc(%) 42.65 44.60 49.20 44.80 56.85
AmbigNQ TCA(s) 1.98 5.26 15.08 10.39 3.76

TAI(s/%) NaN 1538.50 2007.40 3546.30 182.50

Acc(%) 31.75 38.00 42.45 44.60 50.90
Hotpot TCA(s) 2.74 5.72 19.29 9.92 4.60

TAI(s/%) NaN 416.14 1367.35 552.93 153.53

EM 44.20 65.34 63.26 62.23 78.63
MMLU-STEM TCA(s) 2.13 3.90 11.26 8.59 3.23

TAI(s/%) NaN 273.69 1169.67 880.66 167.81

Acc(%) 32.70 32.80 50.25 35.45 52.25
PopQA TCA(s) 1.39 6.78 14.61 10.90 4.35

TAI(s/%) NaN 3534.20 784.53 2477.71 185.74

Table 3: Performance comparison of Accuracy and Efficiency across Baseline Query Reformulation Methods

5.2 Comparison with Other Adaptive
Methods

Table 4 presents the comparison results with other
adaptive query reformulation methods. It is note-
worthy that the query reformulation in these four
methods primarily refers to query expansion. The
FLARE method emphasizes adaptively triggering
retrieval during the generation process (Jiang et al.,
2023). The SELF-RAG method incorporates re-
trieval and self-reflection during generation (Asai
et al., 2023). The ANTLM method determines the
necessity of retrieval based on the popularity of
the entity and the relationship type (Mallen et al.,
2022). Adaptive-RAG trains a classifier to assess
the difficulty of the query and decide the number
of retrievals (Jeong et al., 2024).
Main results Our method outperforms the other
four adaptive query reformulation methods in terms
of improving the efficiency of question answer-
ing accuracy (Acc) or exact match (EM). Notably,
it achieves significant improvements in answer-
ing mathematical and logical questions from the
MMLU-STEM dataset. However, in terms of
Acc, our method is optimal only on the AmbigNQ
dataset, whereas FLARE and SELF-RAG perform
better on the Hotpot and PopQA datasets.
Analyses on Outperformance The primary ad-
vantage of our method over other approaches lies
in the efficiency of improving answer accuracy.
This is evidenced by our TCA and TAI metrics,
which are significantly lower than those of other
methods, indicating that our method answers more
questions correctly in less time. The reason for
this efficiency is that retrieval is time-consuming,
and our query router helps avoid external retrieval

when the model’s internal knowledge can answer
the question. In contrast, other methods such as
FLARE, SELF-RAG, and Adaptive-RAG have low
retrieval thresholds and allow multiple retrievals
for the same query, consuming unnecessary time.

Our method achieves substantial improvement
in the EM metric on the MMLU-STEM dataset
because it includes the option of adding Chain-
of-Thought (CoT). For mathematical and logical
questions, the logical reasoning provided by CoT
is more beneficial than additional supplementary
information.
Analyses on Underperformance Our method un-
derperforms compared to FLARE and SELF-RAG
in terms of accuracy on fact-based datasets such as
Hotpot and PopQA, and only narrowly surpasses
SELF-RAG on the AmbigNQ dataset. The main
reason for this is that the bottleneck limiting ac-
curacy on entity-focused datasets is the relevance
of the external knowledge base rather than the
variation in query formulation. SELF-RAG and
FLARE’s multiple retrievals provide much more
relevant knowledge than our method, which limits
the number of retrievals to at most one. Conse-
quently, our method does not achieve the same
level of absolute accuracy as these two methods.

5.3 Impact of Replacing the Query Router

To test the sensitivity of the entire framework to
the query router, we conducted experiments re-
placing the query router. We mainly adjusted the
size and the number of classifications of the query
router, conducting experiments on the AmbigNQ
and PopQA datasets. The experimental results are
shown in Table 5 and Table 6. The 4-class classi-
fier combines the original QR path and CoT path,
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Dataset Metrics ANTLM FLARE Self-RAG Adaptive-RAG Query routing (Ours)

Acc(%) 55.40 54.20 56.70 54.40 56.85
AmbigNQ TCA(s) 10.88 8.91 14.22 7.41 3.76

TAI(s/%) 813.49 690.42 1027.84 542.47 182.50

Acc(%) 49.00 52.67 53.60 48.36 50.90
Hotpot TCA(s) 13.83 10.36 15.25 9.18 4.60

TAI(s/%) 685.04 438.36 668.87 429.86 153.53

EM 64.37 64.26 70.64 64.58 78.63
MMLU-STEM TCA(s) 10.09 8.04 10.50 7.78 3.23

TAI(s/%) 994.28 760.91 884.16 722.23 167.81

Acc(%) 51.28 55.34 55.80 51.79 52.25
PopQA TCA(s) 12.67 8.53 13.35 11.20 4.35

TAI(s/%) 650.61 377.05 605.51 559.93 185.74

Table 4: Performance comparison of Different Adaptive Query Reformulation Methods.

considering that problem decomposition can some-
times be replaced by CoT. The experiments show
that a larger query router does not bring perfor-
mance improvements. We believe this is due to
the current fine-tuning dataset being insufficient to
support the convergence of the larger BERT-large
model. Additionally, the 4-class router performs
better than the 5-class router on the PopQA dataset
but worse on the AmbigNQ dataset. This is be-
cause fewer classification categories lead to higher
routing accuracy, which improves Acc_QA perfor-
mance on the PopQA dataset where there is no
significant difference between the performance of
the QR and CoT methods. In the AmbigNQ dataset,
many questions are ambiguous, and in these cases,
the CoT method cannot replace the QR method
(decomposing the question to make it clear and
simple).

Metrics 5-class 4-class

BERT-base

Accrouter (%) 74.03 78.68
AccQA (%) 56.85 55.73

TCA (s) 3.76 3.56
TAI (s/%) 182.50 176.35

BERT-large

Accrouter (%) 65.15 67.54
AccQA (%) 50.75 53.65

TCA (s) 4.83 4.28
TAI (s/%) 397.36 263.64

Table 5: Performance comparison of different query
routers on the AmbigNQ dataset.

Metrics 5-class 4-class

BERT-base

Accrouter (%) 74.03 78.68
AccQA (%) 52.25 53.35

TCA (s) 4.35 4.37
TAI (s/%) 185.74 181.74

BERT-large

Accrouter (%) 65.15 67.54
AccQA (%) 48.50 49.25

TCA (s) 4.98 4.72
TAI (s/%) 248.65 225.88

Table 6: Performance comparison of different query
routers on the PopQA dataset.

5.4 Performance with Different QA Systems

To further validate the effectiveness of our query
routing method across different QA systems, we
conduct experiments on the PopQA dataset using
two additional LLMs: GPT-4o and Qwen2-72B.

Table 7 presents the results, showing that mod-
els directly responding to queries without query
routing or query expansion (QE) exhibit relatively
low accuracy due to the lack of additional context,
though inference latency remains low. Applying
QE improves accuracy by retrieving relevant exter-
nal chunks, but the gains come at a steep efficiency
cost, as reflected in the TCA and TAI metrics.

In contrast, our adaptive query routing method
significantly enhances accuracy across all three QA
systems while keeping inference latency within an
acceptable range. These findings confirm that our
approach effectively balances accuracy and effi-
ciency, making it adaptable to diverse QA models.

3628



Model TCA TAI Acc

GPT-3.5 1.39 NaN 32.70
GPT-4o 2.04 NaN 48.50
Qwen2-72B 2.36 NaN 47.30
GPT-3.5 with Router 4.35 185.74 52.25
GPT-4o with Router 5.23 444.13 57.62
Qwen2-72B with Router 5.79 595.48 54.05
GPT-3.5 with QE 14.61 784.53 50.25
GPT-4o with QE 13.69 1968.36 55.17
Qwen2-72B with QE 15.04 2793.97 52.11

Table 7: Performance comparison of different QA sys-
tems with and without query routing and QE on the
PopQA dataset.

6 Conclusion

In this work, we propose an adaptive query re-
formulation framework to efficiently reduce hal-
lucinations in large language models. This frame-
work adaptively selects the most suitable query
reformulation method for the input queries of QA
LLMs, thereby improving the accuracy of ques-
tion answering while minimizing unnecessary time
consumption. Comparative experiments show that
our framework outperforms baselines in terms of
both accuracy and efficiency, and it surpasses four
mainstream adaptive query expansion methods in
efficiency. Additionally, we introduce two new met-
rics, TCA and TAI, which effectively evaluate the
performance of adaptive query reformulation meth-
ods. Finally, we present a benchmark for query
adaptive reformulation to further advance research
in this area.

Limitations

Our framework has several limitations. Firstly, the
query expansion path in our framework is designed
to perform a single retrieval, which is less effective
for handling long-tail queries compared to meth-
ods like FLARE and Self-RAG that involve multi-
ple retrievals. Secondly, our framework currently
incorporates only four major query reformulation
methods, which may not cover the optimal reformu-
lation method for every input query. Expanding the
range of reformulation methods within the frame-
work is a crucial direction for improvement. How-
ever, it is important to note that increasing the num-
ber of reformulation paths will also increase the
number of classification labels for the classifier, ne-
cessitating more training data and potentially lead-

ing to convergence difficulties. Finally, our method
involves calling APIs, and network issues can im-
pact the experimental results, posing challenges for
the reproducibility of the research. Nonetheless,
we are confident that the qualitative conclusions of
this paper remain unaffected by these factors.

Ethics Statements

Our experiments rely exclusively on publicly avail-
able datasets, which are widely used in the research
community and comply with their respective li-
censes and terms of use. No proprietary or private
data was used in our research.

However, as these datasets are predominantly
in English, our method may exhibit biases when
applied to multilingual contexts. Additionally, we
acknowledge that training the query router may
introduce biases—for instance, if someone were
to train a router that disproportionately favors a
specific company’s retrieval system.

To promote transparency and facilitate further
research, we provide detailed descriptions of our
experimental setups, benchmarks, evaluation met-
rics, and implementation details.

Finally, this research is intended to enhance user
experience with large language models and assist
enterprises in improving their question-answering
systems. We explicitly oppose any use of this re-
search for unethical purposes, including but not
limited to military applications.
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A Prompts and Exemplars

Here, we present the prompts used in the query
reformulation process and the corresponding re-
sponses from GPT-3.5, which are shown in Tables
8, 9, 10, 11, and 12.
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Task Prompt Exemplar
Direct answer
(for Hotpot, Am-
bigNQ, and PopQA)

Please answer the following
questions directly. Your an-
swers should not exceed ten
words.
Question: {query}

Query: Who plays the doctor in Dexter
season 1?
Output: Julie Benz plays the doctor in
Dexter season 1.

Direct answer
(for MMLU-STEM)

Please answer the following
questions directly with a letter
in ’A’, ’B’, ’C’, or ’D’.
Question: {query}

Query: Find the degree for the given field
extension over Q(

√
2,
√
3,
√
18).

Options: A. 0 B. 4 C. 2 D. 6
Output: The answer is D

Table 8: Prompts used in the Direct Answer Path and Corresponding Exemplars

Task Prompt Exemplar
Guide
self-knowledge

The following questions are
likely to exceed your knowl-
edge boundaries. Please double
check if you can answer them,
and if not, report truthfully.
Question: {query}

Query: How to treat internal injuries of
cobras?
Output: Sorry, I am not familiar with the
knowledge of cobra treatment. Please re-
place the QA LLM or retriever.

Table 9: Prompts Used in Guiding Self-Knowledge and Corresponding Exemplars
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Task Prompt Exemplar
Add CoT
(for Hotpot, Am-
bigNQ, and PopQA)

Please think step by step and
answer the following question.
Your answer must reflect the
thought process and conclude
with "so the answer is...".
Question: {query}

Query: Who plays the doctor in Dexter
season 1?
Output: First, I need to recall the cast of
Dexter Season 1. The main character, Dex-
ter Morgan, is played by Michael C. Hall.
To identify who plays the doctor in Dexter
Season 1, I need to think about the recur-
ring characters in the show. Dr. James
Doakes is a significant character in the first
season, but he is not a doctor. Dr. Evelyn
Vogel is introduced in later seasons, so she
is not the doctor in Season 1. The doctor in
Dexter Season 1 is Dr. Emmett Meridian,
who is portrayed by actor Tony Goldwyn.
So the answer is Tony Goldwyn plays the
doctor in Dexter Season 1.

Add CoT
(for MMLU-STEM)

Please think step by step and
answer the following question
with a letter in ’A’, ’B’, ’C’,
or ’D’. Your answer must re-
flect the thought process and
conclude with "so the answer
is A/B/C/D".
Question: {query}

Query: Find the degree for the given field
extension over Q(

√
2,
√
3,
√
18).

Options: A. 0 B. 4 C. 2 D. 6
Output: To find the degree of the field
extension over Q(

√
2,
√
3,
√
18), we con-

sider each extension individually. The
degree of Q(

√
2) over Q is 2 because

the minimal polynomial of
√
2 over Q is

x2 − 2. Similarly, the degree of Q(
√
3)

over Q is 2 because the minimal polyno-
mial of

√
3 over Q is x2 − 3. However,√

18 can be expressed as 3
√
2, which does

not introduce a new degree since it’s de-
pendent on

√
2. Therefore, the combined

field extension Q(
√
2,
√
3,
√
18) is essen-

tially Q(
√
2,
√
3) because

√
18 is not an

independent element. The total degree of
the field extension, calculated as the prod-
uct of independent extensions, is 2×2 = 4
because the extensions for

√
2 and

√
3 are

independent. Therefore, the correct an-
swer is B.

Table 10: Prompts Used in the Add CoT Path and Corresponding Exemplars
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Task Prompt Exemplar
Query rewrite
(for Hotpot, Am-
bigNQ, and PopQA)

Please break down the follow-
ing questions into a series of
simpler sub questions (no more
5) and ensure that the sub ques-
tions are helpful in answering
the original question.
Question: {query}

Query: Who plays the doctor in Dexter
season 1?
Output: 1. Who are the main characters
in Dexter season 1? 2. What is the role of
the doctor in Dexter season 1? 3. What is
the actor’s name who plays the doctor in
Dexter season 1? 4. Are there any notable
scenes involving the doctor in Dexter sea-
son 1?

Query rewrite
(for MMLU-STEM)

Please think step by step and
provide the necessary back-
ground to address the following
question.
Question: {query}

Query: Find the degree for the given field
extension Q(

√
2,
√
3,
√
18) over Q. Op-

tions: A. 0 B. 4 C. 2 D. 6
Output: 1. What is a field extension in
mathematics? 2. How do you calculate
the degree of a field extension? 3. What
are the properties of square roots in field
extensions? 4. How do you determine the
degree of a composite field extension?

Table 11: Prompts Used in the Query Rewrite Path and Corresponding Exemplars

Task Prompt Exemplar
Get key words for re-
triever

Identify and list the key search
terms related to answering the
following question, separated
by ’;’.
Question: {query}

Query: Who plays the doctor in Dexter
season 1?
Output: doctor; Dexter; season 1.

Answer with related
document

If the following passage helps
with the question, please refer
to it; if it does not help, please
answer on your own. Keep your
answer within 30 words.
Passage : {background}
Question: {query}

Background: The first season of Dex-
ter is an adaptation of Jeff Lindsay’s first
novel in a series of the same name, Darkly
Dreaming Dexter. Subsequent seasons
have featured original storylines–Dexter
finds the victim mutilated but alive and
strapped to a table for Dexter to kill.
Instead, Dexter reports the crime scene
anonymously to his sister. The pressure
on Sergeant Doakes escalates when Guer-
rero’s associates begin following him.
Query: Who plays the doctor in Dexter
season 1?
Output: The doctor in Dexter season 1 is
portrayed by actor Christian Camargo.

Table 12: Prompts Used in the Query Expansion Path and Corresponding Exemplars
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B Time Consumption Analysis

This section analyzes the time consumption of our
experiments.

For fine-tuning, we follow the hyperparameter
settings in Table 2. The model is trained on a single
NVIDIA RTX 4090 GPU with 12,800 training and
3,200 validation samples. Fine-tuning BERT-base
takes 260 seconds per epoch, while BERT-large
takes 320 seconds. During validation and inference,
the model processes 263 samples per second.

For comparative experiments, we evaluate our
method against baselines and other adaptive query
reformulation strategies on four datasets. MMLU-
STEM contains 3,609 samples, while the other
datasets have 2,000 samples each. Total time costs
are summarized in Tables 13 and 14. Network
fluctuations introduce variability in time measure-
ments, particularly when calling large language
model APIs or retrieval APIs, causing occasional
inconsistencies in processing times for the same
input. However, these fluctuations are infrequent
and affect only a limited number of queries.While
network latency impacts absolute efficiency, it
does not change the study’s qualitative conclusions.
Methods with query routing consistently achieve
lower TCA and TAI values than those without, con-
firming the efficiency advantages of our approach.

Dataset Path Time (s)

AmbigNQ

Direct Answer 1688
Add CoT 4688.07
Query Expansion 14836.32
Query Rewrite 9312.52
Ours 4279.54

Hotpot

Direct Answer 1743
Add CoT 4343.88
Query Expansion 16373.64
Query Rewrite 8848.21
Ours 4683.08

MMLU-STEM

Direct Answer 3403.69
Add CoT 9189.57
Query Expansion 25697.66
Query Rewrite 19282.03
Ours 9182.81

PopQA

Direct Answer 911.5
Add CoT 4446.12
Query Expansion 14680
Query Rewrite 7725.21
Ours 4542.66

Table 13: Total time consumption in comparative exper-
iment 5.1.

Dataset Method Time (s)

AmbigNQ

ANTLM 12060
FLARE 9662.4
Self-RAG 16129.2
Adaptive-RAG 8062
Ours 4279.54

Hotpot

ANTLM 13560
FLARE 10913.64
Self-RAG 16358
Adaptive-RAG 8883
Ours 4683.08

MMLU-STEM

ANTLM 23458.5
FLARE 18667.66
Self-RAG 26781
Adaptive-RAG 18122.66
Ours 9182.81

PopQA

ANTLM 13000
FLARE 9448
Self-RAG 14899
Adaptive-RAG 11600
Ours 4542.66

Table 14: Total time consumption in comparative exper-
iment 5.2.
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