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Abstract

Emotion Recognition in Conversation (ERC)
aims to identify the emotions expressed in each
utterance within a dialogue. Existing research
primarily focuses on the analysis of contextual
structure in dialogue and the interactions be-
tween different emotions. Nonetheless, ERC
datasets often contain difficult-to-classify sam-
ples and suffer from imbalanced label distri-
butions, which pose challenges to the spatial
distribution of dialogue features. To tackle
this issue, we propose a method that gener-
ates Proximal Emotion Mean Vectors (PEMV)
based on emotion feature queues to optimize
the spatial representation of text features. We
design a Center Loss based on PEMVs to pull
hard-to-classify samples closer to their respec-
tive category centers and employ Angle Loss to
maximize the angular separation between dif-
ferent PEMVs. Furthermore, we utilize PEMV
as a classifier to better adapt to the spatial struc-
ture of dialogue features. Extensive experi-
ments on three widely used benchmark datasets
demonstrate that our method achieves state-
of-the-art performance and validates its effec-
tiveness in optimizing feature space representa-
tions.

1 Introduction

With the rapid development of online social net-
works, capturing and understanding emotions in
conversations has become a widely studied re-
search field in both academia and industry (Li et al.,
2020). The task of Emotion Recognition in Con-
versation (ERC) aims to identify the emotional at-
tributes of each utterance within a dialogue (Zahiri
and Choi, 2018; Zhao et al., 2022; Yu et al., 2024).
Figure 1 illustrates an example of the ERC task,
where each dialogue involves two or more partici-
pants, and each utterance carries distinct emotional
attributes.
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Ross, let me ask you a question. She got the furniture, 
the stereo, the good TV- what did you get?

#1 Emotion: Neutral

Joey

You guys.

#2 Emotion: Sad

Ross

Oh, God.

#3 Emotion: Sad

Chandler

You got screwed.

#4 Emotion: Mad

Joey

Oh my God!

#5 Emotion: Mad

Chandler

Figure 1: An example from the EmoryNLP dataset
illustrates a dialogue involving multiple participants,
where similar phrases such as "Oh, God" and "Oh my
God" convey distinct emotions.

As shown in Figure 1, even within the same dia-
logue, similar expressions such as “Oh, God” and
“Oh my God” can convey distinct emotions, mak-
ing certain samples inherently difficult to classify.
This challenge is further exacerbated by the need
for effective context modeling (Zhang et al., 2023a),
and the intricate dynamics of emotion interactions
(Yang and Shen, 2021). Together, these factors
significantly influence the accurate classification
of challenging samples. Additionally, many com-
monly used datasets suffer from class imbalance
issues, further complicating the emotion classifica-
tion task (Song et al., 2022).

To optimize the spatial representation of utter-
ances, Supervised Contrastive (SupCon) Learning
(Khosla et al., 2020) has been widely applied in
ERC task. Yu et al. (2024) propose the Emotion-
Anchored Contrastive Learning Framework, which
uses label encodings as anchors to enhance the
distinguishability of utterance representations, par-
ticularly in handling similar emotions. However,
despite the strong performance of SupCon Learn-
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Neutral
Joy
Surprise
Emotion Vector Center
Easy-to-Classify Sample
Hard-to-Classify Sample

Figure 2: The utterance feature vectors from the MELD
dataset, obtained by the model trained with SupCon
Learning, are visualized using t-SNE dimensionality
reduction. The radius of the circles represents the mean
distance from all sample points to the center, plus two
standard deviations. The triangular points indicate ex-
treme outliers that are difficult to classify, positioned far
from the center.

ing in ERC task, certain limitations still exist. As
shown in Figure 2, even after training the model
with SupCon Learning, there are still some ex-
tremely challenging outliers far from the class cen-
ters in the generated spatial representations of dia-
logue samples, significantly impacting the model’s
classification performance.

To address this issue, we propose a method for
optimizing dialogue text feature space representa-
tion based on Proximal Emotion Mean Vectors
(PEMV). Inspired by Song et al. (2022), we main-
tain a dynamic emotion feature queue for each emo-
tion category, recording the most recent text fea-
tures. By averaging these vectors, we generate
the PEMV to represent the typical feature of each
category and guide the learning process. Specifi-
cally, we design Center Loss and use Angle Loss
to pull within-category vectors closer and maxi-
mize the angular separation between different cate-
gories. Rather than using the emotion feature queue
for curriculum learning as in prior work, we lever-
age it to directly optimize utterance representation.
Additionally, after training the model, we employ
PEMV as a classifier to adjust decision boundaries,
further aligning PEMV with sample feature vec-
tors, drawing inspiration from Yu et al. (2024). In
contrast, our PEMVs not only serve as anchors
but also refine the spatial distribution of utterance
representations, addressing hard-to-classify sam-

ples and enhancing the overall distinction between
emotion categories.

To validate the effectiveness of PEMV in guid-
ing feature learning, we conducted extensive ex-
periments on three widely-used ERC benchmark
datasets, achieving state-of-the-art performance.
The main contributions of this paper are summa-
rized as follows:

• We propose a novel method that utilizes
PEMV to optimize the spatial distribution of
feature vectors, addressing the challenges of
hard-to-classify samples and class imbalance
in ERC tasks.

• To the best of our knowledge, this is the first
work to consider optimizing the spatial repre-
sentation of hard-to-classify samples.

• Extensive experiments on three ERC bench-
mark datasets demonstrate the effectiveness
of our model, achieving state-of-the-art per-
formance.

2 Related work

Existing research methods for ERC primarily fo-
cus on the structural modeling of dialogues and
the interaction between different emotions. These
methods can be broadly categorized into four main
types: sequence modeling methods, graph-based
methods, knowledge-enhanced methods, and large
language model (LLM) methods.

(1) Sequence modeling methods typically treat
the utterances in a conversation as sequential in-
puts, using recurrent neural networks or pre-trained
language models to capture contextual information.
Early works, such as ICON (Hazarika et al., 2018)
and HiGRU (Jiao et al., 2019), employed gated re-
current units (GRU) to capture contextual informa-
tion in conversations. CoMPM (Lee and Lee, 2022)
integrates pre-trained language models to model
contextual and speaker memory information.

(2) Graph-based methods construct graphs to
model the relationships between utterances and
speakers in a conversation. DialogGCN (Ghosal
et al., 2019) represents utterances as nodes and
uses different types of edges to model relation-
ships within and between speakers. SIGAT (Jia
et al., 2023) introduces a dual-connection graph at-
tention network to model the interactive influence
of speaker-aware and sequence-aware information,
enhancing contextual representation.
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(3) Knowledge-enhanced methods introduce
external knowledge into ERC tasks to improve
the accuracy of emotion recognition. COSMIC
(Ghosal et al., 2020) incorporates social common-
sense to help identify hidden emotional informa-
tion. EmoTransKG (Zhao et al., 2024) models emo-
tion transformations via a knowledge-enhanced
Emotion Graph.

(4) LLM methods have emerged with the ad-
vent of LLMs. InstructERC (Lei et al., 2023)
and DialogueLLM (Zhang et al., 2023b) leverage
instruction-based construction and fine-tuning of
large language models for ERC tasks. CKERC (Fu,
2024) and BiosERC (Xue et al., 2024) introduce
tasks related to identifying speaker-related content
into LLM training to capture implicit speaker cues.

In recent years, contrastive learning has been
increasingly integrated into ERC methods as an
effective technique to enhance feature represen-
tations and address challenges in emotion recog-
nition. EACL (Yu et al., 2024) leverages label
encodings as anchors to guide utterance representa-
tions and enhance the separation between similar
emotions. In contrast, our method focuses on ad-
dressing hard-to-classify samples within the same
emotion category, utilizing PEMV to directly guide
the spatial distribution of utterances. SPCL (Song
et al., 2022) introduces a prototypical contrastive
loss to tackle imbalanced classification, incorpo-
rating a curriculum learning strategy to improve
robustness in challenging samples, whereas our ap-
proach emphasizes refining the representation of
utterances by utilizing PEMV for optimization.

3 Methodology

3.1 Problem Definition

In the task of ERC, given a conversation C =
[u1, u2, . . . , uN ] consisting of N consecutive ut-
terances and M speakers S = [s1, s2, . . . , sM ]
(where M ≥ 2), each utterance ui is spoken by
a specific speaker sj . The goal of ERC is to predict
the emotion label ei for each utterance ui, that is,
to identify the emotional state of the correspond-
ing speaker at each turn of the conversation. In
this paper, we focus on the real-time setting of
ERC, where the model can only utilize a portion of
the previous turns [(s1, u1), (s2, u2), . . . , (st, ut)]
as input to predict the emotion label et for the cur-
rent utterance ut.

3.2 Model Overview
As illustrated in Figure 3, our proposed model
comprises four main components: Utterance Text
Feature Extraction, Proximal Emotion Mean Vec-
tors Generation, Proximal Emotion Mean Vectors
Guide Feature Learning, and Proximal Emotion
Mean Vectors Adaptation. We first extract features
from each utterance and store them in dynamic
queues corresponding to their respective labels (re-
ferred to as emotion feature queues). Subsequently,
we compute the mean of all feature vectors within
each emotion feature queue to obtain the Proximal
Emotion Mean Vectors (PEMV). Next, we uti-
lize PEMVs to guide feature learning, focusing
on two primary objectives: first, to pull feature
vectors within the same category that are distant
from the PEMV closer to it, and second, to maxi-
mize the angular differences between PEMVs of
different categories. Finally, we employ the gener-
ated PEMVs as classifiers, adjusting their decision
boundaries to further align the utterance features
with the PEMVs.

3.3 Utterance Feature Extraction
We utilize the SimCSE-Roberta-Large model (Gao
et al., 2021) to extract text feature vectors for each
utterance. To predict the emotion of a given ut-
terance, we use the current utterance along with
its preceding utterances as input. Specifically, for
a given utterance ut at timestamp t, we take the
preceding k utterances as the context, forming the
input sequence:

xt = [st−k, ut−k, . . . , st, ut,Prompt] (1)

where st represents the speaker of utterance ut.
The prompt used to align the downstream task with
the large semantic information learned by the lan-
guage model during the pre-training stage (Liu
et al., 2023) is: "For utterance ut, the speaker st
feels <mask>". We take the hidden state of the
<mask> token from the final layer of the SimCSE-
Roberta-Large model as the feature representation
of the utterance.

3.4 PEMV-Guided Learning
3.4.1 PEMV Generation
We consider the PEMV as a prototypical feature
of an emotion category, which is used to guide the
spatial distribution of sample vectors within that
category. In the process of generating PEMV, we
maintain a fixed-size emotion feature queue for
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Recent Features Previous Features
Proximal Emotion Mean Vectors Generation

Sad
Enqueue

Dequeue

Mad

.   .   .   .   .   .   .   .   .

Happy

.   .  

Emotions

Take the average of features 
within the same emotion queue

.   .   .   

Maximize the angles between the 
Proximal Emotion Mean Vectors

Minimize the distance between 
hard-to-classify samples and the 
Proximal Emotion Mean Vectors

Threshold

Proximal Emotion Mean Vectors guide feature learningProximal Emotion Mean Vectors Adaptation

Joey Tribbiani: Ross, let me …Ross Geller: You guys. Chandler 
Bing: oh, God. For "oh, God”, Chandler Bing feels <mask>.

Tokenize

Transformer-based Pretrained Language Model

Utterance Text Feature Extraction

Adjust the Proximal Emotion Mean Vectors 
to the most representative positions

Center Loss Angle Loss

Emotion Feature Queues

PEMVs

Figure 3: The overall structure of the proposed model. First, utterance text features are extracted using a Transformer-
based pretrained language model and stored in dynamic emotion feature queues corresponding to their labels. These
features are then used to generate Proximal Emotion Mean Vectors (PEMV). PEMVs guide the distribution of
features in the spatial representation by encouraging tighter clustering within the same category and greater
separation between different categories. After model training, PEMVs also function as a classifier to further align
dialogue text features with their respective emotion categories.

each emotion category, which stores the most re-
cent textual feature representations of that category.
Specifically, the queue size is denoted as Li, used
to store feature vectors for each category, with the
number of categories adjusted according to differ-
ent datasets. For the i-th category, the feature queue
is defined as:

Qi = [z1i , z
2
i , · · · , zLi

i ] (2)

where zji represents the j-th feature vector belong-
ing to category i, Li denotes the length of the fea-
ture queue for category i. Specifically, the feature
vector is derived as:

zji = Encoder(xjt ) (3)

Each time a new feature representation zi is gen-
erated, if the size of the queue Qi has reached Li,
the oldest element in the queue is removed, and
the gradient of zi is detached before it is pushed
into the queue. To generate the PEMV for the i-th
category, we compute the mean of all the samples
in Qi, yielding the PEMV:

Ti =
1

Li

Li∑

j=1

zji (4)

where vector Ti represents the prototypical emo-
tional features of category i.

3.4.2 Optimizing Spatial Representation
The generated PEMV is employed to guide the
spatial distribution of sample vectors, focusing on
two key aspects: First, within the same category,
PEMV addresses vectors that deviate significantly
from their category center, employing a penaliza-
tion mechanism to pull these outliers closer. Sec-
ond, across different categories, PEMV aims to
enhance the angular separation between vectors
from distinct categories, thereby ensuring improved
inter-class distinction.

Center Loss is utilized to address vectors within
the same category that deviate substantially from
the PEMV. This deviation is quantified by com-
puting the Euclidean distance between a sample
feature fi and its category’s PEMV Ti . Specifi-
cally, the distance between a sample feature fi and
the category PEMV Ti is calculated as:

d(fi, Ti) =

√√√√
D∑

j=1

(f j
i − T j

i )
2 (5)

where D denotes the feature dimension. Samples
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with a distance exceeding a predefined threshold
are penalized. Samples with a distance exceeding
a predefined threshold are penalized. A dynamic
threshold µ is computed using the mean and the
variance of the distances:

d =
1

N

N∑

i=1

d(fi, Ti) (6)

µ = d+
c ·

(∑N
i=1(d(fi, Ti)− d)2

)

N
(7)

where d is the average distance, N represents the
batch size and c is a scaling factor applied to the
variance term. The final Center Loss is then calcu-
lated as:

Lcen =
1

N

N∑

i=1

max(d(fi, Ti)− µ, 0) (8)

Center loss penalizes the sample features fi whose
distances from their respective category centers Ti

exceed the threshold µ, thereby encouraging the
feature vectors to be closer to their corresponding
PEMV.

Angle Loss is employed to enhance inter-class
differentiation by maximizing the angular sepa-
ration between categories. For each category’s
PEMV Ti , we first compute the mean vector g
as:

g =
1

C

C∑

i=1

Ti (9)

where C is the total number of categories. The
PEMVs are then centered and normalized to facili-
tate the computation of cosine similarity:

T ′
i =

Ti − g

|Ti − g| (10)

We compute the maximum cosine similarity be-
tween all categories and use it to derive the Angle
Loss:

Lang = − 1

C

C∑

i=1

arccos

(
max
i ̸=j

(
T ′
i · T ′

j

))
(11)

Minimizing this loss function maximizes the an-
gular separation between PEMVs of different cate-
gories, thereby enhancing inter-class distinction.

In conjunction with Center Loss and Angle Loss,
we employ the Cross-Entropy Loss to ensure ac-
curate emotion classification. The Cross-Entropy
Loss is defined as:

Lce = − 1

N

N∑

i=1

C∑

c=1

yi,c log(pi,c) (12)

where yi,c is the true label indicator (1 if sample i
belongs to class c, otherwise 0), and pi,c represents
the predicted probability of sample i belonging to
class c.

Additionally, we incorporate SupCon Loss to
further enhance the model’s feature learning capa-
bilities. The SupCon Loss is defined as:

C(zi, zj) =
sim(zi, zj)

τ
(13)

Lsp = −
N∑

i=1

∑
j∈P (i) log

e
C(zi,zj)

∑
k ̸=i e

C(zi,zk)

|P (i)| (14)

where sim(zi, zj) is the cosine similarity between
the feature representations of zi and zj , and τ is a
temperature scaling parameter used to control the
sharpness of the similarity distribution.

The overall loss function is defined as a weighted
sum of the four components:

L =

4∑

i=1

λiLi (15)

where Li represents one of the four loss compo-
nents: Lcen, Lang, Lce, and Lsp. The correspond-
ing weights λi are hyperparameters ( λ1, λ2, λ3,
λ4 ) that control the trade-off between these four
loss components.

By optimizing this composite loss, we guide
the spatial distribution of sample vectors, ensur-
ing that they are closer to their respective category
centers, well-separated from other categories, and
accurately classified.

3.4.3 PEMV Adaptation

After the PEMV-guided learning process, following
the method of Yu et al. (2024), we further adapt the
PEMV to enhance its classification performance.
During the adaptation process, we freeze the param-
eters of the language model and treat the PEMV Ti

(i = 1, . . . , s), as trainable parameters to be opti-
mized. To ensure effective alignment of the PEMV,
we use alignment loss function Lada , which is de-
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fined as:

Lada = −1

b

b∑

i=1

s∑

j=1

yi,j log ŷi,j

= −1

b

b∑

i=1

s∑

j=1

yi,j log
eCi,j

∑s
k=1 e

Ci,k
(16)

where Ci,j represents the cosine similarity between
the i-th feature vector and the j-th PEMV.

In the prediction phase, for each utterance repre-
sentation ri , we calculate its similarity with every
PEMV Tj using the cosine similarity. The pre-
dicted emotion label is determined by selecting the
PEMV with the highest similarity score:

ŷi = argmax
j

sim(ri, Tj) (17)

where ri represents the feature vector of the ut-
terance xi, and Tj corresponds to the PEMV of
class j.

4 Experimental Setting

4.1 Datasets
We conducted experiments on three widely used
ERC benchmark datasets: MELD(Poria et al.,
2019), EmoryNLP(Zahiri and Choi, 2018) and
IEMOCAP(Busso et al., 2008). The statistical in-
formation for the three datasets is presented in Ta-
ble 1.

(1) MELD: This dataset is derived from the
TV show Friends, containing 1,433 dialogues and
13,708 utterances. Each utterance is labeled with
one of seven emotions: surprise, neutral, anger,
sadness, disgust, joy, and fear.

(2) EmoryNLP: Also sourced from Friends, this
dataset includes 897 dialogues and 12,606 utter-
ances. Unlike MELD, EmoryNLP uses a differ-
ent set of emotion labels, including neutral, joyful,
peaceful, powerful, scared, mad, and sad.

(3) IEMOCAP: IEMOCAP is a two-speaker
conversation dataset comprising 151 dialogues and
a total of 7,433 utterances. Each utterance is anno-
tated with one of six emotions: excited, frustrated,
sad, neutral, angry, and happy. Since there is no
official validation set for this dataset, we followed
the method of Sun et al. (2021) and used the last
20 dialogues from the training set as the validation
set.

Notably, all three datasets suffer from class im-
balance, with further details provided in Appendix
A.

Dataset
Dialogues Utterances

CLS
train dev test train dev test

MELD 1038 114 280 9989 1109 2610 7
EmoryNLP 659 89 79 9934 1344 1328 7
IEMOCAP 100 20 31 4890 920 1623 6

Table 1: The statistics of three datasets. CLS represents
the number of emotion categories in each dataset.

4.2 Baseline Models

To evaluate the effectiveness of the proposed model,
we conduct a comparative analysis against several
existing methods. A detailed description of these
comparative models is provided in Appendix B.

4.3 Implementation Details

The utterance feature extraction model we em-
ployed is initialized with SimCSE-Roberta-Large
(Gao et al., 2021) parameters. In all experiments
presented in this paper, we select the optimal check-
point based on performance on the development set,
and subsequently use this checkpoint to evaluate
and report results on the test set. All experiments
were conducted on a single NVIDIA A100-SXM4-
80GB GPU, utilizing the PyTorch 2.0 framework.
Further experimental details are provided in Ap-
pendix C.

4.4 Metrics

Following previous works (Zhao et al., 2022; Song
et al., 2022), we choose weighted-F1 score as the
metric for all experiments.

5 Results and Analysis

5.1 Main Results

In Table 2, we present the weighted-F1 scores for
the MELD, EmoryNLP, and IEMOCAP datasets,
comparing the performance of our PEMV model
with several strong baselines, including sequence
modeling and graph-based approaches. The re-
sults suggest that PEMV delivers competitive per-
formance, consistently yielding strong outcomes
across all datasets.

On the MELD dataset, PEMV achieves a
weighted-F1 score of 67.95, reflecting a modest
improvement of 0.70% over SPCL+CL. For the
EmoryNLP dataset, PEMV attains a weighted-F1
of 40.97, surpassing EACL by 0.73%. These re-
sults suggest that PEMV is effective in addressing
more challenging classification cases, despite the
inherent complexity of the dataset. On the IEMO-
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Methods MELD EmoryNLP IEMOCAP Average

Sequence modeling methods

SPCL+CL (Song et al., 2022) 67.25 40.94 69.74 59.31
MuCDN (Zhao et al., 2022) 65.37 40.09 - -

ChatGPT 3-shot (Zhao et al., 2023) 58.35 35.92 48.58 47.62
ERNetCL (Li et al., 2024) 66.31 39.71 69.73 58.58

COSMIC(2020) (Ghosal et al., 2020) 65.21 38.11 65.28 56.20
+E-TransKG (Zhao et al., 2024) - 39.06 68.39 -

CoMPM (Lee and Lee, 2022) 66.52 37.37 66.33 56.74
+CLED (Kang and Cho, 2024) 66.00 38.76 67.65 57.47

EACL(Yu et al., 2024) 67.12 40.24 70.41 59.26
Graph-based methods

DAG-ERC (Shen et al., 2021) 63.65 39.02 68.03 56.90
DAG-ERC+HCL(Yang et al., 2022) 63.89 39.82 68.73 57.48

SIGAT (Jia et al., 2023) 66.18 39.95 70.17 58.77
DialogueGCN (Ghosal et al., 2019) 64.09 38.23 65.30 55.87

+E-TransKG (Zhao et al., 2024) - 38.80 67.11 -

PEMV(ours) 67.95 40.97 70.65 59.86

Table 2: Comparison of Weighted-F1 between PEMV and Baseline Models. The bold value represents the
best performance, while the underlined value indicates the second-best performance. Through the t-test, the
experimental results on all three datasets demonstrate statistical significance (p < 0.05).

CAP dataset, PEMV records a weighted-F1 score
of 70.65, slightly exceeding EACL by 0.24%.

Furthermore, Table 3 provides a more detailed
breakdown of performance across different emo-
tion categories for each dataset. On the MELD
dataset, PEMV achieves consistent performance
across emotion categories, with particularly no-
table improvements in "Neutral" and "Anger". This
is partly due to the effect of the PEMV’s Dis-
tance Penalty, as shown in Table 5, where the
number of samples from these two emotion cat-
egories that were too distant from the PEMV has
decreased after applying the Distance Penalty, indi-
cating its ability to pull back hard-to-classify sam-
ples. Similarly, on the EmoryNLP dataset, PEMV
exhibits competitive performance in the "Mad" and
"Scared" categories, slightly surpassing SPCL+CL
and EACL. On the IEMOCAP dataset, PEMV
demonstrates its strength in capturing complex
emotions such as "Frustration", showing an overall
improvement over both SPCL+CL and EACL.

5.2 Ablation Study

To evaluate the contributions of various compo-
nents in our PEMV framework, we conducted abla-
tion studies on the MELD, EmoryNLP, and IEMO-
CAP datasets, as shown in Table 4. The results
suggest that removing any component leads to a
decline in performance. For instance, the exclusion
of PEMV-Guided Learning results in a decrease
of 1.06% on MELD, indicating its importance in

(a) MELD
Methods Fear Neu Ang Sad Dis Surp Joy Avg W-f1

SPCL+CL 26.59 77.92 54.40 43.53 30.94 59.26 60.34 50.43 65.74
EACL 23.54 80.44 54.01 42.41 33.86 60.48 65.22 51.42 67.12
PEMV 22.78 81.18 56.94 45.76 32.38 59.76 64.95 52.67 67.95

(b) EmoryNLP
Methods Joy Sad Pow Mad Neu Pea Sca Avg W-f1

SPCL+CL 53.52 31.61 10.28 44.21 51.40 16.83 39.51 35.34 39.52
EACL 52.73 30.77 15.27 41.97 49.76 23.48 41.18 36.45 40.24
PEMV 53.59 33.04 15.38 47.39 47.51 24.33 44.09 37.90 40.97

(c) IEMOCAP
Methods Exc Fru Sad Neu Ang Hap Avg W-f1

SPCL+CL 66.72 63.96 80.03 72.29 64.82 43.96 65.30 67.19
EACL 71.27 67.76 81.80 73.32 67.54 51.29 68.81 70.41
PEMV 64.91 71.69 81.64 77.30 70.36 43.71 68.27 70.65

Table 3: Weighted-F1 scores for each class between
PEMV, SPCL+CL, and EACL across three benchmark
datasets

guiding feature learning and supporting emotion
separation. Similarly, omitting the PEMV Distance
Penalty corresponds to a drop of 0.58%, which
points to its role in reducing within-class variance.
Although the removal of Angle Adjustment leads
to only a minor decrease of 0.13% on EmoryNLP, it
still suggests its contribution to refining the spatial
distribution of emotion vectors.

Moreover, the absence of the Classification Ob-
jective results in a reduction of 0.63% on MELD,
highlighting its necessity for aligning the feature
space with the emotion categories, consistent with
the findings of Gunel et al. (2020). The impact of
excluding SupCon Learning is also noticeable, with
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Methods MELD EmoryNLP IEMOCAP

PEMV 67.95 40.97 70.65
w/o PEMV-Guided Learning 66.89 (1.06 ↓) 40.22 (0.75 ↓) 69.81 (0.84 ↓)
w/o PEMV Distance Penalty 67.37 (0.58 ↓) 40.60 (0.37 ↓) 70.22 (0.43 ↓)

w/o Angle Adjustment 67.51 (0.44 ↓) 40.84 (0.13 ↓) 70.29 (0.36 ↓)
w/o Classification Objective 67.32 (0.63 ↓) 40.52 (0.45 ↓) 70.25 (0.40 ↓)

w/o SupCon Learning 67.40 (0.55 ↓) 40.38 (0.59 ↓) 70.33 (0.32 ↓)
w/o PEMV Adaptation 67.12 (0.83 ↓) 40.45 (0.52 ↓) 70.51 (0.14 ↓)

Table 4: Results of ablation study on three benchmark
datasets

a modest decline of 0.55% on MELD, which re-
flects its potential in enhancing emotion distinction
through better clustering of similar representations.
Lastly, not incorporating PEMV Adaptation leads
to a 0.83% drop on MELD, underscoring its value
in fine-tuning the positions of emotion vectors rela-
tive to the data distribution.

5.3 Effect of PEMV-Guided Spatial
Distribution

We conducted additional experiments to explore
the impact of the PEMV distance penalty and angle
adjustment on optimizing the distribution of feature
vectors in the embedding space.

For the three benchmark datasets, we applied the
distance threshold µ provided in Equation 7 and
the variance scaling factor c from Table 7 in Ap-
pendix C. We calculated the percentage of samples
exceeding the threshold µ in each emotion cate-
gory, as well as the total number of such samples
across the dataset, for both the fully trained PEMV
model and the model trained with cross entropy
and supervised contrastive learning. The results are
presented in Table 5. The proportion of hard-to-
classify samples in almost all emotion categories
has decreased, which aligns with the trend shown
in Table 3 for fine-grained emotion classification
results. For instance, on the MELD dataset, "Neu-
tral" and "Anger" performed better compared to
other well-performing models, and the proportion
of hard-to-classify samples in these two categories
also showed a noticeable reduction. We present
several examples of hard-to-classify samples in Ap-
pendix D.

We visualized the spatial distribution of the
PEMVs for different emotion categories before and
after training, as presented in Appendix E. After
the angle adjustment, the PEMVs’ distribution in
the feature space becomes more dispersed.

To further analyze the spatial distribution, we
visualized the emotion category distributions on
the MELD dataset after training with both the

(a) MELD
Methods Fear Neu Ang Sad Dis Surp Joy Cnt

CE + SupCon 4.74 4.91 4.91 4.44 4.33 5.56 5.30 510
PEMV 4.48 4.01 4.06 4.23 4.43 5.23 5.34 440

(b) EmoryNLP
Methods Joy Sad Pow Mad Neu Pea Sca Cnt

CE + SupCon 5.68 5.96 3.70 5.30 3.13 4.56 4.75 447
PEMV 4.99 5.66 3.06 4.09 2.57 3.67 4.44 383

(c) IEMOCAP

Methods Exc Fru Sad Neu Ang Hap Cnt

CE + SupCon 8.05 8.54 8.29 10.01 8.26 9.08 597
PEMV 7.68 7.77 7.03 9.29 8.68 9.52 482

Table 5: The percentage of samples exceeding the
threshold µ for each emotion category and the total
number of such samples across different methods on
three benchmark datasets.

Neutral
Joy
Surprise
Emotion Vector Center
Easy-to-Classify Sample
Hard-to-Classify Sample

(a) CE+SupCon

Neutral
Joy
Surprise
Emotion Vector Center
Easy-to-Classify Sample
Hard-to-Classify Sample

(b) PEMV

Figure 4: Comparison of sample vector space distri-
butions trained using the CE+SupCon method and the
PEMV method. Triangles represent hard-to-classify
samples, while the radius of the circles corresponds to
the value of the parameter τ .

CE+SupCon and PEMV methods, as shown in
Figure 4. The PEMV approach resulted in fewer
samples exceeding the distance threshold τ (Eq. 7)
within the same category, while achieving better
separation between different categories.

6 Conclusion

We propose a method that aims to more effec-
tively tackle the persistent challenges of difficult-to-
classify samples and imbalanced label distributions
in ERC tasks. Our approach leverages Proximal
Emotion Mean Vectors (PEMV) to optimize the
spatial distribution of feature representations, ensur-
ing that they more accurately align with their cor-
responding emotion categories. By capturing the
inherent structure of these categories, PEMV aids
in refining the positioning of feature vectors within
the space, specifically by reducing the distance be-
tween each sample and its corresponding PEMV
through Center Loss, particularly for those samples
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that are significantly distant from the PEMV. Simul-
taneously, Angle Loss maximizes the angular sep-
aration between the PEMVs of different emotion
categories, thereby maintaining clear boundaries
among them. Moreover, employing PEMV as a
classifier enhances the model’s capacity to adapt to
the evolving feature space, leading to more stable
and precise classification. Our extensive experi-
ments on multiple benchmark datasets confirm the
effectiveness of this approach, showcasing consis-
tent improvements in both feature representation
quality and the accuracy of emotion recognition in
dialogues.

Limitations

Our model is trained and evaluated solely on the
text modality derived from the dataset. However, as
illustrated in Figure 2, nearly identical utterances
can convey different emotions depending on their
contextual nuances. This variability underscores
the inherent limitations of relying exclusively on
text for ERC task.

The complexities of human communication in-
volve various modalities that significantly con-
tribute to the emotional depth and intent behind
spoken language. Elements such as tone of voice,
facial expressions, and even accompanying visual
cues can alter the perceived emotion of an utterance.
(Bansal et al., 2022) Therefore, the sole dependence
on textual data restricts our model’s ability to fully
grasp the multifaceted nature of emotions in dia-
logue.

To address this limitation, future research could
explore the integration of multimodal features, such
as image and audio, alongside text. For example,
incorporating audio signals could capture the into-
nation and stress patterns that convey subtle emo-
tional cues, while visual inputs could provide in-
sights into the speaker’s expressions and gestures.
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Appendix

A Dataset Details

The number of samples for each category in the
MELD, EmoryNLP, and IEMOCAP datasets is
shown in Table 6. It can be observed that all three
datasets exhibit varying degrees of class imbalance,
with the MELD dataset showing the most promi-
nent class imbalance.

354



(a) MELD

Fear Neu Ang Sad Dis Surp Joy CIR

Train 268 4710 1109 271 1743 1205 683 17.57
Dev 40 470 153 22 163 150 111 21.36
Test 50 1256 345 68 402 281 208 25.12

(b) EmoryNLP

Joy Sad Pow Mad Neu Pea Sca CIR

Train 2184 671 784 1076 3034 900 1285 4.52
Dev 289 75 134 143 393 132 178 5.24
Test 282 98 145 113 349 159 182 3.56

(c) IEMOCAP

Exc Fru Sad Neu Ang Hap CIR

Train 705 1215 636 1140 786 408 2.98
Dev 37 253 203 184 147 96 6.84
Test 299 381 245 384 170 144 2.67

Table 6: Statistical Analysis of MELD, EmoryNLP, and
IEMOCAP Datasets. The Class Imbalance Ratio (CIR)
refers to the ratio of the sample size between the most
frequent and least frequent classes.

B Baseline Models

The detailed descriptions of the comparative mod-
els we have selected are provided as follows:

(1) Sequence modeling methods: SPCL+CL
(Song et al., 2022) uses prototypical contrastive
learning to address class imbalance, enhanced by
curriculum learning for improved performance.
MuCDN (Zhao et al., 2022) introduces a Mutual
Conversational Detachment Network to effectively
model emotional dynamics in multi-party conver-
sations. ChatGPT (Zhao et al., 2023) presents
findings on its performance in the 3-shot setting.
ERNetCL (Li et al., 2024) employs a curriculum
learning strategy to optimize emotion recognition
in conversation by capturing contextual cues effec-
tively. COSMIC (Ghosal et al., 2020) leverages
commonsense knowledge to enhance utterance-
level emotion recognition, effectively addressing
context propagation and emotion shift detection
challenges. CoMPM (Lee and Lee, 2022) inte-
grates pre-trained memory with context model-
ing, improving emotion recognition in conversation
without relying on structured data, enabling cross-
linguistic adaptability. EACL (Yu et al., 2024) in-
troduces an Emotion-Anchored Contrastive Learn-
ing framework, utilizing label encodings as anchors
to enhance distinguishability of similar emotions.

(2) Graph-based methods: DAG-ERC (Shen
et al., 2021) utilizes a directed acyclic graph to
model conversational context, improving emotion

recognition by capturing long-distance and nearby
context relationships effectively. DAG-ERC+HCL
(Yang et al., 2022) employs a hybrid curriculum
learning framework to improve ERC by address-
ing emotion shifts and confusing emotions pro-
gressively. SIGAT (Jia et al., 2023) introduces a
speaker-aware interactive graph attention network
to capture both sequence and speaker information,
enhancing performance with richer contextual rep-
resentations. DialogueGCN (Ghosal et al., 2019)
employs graph convolutional networks to capture
speaker dependencies, enhancing emotion recogni-
tion by improving conversational context modeling.

E-TransKG (Zhao et al., 2024) establishes an
innovative Emotion Knowledge Graph to model
emotion transformations in conversations. CLED
(Kang and Cho, 2024) employs supervised con-
trastive learning and emotion dynamics augmen-
tation to address imbalanced emotion distribution
in ERC, particularly enhancing neutral emotion
recognition.

C Implementation Details

PEMV model is initialized with parameters from
SimCSE-Roberta-Large (Gao et al., 2021). We em-
ploy a grid-search method to optimize the hyper-
parameters, specifically setting λ1 in {0.01, 0.03,
0.05}, λ2 in {0.05, 0.1, 0.15}, λ3 in {0.1, 0.3, 0.5,
0.9}, λ4 in {0.1, 0.3, 0.5, 0.9}, and c in {1, 1.5, 2}.
The specific hyperparameter settings for the model
on the three datasets are presented in Table 7.

Hyperparameters MELD EmoryNLP IEMOCAP

λ1 0.05 0.03 0.01
λ2 0.1 0.1 0.1
λ3 0.9 0.3 0.1
λ4 0.1 0.3 0.9

Temperature τ 0.1 0.1 0.1
variance scaling factor c 2 2 1.5

Maximum length 256 256 256
Batch Size 64 64 64

Epochs 8 8 8
SimCSE Learning Rate 1e-5 1e-5 1e-5

FFN Learning Rate 1e-3 1e-3 1e-3
Dropout 0.1 0.1 0.1

Table 7: Hyperparameters of PEMV on three benchmark
datasets

D Examination of Hard-to-Classify
Instances

We employed the threshold µ from Equation 7 and
the variance scaling factor c from Table 7 to train
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#1: Mark: Why do all you’re coffee mugs have numbers on the
bottom? Rachel: Oh. That’s so Monica can keep track. That way
if one on them is missing, she can be like, ‘Where’s number 27?!

Utterance SupCon+CE PEMV Label

#2: Rachel: Ross, didn't you say that there was an elevator in
here? Ross: Uhh, yes I did but there isn't. Okay, here we go. Ross:
Okay, go left. Left! Left!

#3: Phoebe: Yeah! Sure! Yep! Oh, y'know what? If I heard a shot
right now, I'd throw my body on you. Gary: Oh yeah? Well
maybe you and I should take a walk through a bad neighborhood.

#4: Joey: Since I don’t know anyone here, I thought it’d be cool
to try out a cool work nickname. A Waiter: Hey, dragon! Here’s
your tips from Monday and Tuesday.

Surprise (×) Anger

Surprise

Joy

Neutral

Surprise (×)

Anger (×) Surprise (√)

Fear (×) Neutral (×)

Fear (×) Neutral (√)

Figure 5: Comparison of Hard-to-Classify Sample Instances between the SupCon+CE Model and the PEMV Model
on the MELD Test Set.

the SupCon+CE model and the PEMV model on
the MELD dataset, respectively. Figure 5 presents
several instances of hard-to-classify samples from
the test set for both models.

From Sample #1, it can be observed that emo-
tional expression in certain dialogue contexts is
not always direct. In this case, Rachel’s words ap-
pear lighthearted and humorous, yet are labeled as
"anger". When emotional cues are not overt, the
model struggles to accurately extract the sentiment
from the literal information, potentially causing its
embedding to deviate from the class center. Both
models misclassified this sample as "surprise".

Sample #2 indicates that some samples require
strong contextual associations. The emotional la-
bel for this sample is "surprise", but the isolated
sentence lacks a clear expression of surprise. The
SupCon+CE model incorrectly categorized it as
"anger", while our PEMV model was able to clas-
sify it correctly.

Sample #3 demonstrates that some dialogues
contain a mix of emotions. This sample features a
complex emotional expression of irony and humor,
making it challenging for the model to identify the
core sentiment of "joy", leading to a deviation in
embedding. The SupCon+CE model misclassified
it as "fear", whereas the PEMV model misclassified
it as "neutral".

Sample #4 reveals that some neutral emotions

can be ambiguous. Due to the lack of distinct emo-
tional characteristics, their embeddings are prone
to drifting away from the class center. In certain
cases, neutral sentences do not significantly differ
from other emotional categories, making it difficult
for the model to make clear judgments, resulting
in deviations. In this sample, the PEMV model
classified it correctly, which partially demonstrates
its effectiveness in guiding spatial distribution.

These examples illustrate the challenges faced
by emotion recognition models when dealing with
difficult-to-classify samples. They highlight how
indirect emotional expressions, the necessity for
contextual understanding, the presence of mixed
emotions, and the ambiguity of neutral sentiments
contribute to misclassification. Notably, the PEMV
model demonstrates an improved ability to accu-
rately classify certain samples, underscoring its ef-
fectiveness in addressing the complexities of emo-
tion recognition in dialogue contexts.

E Effect of Angle Adjustment

We provide a visualization of the PEMV for various
emotion categories on the MELD dataset, showcas-
ing their spatial distribution before and after the
training process, As illustrated in Figure 6. This
visual representation highlights the impact of an-
gle adjustment, demonstrating that the distribution

356



of PEMVs in the feature space becomes more dis-
persed, thereby enhancing the clarity and separabil-
ity of different emotion categories.

neutral
joy
surprise
anger
sadness
disgust
fear
Before Training
After Training

Figure 6: Visualization of PEMVs. Circles represent
the positions before training, while pentagrams denote
the positions after training.
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