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Abstract

Recent Large Language Models (LLMs) have
demonstrated satisfying general instruction fol-
lowing ability. However, small LLMs with
about 7B parameters still struggle fine-grained
format following (e.g., JSON format), which se-
riously hinder the advancements of their appli-
cations. Most existing methods focus on bench-
marking general instruction following while
overlook how to improve the specific format
following ability for small LLMs. Besides,
these methods often rely on evaluations based
on advanced LLMs (e.g., GPT-4), which can in-
troduce the intrinsic bias of LLMs and be costly
due to the API calls. In this paper, we first cu-
rate a fully verifiable format following dataset
VFF. In contrast to existing works often adopt-
ing external LLMs for instruction-following
validations, every sample of VFF can be eas-
ily validated with a Python function. Further,
we propose to leverage this verifiable feature
to synthesize massive data for progressively
training small LLMs, in order to improve their
format following abilities. Experimental results
highlight the prevalent limitations in the format
following capabilities of 7B level open-source
LLMs and demonstrate the effectiveness of our
method in enhancing this essential ability.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs) have demonstrated a series of foun-
dation abilities including in-context learning, rea-
soning, and the essential instruction following abil-
ity (Brown et al., 2020; Wei et al., 2022; OpenAI,
2023; Bubeck et al., 2023). Pre-trained LLMs
such as GPT-3 (Brown et al., 2020) hardly fol-
low human instructions due to the mismatch issue
between their pre-training objectives and human
preferences (Zhang et al., 2023). To address this
issue, a series of works employ instruction tuning

† Equal contribution.

to enable LLMs to respond fluently to natural ques-
tions (Longpre et al., 2023; Touvron et al., 2023b;
Xu et al., 2023), which effectively align LLMs with
human preferences. Specifically, these methods
may first collect instruction-response pairs from
human (Chiang et al., 2023; Zhou et al., 2023a;
Mishra et al., 2021) or more powerful LLMs (Taori
et al., 2023; Wang et al., 2023b; Xu et al., 2023)
(e.g., ChatGPT (Ouyang et al., 2022)). Then, these
collected data can be used to fine-tune LLMs to
follow human desired responses. Further, Ouyang
et al. (2022) propose Reinforcement Learning from
Human Feedback (RLHF) to enhance the align-
ment of LLMs, improving the helpfulness and
harmfulness of the generations (Bai et al., 2022).
Today’s advanced LLMs such as GPT-4 (OpenAI,
2023) can follow most human instructions even
those with fine-grained format control requirements
(e.g., JSON output). However, more widely used
open-source 7B-level LLMs such as Mistral (Jiang
et al., 2023a) and LLaMA series (Touvron et al.,
2023a, 2024) often struggle with fine-grained for-
mat control despite achieving satisfactory results in
general instruction following. In this paper, we fo-
cus on enhancing such fine-grained format control
ability of small LLMs to benefit LLM-based appli-
cations especially for the format-sensitive ones.

Evaluating. First, we propose to evaluate the
fine-grained format control ability of LLMs. Most
existing research (Qin et al., 2024; Zhou et al.,
2023b; Jiang et al., 2023b; Yizhi et al., 2024; Ma
et al., 2024) in this area proposes general instruc-
tion following benchmarks, while paying less at-
tention to specific format control. Also, in terms of
verifying and evaluation, most of them are driven
by LLMs based evaluations which heavily rely on
the capability of the selected LLMs (Chiang and
Lee, 2023; Fu et al., 2023; Liu et al., 2023b; Chan
et al., 2023). Further, few of them consider improv-
ing the format following ability of small LLMs.
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Answer within [[VAR1] words.
20,30,50

English, Spanish

sky, river…

Level-3 Instruction

Question

Candidate ValuesMeta Constraint

Verifiable Function
Write a poem.

Respond in [[VAR1]] language.

Include the keyword [[VAR1]].

Write a poem. Answer within 30 words. 

Respond in English. Include the keyword “sky”.

Figure 1: An example with level-3 constraints of VFF.

Table 1: Comparison with existing benchmarks. “ML”
refers to multi-level constraints. “HJ”, “LJ”, “AJ” indi-
cate the judgments relying on human, LLMs and auto-
matic scripts (e.g, Python), respectively.

Benchmark Verifiable ML HJ LJ AJ

Alpaca (Taori et al., 2023) ✘ ✘ ✔ ✘ ✘
Vicuna (Chiang et al., 2023) ✘ ✘ ✔ ✘ ✘
PandaLM (Wang et al., 2023a) ✘ ✘ ✔ ✘ ✘
Wizardlm (Xu et al., 2023) ✘ ✘ ✔ ✘ ✘
LLM-EVAL (Lin and Chen, 2023) ✘ ✘ ✘ ✔ ✘
IFEval (Zhou et al., 2023b) ✔ ✔ ✘ ✘ ✔
FollowBench (Jiang et al., 2023b) ✘ ✔ ✘ ✔ ✔
INFOBENCH (Qin et al., 2024) ✘ ✘ ✘ ✔ ✘
FCS (He et al., 2024) ✘ ✔ ✘ ✔ ✘
Conifer (Sun et al., 2024) ✘ ✘ ✘ ✔ ✘
FOFO (Xia et al., 2024) ✘ ✘ ✘ ✔ ✘

VFF (ours) ✔ ✔ ✘ ✘ ✔

To address these challenges, we curate a fully
Verifiable Format Following (VFF) dataset. This
dataset starts with a few GPT-4 annotated meta
constraints. And we can use off-the-shelf Alpaca
dataset (Taori et al., 2023) as the prompt (ques-
tion) source. As illustrated in Figure 1, the prompt
combined with the meta constraints can finally
form an instruction with various format controls.
Specifically, each meta constraint consists of sev-
eral variables and candidate values (which formu-
lates the constraint instance), and a corresponding
Python function (which verifies the format follow-
ing). Note that the final instantiated instruction can
include multiple different constraints, referred to
as multi-level constraints. These multi-level con-
straints can go up to 3 levels, considering the needs
in realistic scenarios. We also detail the differences
between our VFF and existing datasets in Table 1.

Enhancing. After having VFF to evaluate the for-
mat following ability, we then propose to leverage
VFF’s easily verifiable feature to improve such im-
portant abilities for 7B level LLMs. Previous meth-
ods (Chiang et al., 2023; Xu et al., 2023; Wang
et al., 2023b) often do not specially introduce fine-

grained format following data, leading to inferior
performance in this area. Besides, the training
data used by these methods are often collected
via human sharing like ShareGPT1 or advanced
LLMs like GPT-4, which can be costly and time-
consuming. Thanks to the easily verifiable feature
of our VFF, we can synthesize training data to im-
prove the format following ability of LLMs in a
self-improvement paradigm. This paradigm en-
sures the training data is entirely generated by the
LLM itself. Specifically, this paradigm consisted
of three stages: (1) Sampling multiple responses
from the LLM for each instruction with constraints
from VFF. (2) Annotating the responses using the
verifiable Python function to identify whether they
strictly follow the format controls. (3) Fine-tuning
the LLM via supervised fine-tuning and prefer-
ence learning (e.g., DPO (Rafailov et al., 2024))
with those annotated responses. Furthermore, these
steps can be repeated in a progressive training man-
ner, starting by training the LLM to follow a single
constraint (level-1) and advancing to adhere to mul-
tiple constraints (level-3).

In summary, our contributions are as follows:

1) We curate a fully verifiable format following
dataset VFF, showing that 7B level LLMs hold
potential for enhanced format control ability.

2) With verifiable feature of VFF, we propose the
progressive training to enhance LLMs’ format
control ability with self-generated training data.

3) Empirical results on existing benchmarks with
several trained 7B-level LLMs demonstrate the
effectiveness of the proposed method.

2 Related Work

2.1 Evaluating Instruction Following
To evaluate the instruction following capabilities of
large language models (LLMs), three primary meth-
ods are commonly employed: human evaluation,
LLM-based evaluation, and evaluation through
verifiable instructions (i.e., automatic evaluation).
While human evaluation can be accurate, it suffers
from subjective bias, high costs, and a lack of repro-
ducibility (Ouyang et al., 2022; Bang et al., 2023;
Wang et al., 2023a; Xu et al., 2023). LLM-based
evaluation methods offer more scalable and robust
alternatives for assessing instruction following per-
formance (Lin and Chen, 2023; Liu et al., 2023a;

1https://sharegpt.com/
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Qin et al., 2024; He et al., 2024; Sun et al., 2024;
Xia et al., 2024). For automatic evaluations, Jain
et al. (2023) analyze the sensitivity of the slight
changes in LLM outputs as a means of measuring
their reliability, while Zhou et al. (2023b) intro-
duce the IFEval benchmark, which directly verifies
LLMs’ instruction-following abilities through sim-
ple code execution. Similarly, FollowBench (Jiang
et al., 2023b) proposes a benchmark that integrates
LLMs with Python scripts to act as an evaluator.

First, this paper focuses on evaluating the format
following ability of LLMs instead of verifying the
following of the instruction. For example, checking
the hallucinations of the response content is beyond
our research focus. Next, to effectively evaluate the
format following ability, we propose VFF dataset
which uses automatic evaluation through Python
functions. Compared to human or LLM-based eval-
uations, our method can provide a more reliable and
efficient way to examine whether LLMs adhere to
specific format controls. In addition to existing ver-
ifiable benchmarks, our dataset covers more types
of format constraints such as JSON output. Further,
we propose a training pipeline to enhance LLM’s
format control ability with such verifiable feature.

2.2 Enhancing Instruction Following
InstructGPT (Ouyang et al., 2022) proposes RLHF
to train the GPT-3 model (Brown et al., 2020)
to follow human instructions. Subsequent re-
search has focused on developing open-domain
general instruction following datasets including Al-
paca (Taori et al., 2023) and Vicuna (Chiang et al.,
2023), both of which played a key role in enabling
LLaMA (Touvron et al., 2023b) to follow instruc-
tions. Additionally, WizardLM (Xu et al., 2023) uti-
lizes AI-generated data for instruction fine-tuning,
offering control over the complexity and difficulty
of the instructions. Following the introduction of
Direct Preference Optimization (DPO) (Rafailov
et al., 2024), a number of recent works (Jiang et al.,
2023c; Ethayarajh et al., 2024; Hong et al., 2024;
Meng et al., 2024) have proposed preference learn-
ing algorithms aimed at enhancing the instruction
following and alignment performance of LLMs.
Another line of work explores constrained decod-
ing methods to enhance the structured generation
performance (OpenAI, 2023; Outlines Develop-
ment Team, 2023; ETH SRI, 2023; 1rgs, 2023;
Dong et al., 2024). However, the range of sup-
ported structured formats may be limited.

In this paper, our goal is to improve the format

Limited 
Content 34.3%

Limited Word Count

28.4%

Limited 
Punctuation

19.4%

Limited 
Structure

7.5%

Limited GrammarSpecific Number Format
3.0%

7.5%

Figure 2: Category distribution of meta constraints. The
“specific number format” often involves constraints on
the generated numbers (e.g., time format). The “limited
grammar” includes constraints for writing styles such as
active or passive voice. The “limited structure” includes
common structure output formats such as JSON, YAML
and etc. The “limited punctuation” requires the LLMs
to use specific punctuations in the generations. The
“limited word count” directly limits the length of the
output from LLMs. The “limited content” constrains
generations within specific topics, which can limit the
output scope of the response.

following ability of widely used 7B-level LLMs,
rather than focusing on general instruction follow-
ing. By leveraging self-generated training data,
we propose a progressive training approach that
iteratively trains small LLMs to follow format con-
straints of varying difficulty levels. An additional
benefit of this method is its scalability, as the train-
ing data can be easily synthesized due to the verifi-
able nature of our pre-curated VFF dataset.

3 Method

In this section, we first introduce the curation of
our verifiable format following dataset VFF, which
is for accurately evaluating the format control abil-
ity of LLM generations. By leveraging the easily
verifiable feature of VFF, we then propose a pro-
gressive training manner to enhance such format
control ability of 7B level LLMs.

3.1 VFF dataset
Verifiable Meta Constraint. We begin with a
small set of human-annotated meta constraint pool
DM = {(Ck, Vk, Fk) | 1 ≤ k ≤ 16}, where Ck

represents the k-th constraint containing variables,
Vk is the set of candidate values that can be se-
lected to fill in the variables, Fk is the correspond-
ing Python bool function that can efficiently and ac-
curately verify whether the generated responses sat-
isfy the format constraints. For example, Ck is “Re-
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Write a poem.

Question

Answer within [[VAR1]] words.

Meta

Constraint

Meta

Constrai

nt

Respond in [[VAR1]] language.

Meta

Constrai

nt

Include the keyword [[VAR1]].

20; 30; 50.... English; Spanish.... sky; river....Variable Candidate

Write a poem. Answer within 20 words.
Write a poem. Answer within 20 words. 

Respond in English.

Write a poem. Answer within 20 words.

Respond in English. Include the keyword river.

Level-1 Level-2 Level-3

Whispers of stars in the midnight sky,

Dreams take flight, as time slips gently by.

Whispers of dawn, soft and bright,  

Chasing the stars into flight.  

A new day breathes its light.

The sky whispers dreams in shades of blue,  

Endless stories, as stars fade, old and new.

(1) Response Sampling

Instruction w/

Constraints

Response-1

Response-2

Response-3

Response-4

DPO Pair 

Data

SFT Data

Level-3

Level-1

Level-2

SFT Stage𝑴𝒕 DPO Stage 𝑴𝒕+𝟏

𝑴𝒕

(2) Training Data Annotation (3) Progressive Training

Figure 3: The pipeline of the proposed method for enhancing format control ability. First, the model takes response
sampling for instantiated instructions from VFF dataset. Next, in the training data annotation stage, by utilizing the
verifiable Python functions, we can collect the responses that satisfy the constraints as the SFT data, while pair
with the negative responses to form the DPO training data. Finally, the LLM is first trained with SFT, followed by
direct preference learning (DPO) to improve its format following. These steps are repeated in a progressive training
manner with the increased levels of difficulty, in order to exploit the potential of the LLM.

spond in [[VAR1]] language.”, Vk is a set of values
“{English, Spanish, French, Chinese, Japanese}”
for “[[VAR1]]” to fill in, and Fk is an executable
Python bool function for language detection. We
extend this pool DM by leveraging the in-context
learning ability of GPT-4 (OpenAI, 2023). In eval-
uating the format following scenario, the adopted
Python function serving as the judgment method is
as accurate as human judgment, while being more
efficient and time-saving compared to LLM-based
evaluations. These advantages make it highly suit-
able for large-scale verifications.

Some constraints may seriously conflict with
user’s instruction, for example, the instruction is
writing a long story, while the constraint may limit
the number of generated words to 10. Thus, we
also take manual check for each generated sam-
ple. Finally, to maximize the applicability and
universality of our meta constraints, we only re-
serve about 60 unique meta constraints, which
are publicly available at https://huggingface.
co/datasets/jinqij/VFF. We visualize the cate-
gories of these constraints in Figure 2. These cat-
egories can cover common realistic output format
needs for LLM based applications.

Format Following Dataset. After obtaining the
meta constraints, we then need to instantiate the

instruction with specific format controls. These
instantiated instructions form the format follow-
ing dataset that can be directly used to evaluate
the performance of LLMs. Specifically, each in-
struction sample x of VFF dataset DV consists of a
detailed question coupled with several constraint
instances. In details, we use the existing Alpaca
dataset (Taori et al., 2023) as the question source Q
which comprises about 52K questions generated by
text-davinci-003 (Brown et al., 2020). Then, con-
sidering the risks in conflicts between questions and
constraints, we randomly select up to 3 (1 ≤ c ≤ 3)
unique meta constraints from DM , and instantiate
them by filing the variables of the constraints Ck

with their respective candidate values Vk. The in-
struction sample x illustrated in Figure 1 can be ob-
tained by concatenating the question q and the con-
straint instance d, i.e., x = [q, d] where d includes
c unique constraint instances, reflecting a level-c
difficulty as categorized in this study. Simultane-
ously, the corresponding binary functions Fk≤c(∗)
can serve together to verify the correctness of the
generated response y with I =

∏c
k=1 Fk(y), where

I = 1 represents as the model can fully adhere to
this format control instruction x. Note that the size
of DV can be as large as |Q|×(

∑|DM |
k |Vk|), which

is considerably larger than previous benchmarks.
This can be viewed as an advantage of our dataset
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Algorithm 1 Enhancing Format Control.
Require: Pre-trained model M , format following dataset DV ,

verifiable functions {Fk(∗)}
1: Stage 1: Response Sampling
2: for each instruction x ∈ DV do
3: Sample 4 responses {yi} from M using x
4: end for
5:
6: Stage 2: Training Data Annotation
7: for each response yi do
8: Compute I(yi) =

∏c
k=1 Fk(yi)

9: if I(yi) = 1 then
10: Mark yi as preferred response yw
11: else
12: Mark yi as dis-preferred response yl
13: end if
14: end for
15: Obtained the training data D = {x, yw, yl}
16:
17: Stage 3: Progressive Training
18: for difficulty level c from 1 to 3 do
19: Fine-tune model M on D via Eq. 1
20: Fine-tune model M on D via Eq. 2
21: Re-sample and re-annotate with fine-tuned model M ,

updating D
22: end for

especially in the era of scaling synthetic data.

3.2 Enhancing Format Control

As shown in Figure 3, the proposed method for en-
hancing the format control ability of small LLMs
mainly consists of three stages: (1) Response Sam-
pling stage, (2) Training Data Annotation stage,
and (3) Progressive Training stage.

Response Sampling. To collect diverse enough
responses, we instruct the LLM to sample mul-
tiple responses for the same question with con-
straints. Specifically, for each instruction x ∈ DV ,
we sample k = 4 responses from the LLM. How-
ever, given the limitations of 7B-level LLMs, these
may all be incorrect. To improve sampling effi-
ciency for correct responses, inspired by recent self-
improvement studies (Huang et al., 2023; Wang
et al., 2023c; Gou et al., 2024), we add one gener-
ated wrong response as the one-shot demonstration
to help the LLM to generate better response.

Training Data Annotation. To identify the cor-
rectness of the massively generated responses, we
propose to leverage the fully verifiable feature of
VFF dataset. Specifically, the collected response
samples can be efficiently annotated with format
following judgments by the verifiable functions
I , which reduces the costs of calling GPT-4 APIs
compared to previous methods. Through these ver-
ifiable functions, we can identify the response that

satisfies the format constraints (I = 1) as preferred
response yw, and responses that not following the
constraints (I = 0) as dis-preferred response yl.
Finally, we can use the preferred responses to form
training data D = {x, yw, yl}. In this dataset, the
preferred responses {yw} can be used for SFT train-
ing, while the preference pairs {yw, yl} can be used
for DPO training. Note that this training data is
fully generated and annotated by LLM itself, with-
out any needs for human or external LLMs.

Progressive Training. The small LLM’s fine-
grained format following ability can be enhanced
by aligning it with human desired output format.
Specifically, we first apply Supervised Fine-Tuning
(SFT) to train the LLM π on the self-generated
good responses yw, aimed at improving basic ca-
pability of format following. The SFT training
objective is detailed as follows:

LSFT = −E(x,yw,yl)∼D log π(yw|x). (1)

With recent advancements of preferece learning
methods (Dong et al., 2023; Rafailov et al., 2024;
Ethayarajh et al., 2024), we can apply Direct Prefer-
ence Optimization (Rafailov et al., 2024) (DPO) to
align the fine-tuned LLM more closely with the de-
sired response formats. The DPO training objective
can be formulated as follows:

LDPO = −E(x,yl,yw)∼D[
log σ

(
β log π(yw|x)

πref(yw|x) − β log π(yl|x)
πref(yl|x)

)]
,

(2)
where σ(∗) denotes the logistic function, β = 0.1
is a hyperparameter, and πref is the frozen reference
model typically the model after SFT training.

Despite these efforts, pilot experiments suggest
that small LLMs struggle with generating good
responses for complex (level-3) instructions. To
mitigate this issue, we adopt a progressive train-
ing strategy, scaling from simpler (level-1) to more
complex (level-3) instructions. This strategy can
maximize the sampling efficiency in collecting self-
generated data and ensure the consistent improve-
ments, since each level’s training is based on the
trained checkpoint of the last level. After this pro-
gressive training, the small LLM is expected to
follow instructions more precisely, making it bet-
ter suited for LLM-based applications. The full
pipeline of the proposed method is listed in Alg. 1.
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Model VFF IFEval InfoBench
level-1 level-2 level-3 Prompt Instruction Easy Hard Avg.

GPT-3.5 62.93 34.07 16.40 56.56 67.51 - - 86.71*
GPT-4-turbo 76.29 53.33 35.31 79.71 85.67 - - 89.42*

LLaMA-2-13B 48.08 21.40 9.65 33.00 44.24 80.40 77.10 78.12
LLaMA-2-70B 55.57 26.47 11.89 44.36 54.43 81.28 79.87 80.30
LLaMA-3-70B 65.63 40.02 23.55 77.81 84.30 86.07 86.80 86.61
Qwen-1.5-7B 58.66 29.49 13.87 39.00 50.96 77.82 75.13 75.95
WizardLM-7B 55.37 28.63 14.00 43.25 55.63 80.58 77.70 78.58

Mistral-7B 52.18 22.82 9.49 40.85 50.84 76.67 71.15 72.84
Mistral-7B (ours) 61.85 32.66 15.97 37.50 51.19 72.17 68.25 70.48

LLaMA-2-7B 50.91 22.01 9.31 31.42 44.96 18.43 10.57 12.98
LLaMA-2-7B (ours) 57.59 27.72 13.28 40.48 54.08 73.00 68.08 69.59

LLaMA-3-8B 60.36 31.86 15.81 68.22 77.14 81.88 83.72 83.10
LLaMA-3-8B (ours) 85.56 59.67 38.36 68.50 77.24 79.10 76.50 78.13

Table 2: Results of various LLMs on three benchmarks. The best performance is highlighted in bold. Results with
are from Sun et al. (2024). The strict mode is adopted for IFEval benchmark. IFEval and InfoBench are testing the
performance of out-of-domain format following and general instruction following, respectively.

4 Experiment

In this section, we take experiments to comprehen-
sively validate the effectiveness of our method in
enhancing 7B level LLMs’ format control ability.

4.1 Experimental Setup

Data. For each level of VFF dataset, we curate
10k and 7k samples for training and testing, respec-
tively. Considering the training costs and diversity,
we do not fully extend this data. Here, the ideal
maximum numbers of producible instructions for
each level of VFF are about 60k, 360k and 2160k.

Benchmarks. We validate our method on
two instruction following benchmarks: (1) In-
foBench (Qin et al., 2024), which utilizes GPT-
4-based evaluations to test the general instruction
following ability. (2) IFEval (Zhou et al., 2023b),
which adopts Python-based function evaluations
for evaluating the format control ability, similar to
our VFF. Note that both benchmarks consist of ap-
proximately 500 test samples, which may introduce
higher variance and bias compared to our dataset.

Baselines. For comparison, we select various
open-source LLMs, including Mistral (Jiang et al.,
2023a), the LLaMA family of models (Touvron
et al., 2023a, 2024), Qwen (Bai et al., 2023), and
WizardLM (Xu et al., 2023), all of which have been
fine-tuned for alignment with human preferences.
In addition, we also include GPT-3.5 and GPT-4 as

reference baselines to show the gap between small
LLMs and advanced LLMs.

Training Settings In this paper, our experiments
follow the default settings of most hyperparam-
eters in the SFTTrainer and DPOTrainer from
LLaMA-Factory (Zheng et al., 2024). The models
are trained for a total of 8 epochs using a batch
size of 4 on NVIDIA A6000 GPUs, which will
take up to 1 hour. We employ the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 5e − 6, coupled with a cosine learn-
ing rate scheduler. To accelerate the training and
save the computation resources, we fine-tune the
LLM with the LoRA (Hu et al., 2021) adapter for
which we set the rank and α to 64 and 128, re-
spectively. Despite the query and value heads of
attention blocks, all other parameters are frozen.

4.2 Main Results
The main results are shown in Table 2.

Prevalent Limitations. The results first suggest
that 7B level open-source LLMs struggle with level-
2 and level-3 format following instructions of our
VFF dataset and IFEval, while they commonly have
acceptable performance on general instruction fol-
lowing dataset InfoBench. This clearly demon-
strates the limitations of such small LLMs in adher-
ing to specific formats.

Effectiveness of Enhancing Format Control.
Due to limited resources, we select only three popu-
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Metric level-1 level-2 level-3
G. H. G. H. G. H.

Conflict ↓ 1.5 1.0 1.9 1.5 2.5 2.0
Reasonable ↑ 3.6 4.3 3.4 3.5 2.9 3.3
Difficulty 2.3 1.8 3.0 3.2 3.5 4.0

Table 3: Human (H.) and GPT-4 (G.) evaluations (5
points) on the data quality of our VFF dataset.

Sampling Accuracy # Correct Data # DPO Pair

1st 70.40 6945 / 9865 830
2nd 23.05 673 / 2920 157
3rd 4.63 104 / 2247 53
4th 2.47 53 / 2143 -
Total 78.80 7775 / 9865 1040

Direct 55.14 5440 / 9865 138

Table 4: Comparison of different sampling strategies
of level-1 training data collection. “Direct” means sam-
pling multiple times without demonstration.

lar LLMs for training. Their superior performance
on both in-domain data (VFF) and out-of-domain
data (IFEval) confirms the effectiveness of the pro-
posed method in enhancing format following abil-
ity. Notably, the trained LLaMA-3-8B model out-
performs GPT-4 in the level-3 format following
task. However, we observed a slight decline for
Mistral and LLaMA-3-8B in the general instruction
following data (InfoBench) though LLaMA-2-7B
greatly improves. This may be due to: (1) Over-
fitting on general instruction following tasks (they
have significantly better performance than LLaMA-
2-7B), where training on format following may
slightly affect performance. (2) The limited num-
ber of test samples and LLM-based evaluations,
both of which introduce additional evaluation bias.

5 Analysis

5.1 Quality of VFF dataset
The instruction of VFF is made by randomly pairing
the question and constraints, which may introduce
the conflicts in the content. We sample 100 instruc-
tions for manual and GPT-4 evaluations shown in
Table 3. The results suggest that the curated in-
struction remain reasonable and have low conflicts.
The difficulty of the instruction is consistent with
the number of added constraints.

5.2 Analysis of Enhancing Format Control
Sampling Efficiency. Table 4 shows details of
the adopted one-shot demonstration in response
sampling, which indicate that the self-generated

Method level-1 level-2 level-3

Llama-3-8B 59.75 32.19 16.66

L1SFT-Only 61.22 30.94 15.20
L1DPO-Only 63.26 37.14 20.29
L1SFT-DPO 77.96 50.68 30.00

L2SFT-Only 76.58 50.87 29.43
L2DPO-Only 62.71 34.81 18.80
L2SFT-DPO 82.79 56.94 35.44

L3SFT-Only 79.86 53.56 32.26
L3DPO-Only 62.25 34.73 17.95
L3SFT-DPO 85.56 59.67 38.36

Table 5: Comparison of different training strategies in
the progressive training procedure.

Method Accuracy Time(s) Cost($)

GPT-4o-mini 59.0 99.53 0.0144
GPT-4o 70.0 205.10 2.3830

Python 100.0 0.52 0.0000

Table 6: Human comparison of LLMs-based against our
Python-based evaluations in terms of Accuracy, Time,
and Cost on 200 samples.

wrong example can serve as a useful demonstra-
tion to help LLMs to generate better responses,
leading to higher sampling efficiency than directly
sampling multiple times.

Training Strategies. As shown in Table 5, we
compare different training strategies with the pro-
gressive training strategy. First, the SFT training
can effectively improve the format control perfor-
mance, while the gains for level-2 and level-3 train-
ing are decreasing. For DPO-Only training, it will
even harm the performance as the training proceeds.
For the adopted strategy (SFT-DPO), the progres-
sive training can consistently enhance the LLM’s
format following performance.

5.3 LLM-based v.s. Python-based Judgment

Accuracy & Time & Cost. Recent advance-
ments in lightweight LLMs such as GPT-4o-mini
motivate the community to choose LLM-based
evaluations (Qin et al., 2024; Jiang et al., 2023b;
Chan et al., 2023). We compare the LLM-based
judgment with Python-based judgment in Table 6.
The results show that in the format following eval-
uation scenario, Python based method has a sig-
nificant advantage over LLM-based approach even
with lightweight LLMs (GPT-4o-mini), especially
considering the 100x speed up.
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Question: What are the main advantages of learning to code? Constraint: Entire output should be wrapped in JSON format.

Learning to code provides numerous 
advantages in today's technology-driven world. 
Here are some of the main benefits of coding:
1. Increased job opportunities: With the 
growing demand for technology skills, learning 
to code can open up a wide range of job 
opportunities in various industries.
2. Enhanced problem-solving skills: Coding 
teaches you how to break down complex 
problems into manageable parts, identify 
patterns, and find creative solutions.

LLaMa-3-8B Ours（ROUND1）
Here are the main advantages of learning to 
code, wrapped in JSON format:
{
"advantages": [
{
"name": "Improved problem-solving skills",
"description": "Learning to code helps 

you ………"
} ………]

} This JSON output lists the main advantages of 
learning to code, including improved problem-
solving skills, increased employability, 
enhanced creativity………

{
"advantages": [
{ "Problem-solving skills": "Learning to 

code enhances your ability to think 
logically and solve complex problems.“},

{"Career opportunities": "Coding skills 
can open doors to a wide range of high-
demand jobs in technology, finance, 
healthcare, and other industries.“}………

]
}

Correctness:

Ours（ROUND2）

Correctness:Correctness:

Figure 4: Example of the generated responses to the question with JSON format constraint.

Model Metrics Sampling Temperature
0.1 0.3 0.7 1.0

GPT-4o
Inc 25% 24% 33% 48%
Flip 10.06 7.75 10.15 7.58

GPT-4o-mini
Inc 33% 36% 44% 52%
Flip 11.06 9.14 8.75 12.34

Table 7: Consistency measurement. The model is
queried 50 times for the same question and response
using different temperatures. “Inc” and “Flip” denote
average inconsistency rate across the set and count of
judgment flips across the queries, respectively.

Model Method level-1 level-2 level-3 IFEval

LLaMa-3-8B Human 2.52 1.87 1.58 2.43
GPT-4o 2.73 1.37 1.08 2.17

Ours Human 3.69 2.81 2.10 3.58
GPT-4o 4.32 3.58 2.27 4.15

Table 8: Quality assessment for 200 generated responses
in each dataset. The score spreads out on a scale of 0-5.

Consistency of LLM-based Judgment. We fur-
ther show the inconsistency and instability of using
LLM-based judgments for format following in Ta-
ble 7. The results suggest that LLMs are not reli-
able even by setting the temperature to 0.1. More-
over, the advanced GPT-4o is still inconsistent in
judging the correctness of format following, which
shows the limitations of LLM-based evaluations.

5.4 Quality of Generated Responses

We use manual and GPT-4o evaluations to assess
the response quality considering both the content
and format in Table 8. The first evaluation criteria
is whether the generated content is relevant to the
input and whether the requirements of the input are
fulfilled with high quality. The second criterion
is whether the generated content satisfies the con-
straints added in the input. From the results, we

surprisingly observed that the LLM trained with
our method not only improves the completion of
constraints, but also enhances the quality of the
content generation. Additionally, we find that our
method can achieve a satisfactory performance on
out-of-domain IFEval data, indicating its superior
generalizatio in format following.

Case Study. To intuitively understand the ef-
fects of the proposed progressive training, Figure 4
presents an example of different methods respond-
ing to JSON format instruction. First, we find that
the LLaMA-3-8B fails to follow the desired JSON
output format. However, the model trained with our
level-1 constraints (ROUND1) shows noticeable
improvements in generating outputs with better for-
mat control, though it still does not fully adhere to
the given instructions. Further training on level-2
data (ROUND2) can also help improve its format
following ability, demonstrating the effectiveness
of our progressive training method.

6 Conclusion

In this paper, we focus on enhancing the format
following ability of 7B level LLMs. First, to eval-
uate the format following ability of LLMs, we cu-
rate a fully verifiable format following dataset VFF
which uses Python scripts to accurately judge the
correctness of the format following. Then, by lever-
aging the verifiable feature, we can synthesize mas-
sive training data to enhance such format control
generations of small LLMs in a self-improvement
paradigm. Our experiments and analysis reveal
the limitations of small LLMs in format follow-
ing, while demonstrating the effectiveness of our
method in improving format control generations.
We believe these findings will benefit the research
community and advance the LLM applications.
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Limitations

In this section, we discuss the observed limitations
and offer useful suggestions for future research.

1) The contributions of this paper heavily rely on
the fact that output formats can be efficiently
verified by Python functions, thus it may not
be easily extended to general instruction fol-
lowing. Fine-grained format control remains
a significant challenge for current open-source
7B-level LLMs. Moreover, generating specific
output formats is crucial for many LLM-based
applications. Although constrained decoding is
promising, it can be further improved by sup-
porting a broader range of formats.

2) The richness of the proposed verifiable format
following dataset VFF is based on about 60 meta
constraints which may not cover the whole cat-
egories of human desired output formats in real
world applications. In the future, it can be in-
tegrated with online human feedback to collect
more format categories.

3) The adopted training methods for improving
LLM’s format control ability mainly use the su-
pervised fine-tuning and DPO training (Rafailov
et al., 2024), which leverage the verifiable fea-
ture of our VFF dataset for annotations. How-
ever, the verifiable rule can be viewed as a re-
ward function to explore reinforcement learning
algorithms for further improvements.

4) Due to the limited computation resources, the
proposed training method is validated on only
three 7B-level LLMs (i.e., Mistral (Jiang et al.,
2023a), LLaMA-2 (Touvron et al., 2023a) and
LLaMA-3 (Touvron et al., 2024)). Also, we
only evaluate on other two instruction follow-
ing benchmarks (i.e., InfoBench (Qin et al.,
2024) and IFEval (Zhou et al., 2023b)). And
the analysis can be more comprehensive by ex-
ploring the relationship between training data
size and the performance. Besides, the results
indicate that our training method may slightly
harm some general instruction following perfor-
mance, which needs more investigation.

Ethics Statement

All datasets and trained LLMs employed in this pa-
per are publicly available. This paper mainly stud-
ies the format following issue of LLMs, while does

not cover issues of evaluating the correctness of
the content such as detecting hallucinations. This
indicates that the proposed training method may
not enhance other foundational abilities of LLMs.
We use ChatGPT at the sentence level (e.g., fixing
grammar) to assist the paper writing.
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A Appendix

A.1 Case Study on Meta Constraint
Figure 5 shows an example on the “Limited Text”
meta constraint, which aims at controlling the
length of the generated response and ensuring it
will not exceed the specified word limit. In this
case, a simple Python function is used to count
the words and verify if the response adheres to the
word limit defined by the variable ‘VAR1’. Fig-
ure 6 shows an example on the “Limited Structure”
meta constraint, which enforces a specific format
in the generated output, requiring it to be formatted
in the JSON format.

A.2 Case Study on Format Control
Instruction

The format control instructions are instantiated
from the meta constraints and general instructions
of Alpaca. We add an increasing number of con-
straints (up to 3) to form instructions of increasing
complexity (levels 1 to 3). Figure 7 illustrates an
instruction of generating a 3D house model under
a single format constraint. The instruction requires
the output to be presented in one paragraph and
limited to five sentences. Figure 8 shows a level-2
instruction constraint where the task is to gener-
ate three verbs synonymous with “to apologize,”
and the response must consist of exactly three sen-
tences. Figure 9 presents an instruction involving
three constraints: sentence starting with a specific
letter, the response should be exactly 6 paragraphs,
and the response must contain between 50 and 110
words. Initially, the LLM often struggles to meet
all output format constraints, as demonstrated in
the failed responses. After fine-tuning, the LLM
improves its format control generations and can
properly respond to the constraints. It is notewor-
thy that sometimes the format constraints may have
conflicts with the original instruction, which may
result in negative effects for fine-tuning the model.
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➤ “Category”: “Limited Text”
➤ “Level”: 1
➤ “Vars”: [“name”: “VAR1”, “type”: “int”, “values”: [30, 50, 100]]
➤ “Explaination”: “Use a word count function to verify the response does not exceed the specified
limit of VAR1 words.”
➤ “Python Script”

def verify_response_limit(response_text, vars, type=0):
word_limit = int(vars[0])
word_count = len(response_text.split())
meets_criteria = word_count <= word_limit
if type==0:

return meets_criteria
else:

if meets_criteria:
return 1

else:
return 1-(word_count-word_limit)/word_limit

Figure 5: Example of a Limited Text category meta constraint.

➤ “Category”: “Limited Structure”
➤ “Level”: 1
➤ “Vars”: []
➤ “Explaination”: “Entire output should be wrapped in JSON format.”
➤ “Python Script”

def verify_json_format(response_text, vars, type=0):
try:

response_text=fr'''{response_text}'''
json_object = json.loads(response_text)

except ValueError:
return False

return True

Figure 6: Example of Limited Structure category in our proposed Meta Constraint.
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Instruction
Render a 3D model of a house.
CONSTRAINT: Present the information in exactly 1 paragraphs, each containing no more than 5
sentences.
Successful Response
A 3D model of a house can be created using computer-aided design (CAD) software. The model starts
with a foundation, which is the base of the house. The foundation is typically rectangular in shape and
is the base of the house’s walls. The walls are then built on top of the foundation, and the roof is added
on top of the walls.
Failed Response
Here is a 3D model of a house:
The house is a modern, single-story structure with a rectangular shape. It has a flat roof with a slight
slope to allow for rainwater runoff. The exterior walls are made of brick, with large windows on either
side of the front door. The door is a simple, rectangular shape with a small awning above it. The overall
design is clean and minimalist, with a focus on functionality and simplicity.
The front of the house has a small porch with a railing, providing a comfortable outdoor space for
residents to relax. The porch is supported by two slender columns, which add a touch of elegance to
the design. The front door is flanked by two large windows, which allow natural light to pour into the
interior of the house. The windows are rectangular in shape, with a slight curve to follow the shape
of the roof. The entire front facade is painted a soothing shade of blue, which complements the brick
exterior walls.
The back of the house is slightly more rustic, with a large wooden deck that stretches across the width
of the property. The deck is supported by sturdy wooden beams, which provide a sturdy foundation for
outdoor furniture and decorations. A small patio area is situated off to one side, surrounded by lush
greenery and a small water feature. The back door is a simple, rectangular shape with a small awning
above it, providing a convenient entrance and exit point. The entire back facade is painted a warm,
earthy shade of brown, which blends seamlessly with the surrounding landscape.

Figure 7: Example of level-1 instruction with single format constraint.

Instruction
Generate three verbs that mean the same as “to apologize”
CONSTRAINT: Your answer must be composed of exactly 3 sentences.
This is a new CONSTRAINT also needs to obey: End each paragraph of your response with the
punctuation mark .
Successful Response
Exceeding the constraint, I present to you three verbs that mean the same as “to apologize”: to regret,
to excuse, and to make amends.
These verbs all convey a sense of sincerity and intention to make things right.
To apologize, you can use one of these verbs.
Failed Response
Explain: I understand that the response must be composed of exactly three sentences, and that each
paragraph must end with the punctuation mark.
Three verbs that mean the same as “to apologize” are to excuse, to regret, and to make amends.

Figure 8: Example of level-2 instruction with two different format constraints.
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Instruction
List 5 questions for a job interview.
Constraint: Start every sentence with a word that begins with the letter A.
This is a new CONSTRAINT also needs to obey: Limit the response to exactly 6 paragraphs.
This is a new CONSTRAINT also needs to obey: Your response must contain between 50 and 110
words.
Successful Response
Are you prepared to discuss your qualifications and experience?
Additionally, can you describe a challenging project you managed successfully?
Analyzing your problem-solving abilities is important to us.
Also, what attracted you to this position and our company?
Answering this will give insight into your motivation. Are there any questions you have for us about
the job or team?
Assessing your interpersonal skills is crucial for our work environment.
Failed Response
Amazingly, the job interview process is an opportunity to showcase skills and experience.
Amidst the array of questions, applicants can expect to be asked about their approach to problem-
solving.
Amazingly, this could include examples of how they’ve adapted to new situations and technologies.
Amazingly, applicants will have the opportunity to showcase their ability to work effectively in a team.
Amazingly, applicants can expect to be asked about their approach to continuous learning and profes-
sional development, and how they stay adept at developing new skills.
Amazingly, applicants will have the opportunity to showcase their ability to adapt to new situations and
technologies.
Amazingly, applicants can expect to be asked about their approach to leadership and management, and
how they approach building strong relationships.
Amazingly, applicants will have the opportunity to showcase their ability to drive results and achieve
goals.

Figure 9: Example of level-3 instruction with three different format constraints.
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