
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3450–3468

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Mitigating Hallucinations in Multimodal Spatial Relations through
Constraint-Aware Prompting

Jiarui Wu
University of Rochester

jwu114@u.rochester.edu

Zhuo Liu
University of Rochester

zhuo.liu@rochester.edu

Hangfeng He
University of Rochester

hangfeng.he@rochester.edu

Abstract

Spatial relation hallucinations pose a persis-
tent challenge in large vision-language models
(LVLMs), leading to generate incorrect predic-
tions about object positions and spatial con-
figurations within an image. To address this
issue, we propose a constraint-aware prompt-
ing framework designed to reduce spatial rela-
tion hallucinations. Specifically, we introduce
two types of constraints: (1) bidirectional con-
straint, which ensures consistency in pairwise
object relations, and (2) transitivity constraint,
which enforces relational dependence across
multiple objects. By incorporating these con-
straints, LVLMs can produce more spatially co-
herent and consistent outputs. We evaluate our
method on three widely-used spatial relation
datasets, demonstrating performance improve-
ments over existing approaches. Additionally,
a systematic analysis of various bidirectional
relation analysis choices and transitivity refer-
ence selections highlights greater possibilities
of our methods in incorporating constraints to
mitigate spatial relation hallucinations.

1 Introduction

In recent years, large vision-language models
(LVLMs) have been widely adopted for tasks such
as image captioning and visual question answer-
ing (VQA). While these models have demonstrated
remarkable capabilities, hallucination remains a
persistent challenge in multimodal systems. Even
state-of-the-art models occasionally generate hal-
lucinated responses (Chang et al., 2024). In this
study, we focus on mitigating the hallucination
in multimodal spatial relations, a challenging task
that requires the cognition and reasoning ability of
LVLMs about objects in the image.

Existing research has explored various methods
to enhance the performance of LVLMs in spatial
relations. Zhao et al. (2023) utilized a small pre-
trained model to provide spatial information in

Left Right

Right

B
el

ow

Q: Is the transparent card holder on the right of the cell phone?
A: No, the transparent card holder is on the left of the cell phone. %

Q: What is the spatial relation between the transparent card holder
and the camera and between the cell phone and the camera? Based
on the answer to the previous question, is the transparent card
holder on the right of the cell phone?
A: The transparent card holder is to the right of the camera. The
cell phone is below the camera. Based on this, the transparent card
holder is to the right of the cell phone. "

Figure 1: Comparison between the vanilla prompt and
the prompt incorporating constraint awareness (transitiv-
ity constraint). Constraint-aware content is highlighted
in blue, incorrect content in red, and correct content in
green. In the right image, the relations highlighted in
blue corrects the incorrect relation highlighted in red.

guiding LVLMs. Rajabi and Kosecka (2023) com-
bined an encoder-decoder model with a trained
predictor to localize objects and predict spatial rela-
tions. Chen et al. (2024) proposed SpatialVLM,
trained on a spatial VQA dataset generated us-
ing their data generation framework. Addition-
ally, Meng et al. (2024) introduced ZeroVLM,
which leverages a 3D reconstruction model to ob-
tain multi-view images for improved spatial rea-
soning. The existing proposals mainly focus on
training powerful models. While these approaches
are effective in enhancing LVLMs’ visual spatial
relation understanding, they involve high training
costs and rely heavily on high-quality training data.

Prompt enhancement is a training-free approach
that has been shown to effectively mitigate halluci-
nations in large language models (LLMs). Numer-
ous prompting techniques (e.g., Wei et al., 2022;
Hu et al., 2023; Kong et al., 2024; Zheng et al.,
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2024) have been developed to improve response
quality in reasoning tasks. However, despite their
success, few methods have achieved significant im-
provements in multimodal spatial relation tasks (Sa-
hoo et al., 2024; Vatsal and Dubey, 2024).

In response to these limitations, we propose
constraint-aware methods that effectively reduce
spatial relation hallucinations of LVLMs. These
methods are inspired by the principle that, in tasks
involving structured variables, once a variable’s
value is determined, related variables become con-
strained (Ning et al., 2019). Specifically, in spatial
relation reasoning, establishing the spatial relation-
ship between two objects naturally constrains the
potential relationships among other objects in the
scene (Choi et al., 2018). For instance, Figure 1
demonstrates a scenario (Yang et al., 2019) where
the model initially misinterprets the spatial relation
between the transparent card holder and the cell
phone. By identifying the relations among the cam-
era, the card holder, and the cell phone, the initially
incorrect relation is constrained and corrected.

We propose two constraints: bidirectional con-
straint and transitivity constraint. Bidirectional con-
straints ensure that the spatial relations between
two objects remain consistent when viewed from
either direction. Transitivity constraints, introduce
a third object as a reference to maintain logical
coherence across multiple spatial relations, reduc-
ing the likelihood of conflicting interpretations. By
combining these constraints, we establish a more
robust approach for visual spatial relation.

We compare our methods against baseline meth-
ods using three widely used spatial relation datasets.
The results show that all our methods have signifi-
cantly improved performance, with the combined
method outperforming the other two constraint
methods. These findings demonstrate the effec-
tiveness of our approach in mitigating multimodal
spatial relation hallucinations. Furthermore, we
analyze the performance across different method
variants, highlighting their effectiveness and the
variability in performance across datasets.

2 Constraint-Aware Prompting

This section provides a description of our proposed
methods. The demonstrated methods are designed
for spatial relation binary VQA, where the input is
typically an image-question pair. The underlying
constraint-aware approach has the potential to be
applied to a broader range of spatial relation tasks.

## Instructions ##
1. Repeat the question + {extract and label objects}
2. {spatial relation analysis}
3. Think step by step + use "yes" or "no" to answer the question
## Please output in the following format ##
...
Horizontal relation between O1 and O2: O1 is <relation> O2

Vertical relation between O1 and O2: O1 is <relation> O2

Depth relation between O1 and O2: O1 is <relation> O2

...
## Question ##
Is there <Object> <Relation> <Object> in the image?

Figure 2: Template prompt skeleton. Prompting tech-
niques are highlighted in blue. The phrase inside {} is
the summary of omitted details, and O1 and O2 repre-
sent the label of objects.

A B

Question: Is there a cat on the right of a rabbit in the image?

AB Relation: What is the relation between A (cat) and B (rabbit)?
BA Relation: What is the relation between B (rabbit) and A (cat)?
AB+BA Relation: What is the relation between A (cat) and B (rabbit) and
between B (rabbit) and A (cat)?
BA+AB Relation: What is the relation between B (rabbit) and A (cat) and
between A (cat) and B (rabbit)?

Figure 3: Example shows how candidate objects in
the question are labeled and the corresponding spatial
relations in the AB, BA, AB+BA, and BA+AB orders.
"Cat" is labeled as "A" because it appears earlier than
"rabbit" in the question.

Skeleton As illustrated in Figure 2, our methods
follow the structure: Instructions + Output For-
mat + Question. Instead of relying on a few-shot
prompt, we use a zero-shot prompt with step-by-
step instructions to reduce costs and specify an
output format to facilitate validation and evalua-
tion.

To minimize hallucination in intermediate steps
and enhance LVLM reasoning, we incorporate var-
ious techniques. We leverage zero-shot chain-of-
thought (CoT) prompting (Wei et al., 2022) to en-
able LVLMs to reason effectively based on detected
spatial relations. In the output format, we adopt a
reasoning structure (Zhou et al., 2024), explicitly
instructing LVLMs to analyze horizontal, vertical,
and depth relations between objects. This approach
ensures that models generate comprehensive spa-
tial relations and engage in thorough reasoning. A
detailed analysis of these techniques can be found
in Appendix A.2.

Our methods also instruct LVLMs to label the
first and second objects mentioned in the candidate
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ARO GQA MMRel Average
Methods Acc F1 Acc F1 Acc F1 Acc F1

Baseline (vanilla) 65.10 70.75 63.03 67.73 70.96 75.12 66.37 71.20
Baseline (CoT+structure) 69.60 74.51 63.47 68.03 80.00 81.41 71.02 74.65
Bidirectional (ours) 75.33 *** 79.03 *** 69.47 *** 73.86 *** 88.50 *** 89.12 *** 77.77 *** 80.67 ***
Transitivity (ours) 73.90 *** 75.89 *** 68.93 *** 71.04 *** 84.03 *** 83.19 *** 75.62 *** 76.71 ***
Combined (ours) 76.67 *** 79.57 *** 70.77 *** 75.08 *** 92.70 *** 92.91 *** 80.05 *** 82.52 ***

Table 1: 5-trial average results of our methods on three datasets using GPT-4o. The "average" column represents
the overall performance across the datasets. *** indicates that the p-value of the one-sided t-test is less than 0.05
(comparing our methods with others and comparing the combined constraint with the other two constraints).

VQA question as A and B, respectively. These
symbols are then used to guide the models in the
subsequent spatial relation analysis. An example is
illustrated in Figure 3.

Bidirectional Constraint In the method, we
prompt LVLMs to generate spatial relations in the
BA + AB order. This approach ensures that LVLMs
first detect the converse spatial relation (BA) and
automatically refer to it when generating the direct
relation (AB). The bidirectional constraint between
the converse relation and the direct relation can
help models mitigate hallucinations. The example
response can be found in Figure 8 and the detailed
template prompt can be found in Figure 10 in Ap-
pendix.

Transitivity Constraint This method leverages
the transitivity constraint among objects to mitigate
spatial relation hallucinations. Besides Object A
and B, we prompt LVLMs to randomly select a
reference object, denoted as Object C. The model
is then instructed to generate the spatial relations
in the AC + BC order, which serve as reference
relations to transitively constrain the potentially
hallucinated AB relation. The example response
can be found in Figure 9 and the detailed template
prompt can be found in Figure 11 in Appendix.

3 Experiments

3.1 Experimental Settings

Datasets We utilize three datasets containing spa-
tial relation data to evaluate our proposed meth-
ods. ARO (Yuksekgonul et al., 2023) consists
of 50K real-world image-caption pairs, with data
sourced from Visual Genome (Krishna et al., 2017),
MSCOCO (Lin et al., 2014), and Flickr30k (Young
et al., 2014). GQA (Hudson and Manning, 2019)
includes 113K images and 22M diverse visual ques-
tions based on the Visual Genome scene graph.
MMRel (Nie et al., 2024) contains 15K image-

question pairs addressing GPT-4V-generated anno-
tations, utilizing real images from Visual Genome
and synthetic images from SDXL (Podell et al.,
2024) and DALL-E (Betker et al., 2023). We ran-
domly sampled 600 and 200 balanced pairs of real
images and spatial relation binary VQA questions
from each dataset for the test and validation splits.
Data preprocessing details are in Appendix A.1.

Methods With the hypothesis that the combina-
tion of bidirectional and transitivity constraints can
yield improved performance, we introduce the com-
bined constraint. It integrates two constraints and
performs the relation analysis in the AC + BC +
BA + AB order. In the experiment, we use the
above three constraint-aware methods against two
baseline methods. The first baseline uses vanilla
prompts, directly asking LVLMs to answer ques-
tions with either "yes" or "no." The other baseline is
based on the vanilla prompts but leverages prompt-
ing techniques, such as CoT and structured reason-
ing output (CoT+structure), which are also incor-
porated into our methods. The detailed prompts
can be found in Appendix A.8. For each method
and dataset, we conduct five trials, calculate the
average results, and perform a one-sided t-test to
further ensure the reliability of the findings.

Model Settings We use GPT-4o1 (Radford, 2018)
as the LVLM in all experiments. The temperature
and top-p are both set to a small number 1×10−15,
and a fixed seed is used to get more deterministic
responses.

3.2 Results

As shown in Table 1, all of our proposed methods
significantly outperform two baselines in both accu-
racy and F1 score. This highlights the effectiveness
of our constraint-aware methods. Moreover, the
combined constraint achieves the highest accuracy

1GPT-4o-2024-05-13
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Figure 4: The accuracy comparison of different relation analysis choices in bidirectional and combined constraints
is shown. BA + AB is the method utilized in our proposed approach. BA and AB + BA are the variants of our method:
BA refers to analyzing only the converse relation, while AB + BA analyzes the direct relation first, followed by the
converse relation. AB, which only analyzes the direct relation, is not considered a bidirectional constraint, as the
converse relation is not examined. For the diagram of F1 score and detailed data, refer to Appendix A.5.

and F1 score across the three datasets, including an
impressive 92.7% accuracy and 92.91% F1 score
on the MMRel dataset. This demonstrates that the
features of bidirectional and transitivity constraints
can be combined to enhance performance.

To prove that our methods are generalized to
other models, we also test them using different
LVLMs. The results can be found in Appendix A.4.

4 Analysis

4.1 Bidirectional Relation Analysis

When utilizing the bidirectional constraint, the key
factor is ensuring that LVLMs analyze the converse
relation (BA). In our experiments, we prompted
GPT to analyze spatial relations in the BA + AB
order. However, alternative approaches exist, such
as analyzing in the AB + BA order or focusing
solely on BA.

We compare the performance of these variants
under bidirectional and combined constraints. As
shown in Figure 4, methods analyzing the BA re-
lation demonstrated higher average accuracy com-
pared to those using only the AB relation, reaffirm-
ing the effectiveness of bidirectional constraints.
However, no single method consistently outper-
formed the others across datasets, with results
varying between them. Additionally, we observed
that within the group employing bidirectional con-
straints, the AB and AB + BA performed similarly,
as did the BA and BA + AB. We hypothesize that
when the first relation is hallucinated, the subse-
quent relation is likely to be affected as well. This

ARO GQA MMRel Average
Attributes Acc F1 Acc F1 Acc F1 Acc F1

The largest 75.00 76.92 65.00 67.49 83.83 83.25 74.61 75.89
The smallest 73.33 75.83 66.00 67.92 84.00 82.98 74.44 75.58
The most top 72.17 73.62 65.50 67.91 81.67 80.84 73.11 74.12
The central 75.00 76.78 69.17 70.77 83.00 81.72 75.72 76.42
The most obvious 75.00 77.06 67.33 69.38 81.83 80.71 74.72 75.72
Random 73.90 75.89 68.93 71.04 84.03 83.19 75.62 76.71

Table 2: The comparison of different reference object
selection strategies in transitivity constraints.

ARO GQA MMRel Average
Attributes Acc F1 Acc F1 Acc F1 Acc F1

The largest 77.00 79.53 70.50 75.04 91.67 91.88 79.72 82.15
The smallest 75.83 79.02 69.67 74.37 91.17 91.41 78.89 81.60
The most top 76.17 79.25 68.83 73.48 92.33 92.60 79.11 81.78
The central 78.17 80.82 68.83 73.62 90.67 90.91 79.22 81.78
The most obvious 77.67 80.41 69.67 73.93 92.33 92.48 79.89 82.27
Random 76.67 79.57 70.77 75.08 92.70 92.91 80.05 82.52

Table 3: The comparison of different reference object
selection strategies in combined constraints.

aligns with the findings that when LLMs reach a
hallucinated answer, its subsequent explanations
are also likely to be false (Ye and Durrett, 2022).

4.2 Reference Selection

The reference object in transitivity constraints plays
a crucial role. Ideally, it should not introduce new
hallucinations and must be tactically positioned to
challenge the originally hallucinated relation. Thus,
selecting a reliable reference object is essential.

In this analysis, we evaluate different reference
selection strategies using transitivity and combined
constraints. This is done through prompting "select
<attribute> object" as shown in Figures 15 and 16.
The attributes are manually defined as "the largest,"
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"the smallest," "the most top," "the central," and
"the most obvious," based on the assumption that
they could affect the quality of reference objects.

As shown in Tables 2 and 3, certain datasets
demonstrate a preference for specific attributes. For
instance, "the central" performs better in the ARO
dataset, while random selection is better in the other
two datasets. Although all strategies help mitigate
spatial relation hallucinations, their performance
varies depending on the dataset data distribution.

Generally, we found that the largest reference
object performs slightly better than the smallest
reference object, and an effective reference object
often challenges the originally hallucinated relation.
An important insight for selecting the third object is
that a large object positioned between the candidate
objects is more likely to challenge the hallucinated
relation and mitigate the hallucination.

5 Conclusion

We have proposed two powerful constraint-aware
methods, bidirectional and transitivity constraints,
based on the inter-constraint relations among struc-
tured variables. These methods and their combi-
nations and variants can be easily implemented to
enhance the performance of LVLMs in visual spa-
tial relations. We hope our proposed methods and
experimental results can inspire further exploration
in multimodal spatial relation tasks.

Limitations

The proposed methods are inspired by constraints
found in structured variables. This insight was
examined and evaluated using binary VQA, and
we did not evaluate our proposals with other vi-
sual tasks. Besides that, in our current evaluation,
we primarily focus on regular spatial relationships,
such as horizontal and depth relations. However,
real-world data encompasses a broader range of
spatial relations. They will be solid aspects for us
to extend in future experiments.

For future research, we aim to develop a more
deterministic automatic reference object selection
mechanism to replace the current random selection
used in the transitivity constraint. Appendix A.3
shows the tradeoff between accuracy and cost
across the methods. Although our methods are
highly cost-efficient, we can further reduce API
costs while maintaining accuracy in the following
research. Appendix A.6 analyzes several failed
cases of our current methods, offering insights that

reveal potential directions for improving our meth-
ods in the future.
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A Appendix

A.1 Data Preprocessing

We preprocess the datasets to align with our exper-
imental objectives. To focus on more challenging
data, GPT-4o-mini2 is used to filter the data, en-
suring that all candidate images contain at least
five objects. Non-spatial relations and vague spa-
tial relations, such as "sitting on" and "nearby," are
eliminated, leaving only those with clear spatial
definitions in the images. Additionally, we for-
mat the annotations so that the questions follow the
structure: Is there <Object> <Relation> <Object>
in the image? This makes image-question pair have
uniform formats and allows us to focus on evaluat-
ing the feasibility of the proposed method in spatial
relation tasks.

In details, the preprocessing of the ARO and
GQA datasets is more complex than that of MM-
Rel, as the annotations of ARO are primarily image
captions rather than VQA questions, and ARO and
GQA include non-spatial relations. Our approach
mainly relies on keyword filtering and manual re-
view to ensure the sampled data contains only spa-
tial relations. ARO features image captions with
clear lexical structures: <Object> is <Relation>
<Object>. This structure enables us to easily re-
construct the captions and convert them into VQA
format.

A.2 Analysis of Prompting Techniques

In this section, we present experiments that demon-
strate the effectiveness of the prompting techniques
discussed in Section 2. We do not assert that these
prompting techniques alone will significantly im-
prove the accuracy of LVLMs on spatial relation
tasks. Instead, we highlight how our constraint-
aware methods can effectively integrate these tech-
niques to enhance overall performance.

CoT In this analysis, we compare GPT-4o’s per-
formance using bidirectional, transitivity, and com-
bined constraints, both with and without CoT
prompting. To control for CoT, we either include or
omit the phrase "think step by step" in the prompt.
This analysis follows the same dataset and model
settings outlined in Section 3.1.

As shown in Table 4, the accuracy and F1 score
when using CoT prompting are consistently higher
than without CoT for both transitivity and com-
bined methods. Although in some cases, bidirec-

2GPT-4o-mini-2024-07-18

tional methods without CoT outperform those with
CoT, the overall performance with CoT remains
superior. Thus, we think using CoT can bring ben-
efits to our methods and increases the reasoning
ability of LVLMs in general.

Reasoning Structure Similarly, we evaluate the
effectiveness of the reasoning structure by compar-
ing the performance of GPT-4o with and without
this structure. To create a scenario without the
reasoning structure, we remove the output format
from the prompt and provide additional descriptive
instructions that convey the information originally
included in the structured reasoning output, such as
analyzing horizontal, vertical, and depth relations.

The results are shown in Table 5. It is evident
that explicitly stating the reasoning requirements
in the output format enhances the effectiveness of
our method across all three datasets and methods.
We hypothesize that LVLMs adhere more strictly
to the output format than to descriptive instructions.
Consequently, including requirements in the output
format increases the likelihood that LVLMs will
follow these guidelines.

A.3 Tradeoff between Accuracy and Cost

Compared to the vanilla prompt and the prompt
incorporating CoT and reasoning structure, the
prompts used in our method are longer. While
they improve the accuracy of model performance
on tasks, they also increase the API cost. Therefore,
it is crucial to analyze the accuracy improvement
relative to the increase in cost. To investigate this,
we design an experiment in which we apply each
prompting method to 1,800 questions across three
datasets and calculate the average GPT-4o API cost
per 100 VQA questions for each method. The re-
sults are shown in Table 6.

From these results, we observe that the cost of
our methods is approximately two to three times
higher than that of the vanilla prompt. However,
the bidirectional method proves to be the most cost-
efficient. Therefore, when the budget is limited,
users can opt for the bidirectional method to save
costs while maintaining performance. When the
budget allows, users can select the transitivity or
combined method, depending on their preference,
to achieve the best accuracy.

A.4 Results in Other LVLMs

In addition to GPT-4o, we also use other models to
evaluate our methods. Under the same experimen-
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ARO GQA MMRel Average
Methods CoT Acc F1 Acc F1 Acc F1 Acc F1

Bidirectional
No 76.00 79.07 70.67 74.27 86.83 87.32 77.83 80.22
Yes 75.33 79.03 69.47 73.86 88.50 89.12 77.77 80.67

Transitivity
No 70.67 70.57 67.17 66.21 76.17 72.12 71.34 69.63
Yes 73.90 75.89 68.93 71.04 84.03 83.19 75.62 76.71

Combined
No 71.50 76.08 66.00 71.90 83.50 84.75 73.67 77.58
Yes 76.67 79.57 70.77 75.08 92.70 92.91 80.05 82.52

Table 4: The comparison of results with or without using CoT prompting in bidirectional, transitivity, and combined
constraints.

ARO GQA MMRel Average
Methods Structure Acc F1 Acc F1 Acc F1 Acc F1

Bidirectional
No 71.5 71.83 67.17 66.67 74.67 69.72 71.11 69.41
Yes 75.33 79.03 69.47 73.86 88.50 89.12 77.77 80.67

Transitivity
No 70.33 73.43 64.17 65.71 76.50 76.38 70.33 71.84
Yes 73.90 75.89 68.93 71.04 84.03 83.19 75.62 76.71

Combined
No 75.33 78.43 71.67 75.07 87.17 87.64 78.06 80.38
Yes 76.67 79.57 70.77 75.08 92.70 92.91 80.05 82.52

Table 5: The comparison of results with or without using structured reasoning output in bidirectional, transitivity,
and combined constraints.

tal settings, we use Gemini Pro3 (Team et al., 2024)
to evaluate two baseline methods and three pro-
posed methods. The results are shown in Table 7.
The performance of our methods is consistently
strong in Gemini Pro: the combined method out-
performs the bidirectional and transitivity methods,
and the three proposed methods are generally bet-
ter than the two baselines. An exception is the
ARO dataset, where bidirectional constraints have
slightly lower accuracy than the baseline method
incorporating CoT and reasoning structure.

Additionally, we test our methods on smaller (1B
or 7B) open-source models, such as LLaVA (Liu
et al., 2024) and Janus Pro (Chen et al., 2025). We
observe that our methods show potential in mitigat-
ing hallucination in these models. However, due
to limitations caused by the smaller model sizes,
the responses from these models are unstable. In
some cases, the models fail to follow the instruc-
tions or formats written in the prompt to generate a
response.

A.5 Extended Results
This section presents the full results, including ac-
curacy, precision, recall, and F1 score, for all ex-
periments conducted in the body of the paper.

The comprehensive results of the main experi-
ment, which include a comparison of our methods

3gemini-1.5-pro-002

against baseline approaches across four metrics,
are presented in Table 8. In addition to evaluat-
ing the accuracy of various bidirectional relation
analysis options, as discussed in Section 4.1, we
also assess the F1 scores for different analytical
choices, as shown in Figure 5. The F1 score com-
parison adheres to the same criteria as the accuracy
evaluations, and the results follow similar patterns.
Detailed data on the relation analysis options can
be found in Tables 9 and 10. Furthermore, ex-
tended results on reference object selection analysis
is available in Tables 11 and 12.

A.6 Failed Case Analysis

Although our methods significantly improve the ac-
curacy of LVLMs in reasoning about visual spatial
relations, some failure cases persist. Figure 6 illus-
trates a typical example. In this case, the model
uses bidirectional constraints to determine the spa-
tial relation between a building and a horse. The
first issue is that GPT fails to label the initially men-
tioned object, the building, as "Object A," instead
switching the labels of the building and the horse.
However, this is not the critical error. The main
issue lies in GPT’s inability to correctly identify the
spatial relation from the horse’s perspective, incor-
rectly stating that the building is to the right of the
horse. A secondary mistake, though not impacting
the final answer, is the use of "front" and "behind"
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vanilla CoT+structure bidirectional transitivity combined

Cost per 100 Questions ($) 0.242 0.377 0.557 0.630 0.765

Average Accuracy (%) 66.37 71.02 77.77 75.62 80.05

Table 6: The results of analyzing the tradeoff between accuracy and API cost.

Methods Acc Precision Recall F1

Baseline (vanilla) 69.50 62.97 94.67 75.63
Baseline (CoT+structure) 71.50 66.17 88.00 75.54
Bidirectional (ours) 70.17 63.97 92.33 75.58
Transitivity (ours) 73.33 66.51 94.00 77.90
Combined (ours) 74.50 68.24 91.67 78.24

(a) ARO

Methods Acc Precision Recall F1

Baseline (vanilla) 66.17 61.41 87.00 72.00
Baseline (CoT+structure) 68.50 62.25 94.00 74.90
Bidirectional (ours) 70.17 63.72 93.67 75.84
Transitivity (ours) 70.50 65.04 88.67 75.04
Combined (ours) 72.00 67.28 85.67 75.37

(b) GQA

Methods Acc Precision Recall F1

Baseline (vanilla) 61.17 57.11 89.67 69.78
Baseline (CoT+structure) 74.17 70.54 83.00 76.26
Bidirectional (ours) 82.50 77.94 90.67 83.82
Transitivity (ours) 82.83 76.99 93.67 84.51
Combined (ours) 85.00 80.88 91.67 85.94

(c) MMRel

Methods Acc Precision Recall F1

Baseline (vanilla) 65.61 60.50 90.45 72.47
Baseline (CoT+structure) 71.39 66.32 88.33 75.57
Bidirectional (ours) 74.28 68.54 92.22 78.41
Transitivity (ours) 75.55 69.51 92.11 79.15
Combined (ours) 77.17 72.13 89.67 79.85

(d) Average

Table 7: Full results of our methods (bidirectional, transitivity, and combined constraints) on three datasets using
Gemini Pro.

to describe a vertical relationship. This analysis
suggests that if the candidate LVLM has inherent
misunderstandings or hallucinations regarding the
definition of spatial relations, correcting them may
be challenging.

Figure 7 presents a typical failure case involv-
ing transitivity constraints. In this instance, GPT
applies transitivity constraints to determine the hor-
izontal relationship between a cabinet and a wall,
using the refrigerator as a reference object. While
the LVLM correctly identifies that "the cabinet is
to the left of the refrigerator" and "the wall is to the
left of the refrigerator," these spatial relations do
not contribute to answering the question accurately.
As a result, the final response is still hallucinated.

A.7 Output Examples

Figures 8 and 9 demonstrate the example outputs
of bidirectional and transitivity constraints respec-
tively.

A.8 Template Prompts

The template prompts utilizing bidirectional con-
straints, transitivity constraints, and combined con-
straints can be found in Figures 10, 11, and 12 re-
spectively. The template prompt of vanilla baseline
is in Figure 13 and that of CoT+structure baseline
is in Figure 14. The template prompts used in the
analysis of different reference selection strategies

are in Figures 15 and 16.
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Methods Acc Precision Recall F1

Baseline (vanilla) 65.10 60.90 84.40 70.75
Baseline (CoT+structure) 69.60 64.15 88.87 74.51
Bidirectional (ours) 75.33 68.74 92.93 79.03
Transitivity (ours) 73.90 70.50 82.20 75.89
Combined (ours) 76.67 70.77 90.87 79.57

(a) ARO

Methods Acc Precision Recall F1

Baseline (vanilla) 63.03 60.09 77.60 67.73
Baseline (CoT+structure) 63.47 60.48 77.73 68.03
Bidirectional (ours) 69.47 64.57 86.27 73.86
Transitivity (ours) 68.93 66.54 76.20 71.04
Combined (ours) 70.77 65.43 88.07 75.08

(b) GQA

Methods Acc Precision Recall F1

Baseline (vanilla) 70.96 65.72 87.67 75.12
Baseline (CoT+structure) 80.00 76.04 87.60 81.41
Bidirectional (ours) 88.50 84.57 94.20 89.12
Transitivity (ours) 84.03 87.80 79.07 83.19
Combined (ours) 92.70 90.37 95.60 92.91

(c) MMRel

Methods Acc Precision Recall F1

Baseline (vanilla) 66.37 62.24 83.22 71.20
Baseline (CoT+structure) 71.02 66.89 84.73 74.65
Bidirectional (ours) 77.77 72.63 91.13 80.67
Transitivity (ours) 75.62 74.95 79.16 76.71
Combined (ours) 80.05 75.52 91.51 82.52

(d) Average

Table 8: Full results of our methods (bidirectional, transitivity, and combined constraints) on three datasets using
GPT-4o. This is the extended data of Table 1.
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Figure 5: The F1 score comparison of different relation analysis choices in bidirectional and combined constraints
is shown.

Relations Acc Precision Recall F1

AB 71.70 65.38 92.27 76.53
BA 74.67 68.54 91.20 78.26
AB+BA 71.77 65.38 92.53 76.62
BA+AB 75.33 68.74 92.93 79.03

(a) ARO

Relations Acc Precision Recall F1

AB 68.03 63.09 86.93 73.11
BA 69.87 64.84 86.80 74.23
AB+BA 68.07 62.85 88.22 73.46
BA+AB 69.47 64.57 86.27 73.86

(b) GQA

Relations Acc Precision Recall F1

AB 86.50 82.97 91.87 87.10
BA 89.10 85.97 93.47 89.56
AB+BA 87.20 83.22 93.20 87.92
BA+AB 88.50 84.57 94.20 89.12

(c) MMRel

Relations Acc Precision Recall F1

AB 75.41 70.48 90.36 78.91
BA 77.88 73.12 90.49 80.68
AB+BA 75.68 70.48 91.32 79.33
BA+AB 77.77 72.63 91.13 80.67

(d) Average

Table 9: Full results of the comparison between different relation choices in the bidirectional constraints.
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Relations Acc Precision Recall F1

AB 77.00 71.77 89.00 79.46
BA 75.83 71.23 86.67 78.20
AB+BA 77.53 71.60 91.27 80.25
BA+AB 76.67 70.77 90.87 79.57

(a) ARO

Relations Acc Precision Recall F1

AB 68.17 63.59 85.00 72.75
BA 70.67 66.76 82.33 73.73
AB+BA 69.03 64.15 86.33 73.60
BA+AB 70.77 65.43 88.07 75.08

(b) GQA

Relations Acc Precision Recall F1

AB 88.50 90.81 85.67 88.16
BA 87.17 89.12 84.67 86.84
AB+BA 90.83 90.97 90.67 90.82
BA+AB 92.70 90.37 95.60 92.91

(c) MMRel

Relations Acc Precision Recall F1

AB 77.89 75.39 86.56 80.12
BA 77.89 75.70 84.56 79.59
AB+BA 79.13 75.57 89.42 81.56
BA+AB 80.05 75.52 91.51 82.52

(d) Average

Table 10: Full results of the comparison between different relation choices in the combined constraints.

Attributes Acc Precision Recall F1

The largest 75.00 71.43 83.33 76.92
The smallest 73.33 69.34 83.67 75.83
The most top 72.17 69.97 77.67 73.62
The central 75.00 71.68 82.67 76.78
The most obvious 75.00 71.19 84.00 77.06
Random 73.90 70.50 82.20 75.89

(a) ARO

Attributes Acc Precision Recall F1

The largest 65.00 63.01 72.67 67.49
The smallest 66.00 64.29 72.00 67.92
The most top 65.50 63.48 73.00 67.91
The central 69.17 67.27 74.67 70.77
The most obvious 67.33 65.29 74.00 69.38
Random 68.93 66.54 76.20 71.04

(b) GQA

Attributes Acc Precision Recall F1

The largest 83.83 86.38 80.33 83.25
The smallest 84.00 88.64 78.00 82.98
The most top 81.67 84.67 77.33 80.84
The central 83.00 88.37 76.00 81.72
The most obvious 81.83 86.04 76.00 80.71
Random 84.03 87.80 79.07 83.19

(c) MMRel

Attributes Acc Precision Recall F1

The largest 74.61 73.61 78.78 75.89
The smallest 74.44 74.76 77.22 75.58
The most top 73.11 72.71 76.00 74.12
The central 75.72 75.77 77.78 76.42
The most obvious 74.72 74.84 78.00 75.72
Random 75.62 74.95 79.16 76.71

(d) Average

Table 11: Full results of the comparison of different reference object selection strategies in transitivity constraints.
This is the extended data of Table 2.

Attributes Acc Precision Recall F1

The largest 77.00 71.66 89.33 79.53
The smallest 75.83 69.82 91.00 79.02
The most top 76.17 70.18 91.00 79.25
The central 78.17 72.06 92.00 80.82
The most obvious 77.67 71.61 91.67 80.41
Random 76.67 70.77 90.87 79.57

(a) ARO

Attributes Acc Precision Recall F1

The largest 70.50 65.04 88.67 75.04
The smallest 69.67 64.39 88.00 74.37
The most top 68.83 63.95 86.33 73.48
The central 68.83 63.81 87.00 73.62
The most obvious 69.67 64.82 86.00 73.93
Random 70.77 65.43 88.07 75.08

(b) GQA

Attributes Acc Precision Recall F1

The largest 91.67 89.56 94.33 91.88
The smallest 91.17 88.96 94.00 91.41
The most top 92.33 89.44 96.00 92.60
The central 90.67 88.61 93.33 90.91
The most obvious 92.33 90.71 94.33 92.48
Random 92.70 90.37 95.60 92.91

(c) MMRel

Attributes Acc Precision Recall F1

The largest 79.72 75.42 90.78 82.15
The smallest 78.89 74.39 91.00 81.60
The most top 79.11 74.52 91.11 81.78
The central 79.22 74.16 90.78 81.78
The most obvious 79.89 75.05 90.67 82.27
Random 80.05 75.52 91.51 82.52

(d) Average

Table 12: Full results of the comparison of different reference object selection strategies in combined constraints.
This is the extended data of Table 3.
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Q:
## Instructions ##
1. Repeat the question and then extract the objects mentioned in the question. Label the first object that appears as "Object A" and
the second as "Object B".
2. Describe the relative position between Object B and A and between Object A and B.
3. Reference to the relationship between Object B and A and between Object A and B, and then think step by step to use ’yes’ or
’no’ to answer the question.

## Please output in the following format ##
Question:
Object A:
Object B:
Horizontal relation between Object B and A: B is <relation> A
Vertical relation between Object B and A: B is <relation> A
Depth relation between Object B and A: B is <relation> A
Horizontal relation between Object A and B: A is <relation> B
Vertical relation between Object A and B: A is <relation> B
Depth relation between Object A and B: A is <relation> B
Thinking process:
Answer:

## Question ##
Is there a building to the right of the horses in the image?

A:
Question: Is there a building to the right of the horses in the image?
Object A: horses
Object B: building
Horizontal relation between Object B and A: B is to the right of A
Vertical relation between Object B and A: B is behind A
Depth relation between Object B and A: B is behind A
Horizontal relation between Object A and B: A is to the left of B
Vertical relation between Object A and B: A is in front of B
Depth relation between Object A and B: A is in front of B
Thinking process: The building is positioned to the right and behind the horses in the image.
Answer: Yes

Figure 6: Failed case 1.
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Q:
## Instructions ##
1. Repeat the question and then extract the objects mentioned in the question. Label the first object that appears as "Object A" and
the second as "Object B". Select an object different from Object A or Object B in the image as "Object C"
2. Describe the relative position between Object A and C and between Object B and C.
3. Reference to the relationship between Object A and C and between Object B and C, and then think step by step to use ’yes’ or
’no’ to answer the question.

## Please output in the following format ##
Question:
Object A:
Object B:
Object C:
Horizontal relation between Object A and C: A is <relation> C
Vertical relation between Object A and C: A is <relation> C
Depth relation between Object A and C: A is <relation> C
Horizontal relation between Object B and C: B is <relation> C
Vertical relation between Object B and C: B is <relation> C
Depth relation between Object B and C: B is <relation> C
Thinking process:
Answer:

## Question ##
Is there a cabinet to the left of the wall in the image?

A:
Question: Is there a cabinet to the left of the wall in the image?
Object A: cabinet
Object B: wall
Object C: refrigerator
Horizontal relation between Object A and C: A is to the left of C
Vertical relation between Object A and C: A is above C
Depth relation between Object A and C: A is in front of C
Horizontal relation between Object B and C: B is to the left of C
Vertical relation between Object B and C: B is above C
Depth relation between Object B and C: B is in front of C
Thinking process: The cabinet (Object A) is to the left of the refrigerator (Object C), and the wall (Object B) is also to the left of the
refrigerator (Object C). Since both the cabinet and the wall are to the left of the refrigerator, it can be concluded that the cabinet is to
the left of the wall.
Answer: Yes

Figure 7: Failed case 2.
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Q:
## Instructions ##
1. Repeat the question and then extract the objects mentioned in the question. Label the first object that appears as "Object A" and
the second as "Object B".
2. Describe the relative position between Object B and A and between Object A and B.
3. Reference to the relationship between Object B and A and between Object A and B, and then think step by step to use ’yes’ or
’no’ to answer the question.

## Please output in the following format ##
Question:
Object A:
Object B:
Horizontal relation between Object B and A: B is <relation> A
Vertical relation between Object B and A: B is <relation> A
Depth relation between Object B and A: B is <relation> A
Horizontal relation between Object A and B: A is <relation> B
Vertical relation between Object A and B: A is <relation> B
Depth relation between Object A and B: A is <relation> B
Thinking process:
Answer:

## Question ##
Is there a can left the carrot in the image?

A:
Question: Is there a can left the carrot in the image?
Object A: can
Object B: carrot
Horizontal relation between Object B and A: B is right of A
Vertical relation between Object B and A: B is at the same level as A
Depth relation between Object B and A: B is in front of A
Horizontal relation between Object A and B: A is left of B
Vertical relation between Object A and B: A is at the same level as B
Depth relation between Object A and B: A is behind B
Thinking process: The carrot is to the right of the can, at the same level, and in front of it. Therefore, the can is to the left of the
carrot, at the same level, and behind it.
Answer: Yes

Figure 8: Example output of the bidirectional constraint.
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Q:
## Instructions ##
1. Repeat the question and then extract the objects mentioned in the question. Label the first object that appears as "Object A" and
the second as "Object B". Select an object different from Object A or Object B in the image as "Object C"
2. Describe the relative position between Object A and C and between Object B and C.
3. Reference to the relationship between Object A and C and between Object B and C, and then think step by step to use ’yes’ or
’no’ to answer the question.

## Please output in the following format ##
Question:
Object A:
Object B:
Object C:
Horizontal relation between Object A and C: A is <relation> C
Vertical relation between Object A and C: A is <relation> C
Depth relation between Object A and C: A is <relation> C
Horizontal relation between Object B and C: B is <relation> C
Vertical relation between Object B and C: B is <relation> C
Depth relation between Object B and C: B is <relation> C
Thinking process:
Answer:

## Question ##
Is there a window to the right of the tree in the image?

A:
Question: Is there a window to the right of the tree in the image?
Object A: window
Object B: tree
Object C: bicycle
Horizontal relation between Object A and C: A is left of C
Vertical relation between Object A and C: A is above C
Depth relation between Object A and C: A is behind C
Horizontal relation between Object B and C: B is right of C
Vertical relation between Object B and C: B is above C
Depth relation between Object B and C: B is behind C
Thinking process: The window (Object A) is to the left of the bicycle (Object C), and the tree (Object B) is to the right of the
bicycle (Object C). Therefore, the window is to the left of the tree.
Answer: No

Figure 9: Example output of the transitivity constraint.
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## Instructions ##
1. Repeat the question and then extract the objects mentioned in
the question. Label the first object that appears as "Object A" and
the second as "Object B".
2. Describe the relative position between Object B and A and
between Object A and B.
3. Reference to the relationship between Object B and A and
between Object A and B, and then think step by step to use "yes"
or "no" to answer the question.
## Please output in the following format ##
Question:
Object A:
Object B:
Horizontal relation between Object B and A: B is <relation> A
Vertical relation between Object B and A: B is <relation> A
Depth relation between Object B and A: B is <relation> A
Horizontal relation between Object A and B: A is <relation> B
Vertical relation between Object A and B: A is <relation> B
Depth relation between Object A and B: A is <relation> B
Thinking process:
Answer:
## Question ##
{question}

Figure 10: Template prompt utilizing the bidirectional constraint. Prompting techniques are highlighted in blue.
Terms related to the BA + AB order are marked in red.

## Instructions ##
1. Repeat the question and then extract the objects mentioned in
the question. Label the first object that appears as "Object A" and
the second as "Object B". Select an object different from Object
A or Object B in the image as "Object C".
2. Describe the relative position between Object A and C and
between Object B and C.
3. Reference to the relationship between Object A and C and
between Object B and C, and then think step by step to use "yes"
or "no" to answer the question.
## Please output in the following format ##
Question:
Object A:
Object B:
Object C:
Horizontal relation between Object A and C: A is <relation> C
Vertical relation between Object A and C: A is <relation> C
Depth relation between Object A and C: A is <relation> C
Horizontal relation between Object B and C: B is <relation> C
Vertical relation between Object B and C: B is <relation> C
Depth relation between Object B and C: B is <relation> C
Thinking process:
Answer:
## Question ##
{question}

Figure 11: Template prompt utilizing the transitivity constraint. Prompting techniques are highlighted in blue, and
terms relevant to the reference relations (AC + BC order) are highlighted in red.
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## Instructions ##
1. Repeat the question and then extract the objects mentioned in
the question. Label the first object that appears as "Object A" and
the second as "Object B". Select an object different from Object
A or Object B in the image as "Object C"
2. Describe the relative position between Object A and C and
between Object B and C.
3. Reference to the result of step 2 and image, describe the relative
position between Object B and A and between Object A and B.
4. Reference to the relationship between Object B and A and
between Object A and B, and then think step by step to use "yes"
or "no" to answer the question.
## Please output in the following format ##
Question:
Object A:
Object B:
Object C:
Horizontal relation between Object A and C: A is <relation> C
Vertical relation between Object A and C: A is <relation> C
Depth relation between Object A and C: A is <relation> C
Horizontal relation between Object B and C: B is <relation> C
Vertical relation between Object B and C: B is <relation> C
Depth relation between Object B and C: B is <relation> C
Horizontal relation between Object B and A: B is <relation> A
Vertical relation between Object B and A: B is <relation> A
Depth relation between Object B and A: B is <relation> A
Horizontal relation between Object A and B: A is <relation> B
Vertical relation between Object A and B: A is <relation> B
Depth relation between Object A and B: A is <relation> B
Thinking process:
Answer:
## Question ##
{question}

Figure 12: Template prompt utilizing the combined constraint. Prompting techniques are highlighted in blue, terms
relevant to the transitivity constraint are highlighted in red, and terms relevant to the bidirectional constraint are
highlighted in orange.

Use ’yes’ or ’no’ to answer the question: {question}

Figure 13: Template prompt of Vanilla Baseline.
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## Instructions ##
1. Repeat the question and then extract the objects mentioned in
the question. Label the first object that appears as "Object A" and
the second as "Object B".
2. Think step by step to use ’yes’ or ’no’ to answer the question.
## Please output in the following format ##
Question:
Object A:
Object B:
Thinking process:
Answer:
## Question ##
{question}

Figure 14: Template prompt of CoT+Structure Baseline.

## Instructions ##
1. Repeat the question and then extract the objects mentioned in
the question. Label the first object that appears as "Object A" and
the second as "Object B". Select {attribute} object different from
Object A or Object B in the image as "Object C"
2. Describe the relative position between Object A and C and
between Object B and C.
3. Reference to the relationship between Object A and C and
between Object B and C, and then think step by step to use ’yes’
or ’no’ to answer the question.
## Please output in the following format ##
Question:
Object A:
Object B:
Object C:
Horizontal relation between Object A and C: A is <relation> C
Vertical relation between Object A and C: A is <relation> C
Depth relation between Object A and C: A is <relation> C
Horizontal relation between Object B and C: B is <relation> C
Vertical relation between Object B and C: B is <relation> C
Depth relation between Object B and C: B is <relation> C
Thinking process:
Answer:
## Question ##
{question}

Figure 15: Template prompt used in the reference selection analysis of transitivity constraints. We replace {attribute}
with the candidate attributes, such as "the largest" and "the most top."
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## Instructions ##
1. Repeat the question and then extract the objects mentioned in
the question. Label the first object that appears as "Object A" and
the second as "Object B". Select {attribute} object different from
Object A or Object B in the image as "Object C"
2. Describe the relative position between Object A and C and
between Object B and C.
3. Reference to the result of step 2 and image, describe the relative
position between Object B and A and between Object A and B.
4. Reference to the relationship between Object B and A and
between Object A and B, and then think step by step to use ’yes’
or ’no’ to answer the question.
## Please output in the following format ##
Question:
Object A:
Object B:
Object C:
Horizontal relation between Object A and C: A is <relation> C
Vertical relation between Object A and C: A is <relation> C
Depth relation between Object A and C: A is <relation> C
Horizontal relation between Object B and C: B is <relation> C
Vertical relation between Object B and C: B is <relation> C
Depth relation between Object B and C: B is <relation> C
Horizontal relation between Object B and A: B is <relation> A
Vertical relation between Object B and A: B is <relation> A
Depth relation between Object B and A: B is <relation> A
Horizontal relation between Object A and B: A is <relation> B
Vertical relation between Object A and B: A is <relation> B
Depth relation between Object A and B: A is <relation> B
Thinking process:
Answer:
## Question ##
{question}

Figure 16: Template prompt used in the reference selection analysis of combined constraints.
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