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Abstract

Extracting temporal relationships between
events in the text is crucial for understanding
how events unfold over time, especially in the
information-dense and precision-demanding
military field. Existing models for extract-
ing event temporal relations typically compare
the relative times of events directly, neglecting
the contextual information between event pairs.
This can lead to difficulties in handling uncer-
tain temporal boundaries expressed in text. In
this paper, we propose an event temporal rela-
tionship extraction model for the military field,
based on relative event time prediction and vir-
tual adversarial training, MFRV. The relative
event time prediction as an auxiliary task en-
hances the model’s ability to capture and in-
fer temporal relationships. Virtual adversarial
training increases the model’s generalization
by generating adversarial samples. Addition-
ally, we adopt the MoCo (Multi-objective gra-
dient correction) method to balance the losses
from relative event time prediction and virtual
adversarial training, effectively resolving the
gradient bias issue in multi-objective optimiza-
tion. Furthermore, we have constructed a new
dataset, TRMF, specifically for event tempo-
ral relationship extraction in the military field.
Experiments conducted on TRMF, as well as
widely used public datasets MATRES and TCR,
demonstrate the effectiveness of MFRV. 1

1 Introduction

In recent years, the increasing frequency of mili-
tary events has garnered significant global attention,
presenting considerable challenges to society. Un-
like general news, military events are characterized
by more complex dynamics across temporal and
spatial dimensions, involving multiple stakehold-
ers and interweaving of political, economic, and
strategic factors. Accurately extracting temporal

1Experimental source code is available at https://
github.com/Author0001/MFRV.

*Corresponding author.

Figure 1: Example Sentences for Event Temporal Rela-
tion Extraction.

relationships from these events is critical for in-
formed decision-making in policy, strategy formu-
lation, and crisis management. However, errors in
the timeline can disrupt the causal chain of events,
potentially misleading analysts’ understanding of
the relationships between them. For example, an
incorrect ordering of events could misinterpret the
true cause-and-effect dynamics at play, thus distort-
ing the strategic analysis.

Such inaccuracies can have serious conse-
quences for downstream tasks, including mili-
tary action prioritization and intelligence analy-
sis, where decisions might be made based on
flawed temporal information, leading to incorrect
judgments about the sequence and significance of
events. In addition, military events often span ex-
tended timeframes, involve numerous actors, and
may include classified or misleading information,
rendering general temporal extraction techniques
inadequate. To address this issue, we propose
MFRV, a specialized model for extracting temporal
relationships from military events.

Event Temporal Relationship Extraction is a nat-
ural language processing task that involves identi-
fying and classifying the temporal order between
pairs of events mentioned within a text. The goal
is to determine the chronological sequence or tem-
poral relationship between these events based on
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contextual and linguistic cues present in the text.
This task is crucial for understanding the temporal
dynamics in narrative and informative texts, en-
abling applications in timeline generation, question
answering, and information retrieval (Choubey and
Huang, 2017; Han et al., 2019b; Ning et al., 2020).
For example, in Figure 1, there are three events
with a clear temporal logic: "declared" occurs be-
fore "held," "held" occurs after "launching" and
"declared" occurs before "launching". These events
form a complete temporal relationship chain.

Neural network-based methods have achieved
promising results in the field of temporal rela-
tionship extraction (Meng et al., 2017; Meng and
Rumshisky, 2018; Ning et al., 2019; Han et al.,
2019a; Cheng et al., 2020; Wang et al., 2020;
Ballesteros et al., 2020; Tan et al., 2021; Zhang
et al., 2022; Hwang et al., 2022; Tan et al., 2023).
These methods mainly treat this task as a classi-
fication problem. Some methods focus on global
structures, which encompass the overall temporal
framework and the interconnections among mul-
tiple events within a text. These methods aim to
capture the broader temporal context and depen-
dencies that extend beyond individual event pairs
(Bramsen et al., 2006; Yoshikawa et al., 2009; Zhou
et al., 2022; Tan et al., 2024). Other works focus
on event time information, such as the study by
Leeuwenberg and Moens (2018). They proposed
a method that infers temporal relationships by di-
rectly comparing the relative timestamps of events,
thereby predicting relative timelines. Inspired by
their work, Wen and Ji (2021) linked relative event
time prediction with temporal relationship extrac-
tion by incorporating relative event time as addi-
tional features into the classifier’s training. Al-
though the model achieved promising performance,
it lacked external knowledge assistance and demon-
strated poor generalization to unseen data.

In this paper, we follow the ideas of Wen and
Ji (2021), Leeuwenberg and Moens (2018) by pre-
dicting relative event times and incorporating them
as additional features into the classifier’s training.
In predicting relative event times, we employed
a dynamic adjustment mechanism to control the
flow of information. This mechanism helps the
model extract, filter, and utilize critical information
closely related to temporal relationships. Addition-
ally, we integrate external temporal commonsense
knowledge (Ning et al., 2018b) during classifier
training to improve the model’s understanding of

event temporal relationships. We also employ the
virtual adversarial training (VAT) method (Miyato
et al., 2018), generating adversarial samples to en-
hance the model’s generalization. Furthermore, to
effectively integrate the losses from relative event
time prediction and virtual adversarial training, we
use the MoCo method (Fernando et al., 2023) to
balance these losses, resulting in improved model
performance. Our contributions can be summarized
as follows:

• We propose MFRV, an event temporal rela-
tionship extraction model based on relative
event time prediction and virtual adversarial
training, tailored for the military field.

• We construct TRMF, a novel dataset specifi-
cally designed for event temporal relationship
extraction in the military field, addressing the
data scarcity issue in this field.

• We conduct experiments on the TRMF, MA-
TRES, and TCR datasets. The experimen-
tal results demonstrate the effectiveness of
MFRV.

2 Related Work

Similar to entity-level relationship extraction (Peng
et al., 2017; Li et al., 2019; Zhao et al., 2023), the
latest event temporal relationship extraction mod-
els are based on neural networks (Zhuang et al.,
2023b; Knez and Žitnik, 2024; Yuan et al., 2024).
Specifically, Tan et al. (2023) combined the prin-
ciples of statistical inference with deep learning
methods. They employed Bayesian approaches
to model the uncertainty in relationship extrac-
tion, thereby providing more reliable predictions.
Hwang et al. (2022) used Box Embeddings to rep-
resent each event as a probabilistic box, which cap-
tures and models the complex temporal and spa-
tial relationships between different events. Zhang
and Li (2023) proposed a contrastive optimization-
based framework. They trained the model by min-
imizing the discrepancy between model outputs
and logical constraints. This enabled the model
to better understand and capture temporal relation-
ships. The most relevant work is by Wen and Ji
(2021), which jointly trained relative time predic-
tion and temporal relationship extraction. They
used a stack propagation framework to utilize rel-
ative event times as features. Although the model
achieved promising performance, it lacked exter-
nal knowledge assistance and demonstrated poor

3306



generalization to unseen data. Our work focuses
on accurately predicting relative event times and
enhancing the model’s generalization capability by
incorporating virtual adversarial training.

3 Approach

The architecture of the MFRV, as shown in Figure
2, comprises two modules: the Word Embedding
Module and the Relative Event Time Knowledge
Concatenation Module. The Word Embedding
Module calculates word embeddings through event
mentions and trigger words. The Relative Event
Time Knowledge Concatenation Module uses the
obtained embeddings for relative time prediction. It
then combines the relative time and external knowl-
edge with the trigger word embeddings to form the
complete event embeddings. Finally, the tempo-
ral relationships between event pairs are predicted
through classification. During training, the MFRV
employs a combination of virtual adversarial train-
ing and the MoCo method to correct biased noisy
gradient directions.

3.1 Word Embedding Module
The input to the Word Embedding Module is a
segment of text containing event mentions with
trigger words. This module utilizes the pre-trained
language model Roberta-base (Liu et al., 2019) to
compute the word embeddings of the text.

H = (h1, h2, . . . , hi, . . . , hj , . . . , hk) (1)

where hk represents the word embedding at posi-
tion k.

3.2 Relative Event Time Knowledge
Concatenation Module

When extracting event temporal relationships, it
is intuitive to map event occurrence times to spe-
cific timestamps and then determine their temporal
relationships by comparing the exact chronologi-
cal order of two events (Leeuwenberg and Moens,
2018). Based on this reasoning, to better utilize
the contextual information of events, we employ
relative event time prediction. We predict event
times as real numbers between −1 and 1. Using
the pretrained language model, we obtain the word
embeddings of the event pairs. These embeddings
are processed through two feedforward neural net-
works (FFN1 and FFN2), and the dynamic adjust-
ment mechanism is used to control the flow of in-
formation. Ultimately, we obtain the relative time

of the event pairs.

ti = tanh(FFN2(tanh(FFN1(hi))))

· σ(FFN2(tanh(FFN1(hi))))
(2)

tj = tanh(FFN2(tanh(FFN1(hj))))

· σ(FFN2(tanh(FFN1(hj))))
(3)

where σ denotes the sigmoid. For events ei and ej ,
if their temporal relationship is "BEFORE", then
their relative times ti and tj should satisfy ti < tj .
If their temporal relationship is "AFTER", then
their relative times ti and tj should satisfy ti > tj .
If their temporal relationship is "EQUAL", then
their relative times ti and tj should be as close as
possible. Therefore, we use the following loss func-
tion to optimize the relative event time prediction.

Lt = ∂[R(ei,ej) = BEFORE] max(0, 1− (tj − ti))

+ ∂[R(ei,ej) = AFTER] max(0, 1− (ti − tj))

+ ∂[R(ei,ej) = EQUAL]
∣∣ti − tj

∣∣
(4)

where R(ei,ej) represents the true temporal rela-
tionship between events ei and ej , and ∂[·] is an
indicator function. The output value is 1 if the
condition is true, and 0 if the condition is false.

After obtaining the relative time of the event pair,
we further incorporate this feature into the event
temporal relation extraction.

si = hi ⊕ ti; sj = hj ⊕ tj (5)

The MFRV enhances its ability to understand
complex event relationships by incorporating the
TEMPROB knowledge base (Ning et al., 2018b).
TEMPROB is a comprehensive database of tem-
poral commonsense knowledge that meticulously
records the temporal relationships between numer-
ous event pairs.

For example, the likelihood of an ask event oc-
curring before the help event is 86%, while the
likelihood of it occurring after is only 9%. Sim-
ilarly, for die and explode events, the likelihood
of die happening after explode is 83%, while the
likelihood of it happening before is 14%. These
statistics provide us with a deep understanding of
temporal event relationships. We train temporal
commonsense knowledge encoding on this tempo-
ral commonsense knowledge base. The resulting
knowledge vectors vi and vj are ultimately incorpo-
rated into the event temporal relationship extraction
process.

wi = si ⊕ vi;wj = sj ⊕ vj (6)
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Figure 2: The Architecture of the MFRV.

Finally, the obtained word embeddings are con-
catenated to form the input a(i,j) for the softmax
function. The probability distribution over the dif-
ferent classes is then computed to obtain the pre-
dicted temporal relationship P for the event pair ei
and ej .

a(i,j) = FFN3

(
tanh

(
FFN4

(
[wi;wj ]

)))
(7)

P (y = R | x = (ei, ej)) = softmax(Wa(i,j)+B)
(8)

where W and B are the weight matrix and bias
term parameters, respectively.

3.3 Virtual Adversarial Training

During the training phase, the MFRV employs the
cross-entropy loss function as the optimization ob-
jective to accurately extract event temporal relation-
ships.

Lr = − logP (y = R | x = (ei, ej)) (9)

Additionally, by incorporating the relative event
time prediction task, we obtain the model’s loss
function, with β being the weight used to balance
the two components.

La = Lr + βLt (10)

During the training process, we introduced vir-
tual adversarial training combined with the MoCo
method, as illustrated in Figure 3. We use the
MoCo method to balance La and Lv, where Lv

is obtained through virtual adversarial training. Vir-
tual adversarial training (Miyato et al., 2018) is
a regularization method that effectively enhances
model robustness by promoting local smoothness
of the model’s posterior distribution. Specifically,
we maximize the Kullback-Leibler (KL) diver-
gence between the posterior distributions of the
unperturbed and perturbed inputs. This approach
emphasizes that the network’s output should re-
main as consistent as possible under perturbations.
We first compute the perturbation vector δ.

δ = arg max
∥δ∥<ϵ

KL
(
P (y = R | x = (ei, ej))

∥ P (y = R | x = (ei + δi, ej + δj))
)

(11)

where ϵ constrains the maximum perturbation mag-
nitude, ensuring that the noisy input x+ δ remains
within an ϵ-radius around x. δ = δi + δj denotes
the perturbation to the input. The smaller the KL
divergence, the smoother the model’s posterior dis-
tribution around x. The virtual adversarial training
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Figure 3: Training Process.

loss function is defined as follows.

Lv = KL
(
P (y = R | x = (ei, ej)) ∥

P (y = R | x = (ei + δi, ej + δj))
)

(12)

Next, we use the MoCo method to coordinate
the optimization of the loss functions La and Lv.
First, we define a gradient tracking variable y(k,m)

for each loss function. Here, k denotes the training
step or iteration number, specifically referring to
the gradient update performed at step k. m repre-
sents different loss functions, serving as an index
to distinguish between the different loss functions
La and Lv. These variables are used to approxi-
mate the true gradients of each loss function and
are updated at each training step. For each loss
function Lm, we compute its gradient h(k,m), and
then update the gradient tracking variable y(k,m) to
reduce bias.

y(k+1,m) = ΠΛm

(
y(k,m) − βk

(
h(k,m) − y(k,m)

))

(13)
where βk represents the step size, and ΠΛm denotes
the projection of the updated tracking variable onto
the appropriate set Λm to ensure the reasonable-
ness of the updates. Subsequently, λ is defined
as the optimal scalar used to scale the gradient of
each loss function and is updated via regularized
stochastic projected gradient descent.

λk+1 = ΠΛ

(
λk − γk

(
Y T
k Yk + ρI

)
λk

)
(14)

Updating the value of λ allows for the dynamic
adjustment of the weights of the loss functions La

and Lv during the optimization process. Here, γk
represents the step size, I is the identity matrix, ρ
is the regularization term, and Yk is the approxi-
mation of the loss function’s gradient. Finally, the
model parameters x are updated.

xk+1 = ΠX (xk − αkYkλk) (15)

where αk is the learning rate, which controls the
step size of the parameter updates. ΠX denotes
the projection onto the set X . These steps are
repeated until a convergence criterion is met or a
predetermined number of iterations is reached.

In each iteration, y(k,m) provides information
about the current gradient estimates of each loss
function, while λ ensures that these gradients are
reasonably scaled and combined during the model
parameter updates.

4 Experiments

This section provides a comprehensive introduc-
tion to the dataset we constructed, along with the
datasets used in our experiments. It details the rele-
vant experimental settings and presents the experi-
mental results. Additionally, it includes an analysis
of these results.

4.1 Constructing the TRMF Dataset

Considering the quality and authenticity of military
filed texts, we used military news reports related
to the Russia-Ukraine war from Voice of Amer-
ica (VOA)(https://www.voanews.com/) as our
raw corpus. VOA is an American international
broadcaster, the largest and oldest international
broadcaster funded by the U.S. government. The
VOA website features a Ukraine section. Lever-
aging VOA’s military news data, we can easily
access military news reports related to the Russia-
Ukraine war. Similar to the MATRES dataset, we
categorized the event temporal relations in TRMF
into four types: BEFORE, AFTER, EQUAL, and
VAGUE. Before data annotation, we performed the
following preprocessing on the filtered raw corpus:

1) Sentence Segmentation: We used delimiters
such as commas, question marks, semicolons, etc.,
to split the collected military news text into sen-
tences.

2) Sentence Refinement: After segmentation,
many new sentences are generated. We need to
clean these sentences by removing empty, exces-
sively long or short, and duplicate sentences. This
is necessary to ensure the quality of the annotated
corpus.

We used a large language model to first identify
event trigger words and then annotate the event tem-
poral relations. Finally, the annotations were man-
ually reviewed. Appendix A shows the prompts we
used in the extraction of event temporal relations.

A total of eight individuals (including two ex-

3309

https://www.voanews.com/


Label Type TRMF MATRES TCR

Train Dev Test Train Dev Test Test

BEFORE 11694 2676 2570 5483 942 427 1780
AFTER 23055 4780 4659 3819 662 271 862
EQUAL 569 108 145 359 59 30 4
VAGUE 190 44 47 1227 189 109 0

TOTAL 35508 7608 7421 10888 1852 837 2646

TOTAL (SUM) 50537 13577 2646

Table 1: Annotation of Temporal Event Relationships
in Three Datasets

perts) participated in this process. For each doc-
ument, we required the participants to review it
independently. If any issues arose, they could seek
assistance from the experts. After each batch of
documents was reviewed, the experts checked them.
Documents that did not meet the standards were
sent back for re-review. This process was repeated
until the acceptance rate reached 90%. We used
Fleiss’ Kappa to calculate the Inter-annotator agree-
ment scores, which yielded a score of 0.67.

Example from the dataset TRMF are shown be-
low: "Russia denies it is planning an attack, but
says it could take unspecified military action if a
list of demands is not met."

In this sentence, "denies" is the trigger word for
the denial event, and "attack" is the trigger word
for the attack event. Based on the context, we can
infer that the denial event occurs before the attack
event.

Finally, we obtained 5800 documents. A com-
parison of the data with the MATRES and TCR
datasets is shown in Table 1. The training set
includes 35,508 instances, the development set
contains 7,608 instances, and the test set consists
of 7,421 instances, resulting in 50,537 instances
across all sets.

The TRMF dataset significantly surpasses both
MATRES and TCR in the number of annotated
instances, offering a more extensive and diverse
collection of temporal event relationships. TRMF’s
richness establishes it as an invaluable resource
for research in this field. It enables more robust
training and evaluation of models focused on un-
derstanding and predicting temporal relationships
between events. Some interesting statistics will be
presented in the appendix B.

4.2 Experimental Setup

In this study, we conducted experiments using the
TRMF, MATRES, and TCR datasets. MATRES
(Ning et al., 2018c) is a TempRel dataset that con-

tains refined annotations on TimeBank (Cassidy
et al., 2014) and TempEval (UzZaman et al., 2013)
documents. TCR (Ning et al., 2018a) utilizes the
same annotation scheme as MATRES. However, it
contains a substantially smaller number of event-
relation pairs.

We utilized RoBERTa-base as our pre-trained
language model. Subsequently, we fine-tuned it
for task-specific purposes to enhance its ability
to extract event temporal relations. The learning
rates for the pre-trained model and other parame-
ters were set between {5e-6, 5e-5}. During virtual
adversarial training, the noise variance was set to
1e-5, the noise scaling factor to 1e-6, and the adver-
sarial step size to 1e-3. We conducted experiments
using five different random seeds. We selected the
learning rate and model with the best average per-
formance on the development set for comparison
on the test set. Our hyperparameter analysis is in
Appendix C.

Baselines To validate the performance of the
MFRV, we selected the following representative
models for event temporal relation extraction for
comparison:
Joint Constrained Learning (Wang et al., 2020) em-
ploys logical constraints to ensure holistic and log-
ically consistent temporal relations.
HGRU (Tan et al., 2021) handles temporal rela-
tions using Hyperbolic Gated Recurrent Units and
enhances the understanding of temporal relations
with external knowledge.
Relative Event Time (Wen and Ji, 2021) links rel-
ative event time prediction with temporal relation
extraction, incorporating relative event time as an
additional feature in the classifier’s training.
ChatGPT_ZS (Yuan et al., 2023) excels in handling
zero-shot temporal relation extraction without need-
ing prior task-specific training.
ChatGPT_ER (Yuan et al., 2023) benefits from a
structured event ranking prompt that simplifies the
task by asking for event orders.
ChatGPT_PE (Chan et al., 2024) incorporating
manually designed task-specific prompts, guiding
the model to focus on essential task features such
as temporal order and event relations.
Bayesian-Trans (Tan et al., 2023) combines prin-
ciples of statistical inference with deep learning
methods. It utilizes Bayesian techniques to model
the uncertainty in relation extraction.
PIPER (Zhang and Li, 2023) introduces a con-
trastive optimization framework that aligns model
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Label Type TRMF MATRES TCR

Precision Recall F1 Precision Recall F1 Precision Recall F1

BEFORE 74.9 51.5 61.1 83.2 90.7 86.8 93.3 88.2 90.7
AFTER 76.4 92.7 83.7 76.4 89.9 82.6 82.7 83.5 83.1
EQUAL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VAGUE 0.0 0.0 0.0 30.4 15.1 20.2 0.0 0.0 0.0

MICRO-AVERAGE 76.0 76.5 76.3 80.4 86.6 83.4 89.7 86.5 88.1

Table 2: Experimental Results for All Label Types on the Three Datasets.

outputs with logical constraints.
OntoEnhance (Zhuang et al., 2023a) improves
event representation by integrating semantic infor-
mation from event ontologies.
SDLG (Zhuang et al., 2023b) employs a syntax-
based dynamic latent graph to enhance temporal
relation extraction.

4.3 Experimental Results

Table 2 shows the experimental results for all label
types by the MFRV across three datasets. MFRV
achieved an F1 score of 76.3 on the TRMF dataset,
83.8 on the MATRES dataset, and 88.1 on the TCR
dataset. These scores are the highest among the
compared models, demonstrating the effectiveness
of the MFRV in the task of event temporal relation
extraction.

From Table 2, it can be observed that for the BE-
FORE and AFTER temporal relations, our model
achieved relatively high Precision and Recall val-
ues. Notably, for the AFTER relation, the Recall
values reached an impressive 92.7%, 89.9%, and
83.5%, respectively. These results indicate that
MFRV is capable of identifying the majority of AF-
TER relations. For the BEFORE relation, the Pre-
cision values reached an impressive 74.9%, 83.2%,
and 93.3%, respectively. These results indicate that
MFRV can accurately identify BEFORE relations.
In terms of Micro-average, MFRV attained over
76% in Precision, Recall, and F1 scores, demon-
strating its overall strong performance.

Table 3 lists the performance comparison be-
tween the MFRV and the baseline models on the
TRMF dataset. It can be seen that our MFRV
achieved Precision, Recall, and F1 scores of 76.0%,
76.5%, and 76.3%, respectively, surpassing the
aforementioned baseline models in overall metrics.
These results demonstrate the effectiveness of our
model in extracting temporal relations of events in
the military field.

Table 4 lists the performance comparison be-

Model Precision Recall F1

HGRU (Tan et al., 2021) 64.1 70.2 67.1
Relative Event Time (Wen and Ji, 2021) 73.4 77.0 75.1
Bayesian-Trans (Tan et al., 2023) 71.2 72.0 71.6
ChatGPT_ZS (Yuan et al., 2023) 40.0 37.3 38.6
ChatGPT_ER (Yuan et al., 2023) 38.1 33.2 35.5
ChatGPT_PE (Chan et al., 2024) 48.2 46.1 47.1
MFRV 76.0 76.5 76.3

Table 3: Performance Comparison with Baseline Mod-
els on the TRMF Dataset.

Model Precision Recall F1

Bayesian-Trans (Tan et al., 2023) 79.6 86.0 82.7
PIPER (Zhang and Li, 2023) - - 81.8
OntoEnhance (Zhuang et al., 2023a) 79.0 86.5 82.6
SDLG (Zhuang et al., 2023b) 82.0 84.2 83.1
ChatGPT_ZS (Yuan et al., 2023) 26.4 24.3 25.3
ChatGPT_ER (Yuan et al., 2023) 21.9 17.3 19.3
ChatGPT_PE (Chan et al., 2024) - - 35.0
MFRV 80.4 86.6 83.4

Table 4: Performance Comparison with Baseline Mod-
els on the MATRES Dataset.

tween the MFRV and baseline models on the MA-
TRES dataset. The MFRV achieved the highest F1
score, surpassing the previously best SDLG model
by 0.3 percentage points. This demonstrates the
effectiveness of the MFRV in event temporal re-
lation extraction in a general field. The MFRV
also achieved the highest recall rate, indicating its
ability to comprehensively identify various positive
instances and variations. Performance Comparison
with Baseline Models on the TCR Dataset will be
presented in the appendix D.

From the experimental results, it can be seen
that the current LLM still has a significant gap
compared to supervised methods in the field of
event temporal relation extraction. However, we
believe in the great potential of LLM, and we plan
to conduct research combining LLM in the future.

Error Analysis and Discussion We conducted
an error analysis on the experimental results across
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Figure 4: Confusion Matrix of Final Results on Three Datasets.

the three datasets. Figure 4 presents the confusion
matrix of the final results on three datasets. The
color intensity in these figures reflects the number
of samples in different regions, with darker colors
indicating a higher number of samples.

On the TRMF dataset, the confusion matrix re-
veals that many BEFORE samples were misclas-
sified as AFTER. Similarly, among the actual AF-
TER samples, 342 were misclassified as BEFORE,
while 4317 were correctly classified. This type of
error indicates that the model has some difficulty
distinguishing between BEFORE and AFTER re-
lations. This may be due to the similar linguistic
features of these two relations in context, leading
to model confusion. From the third and fourth rows
of the matrix, it is evident that the model fails to
correctly classify EQUAL and VAGUE relations.
This results in EQUAL and VAGUE samples be-
ing misclassified as either BEFORE or AFTER.
We believe this error is due to the low number of
EQUAL and VAGUE samples in the dataset, which
prevents the model from adequately learning the
characteristics of these relations during training.

An error example illustrates this challenge: “The
broadcasts were prerecorded (E1) two days before,
suggesting the evacuation (E2), renewed shelling
(E3), and other events, including an inexplicable
car bombing (E4), in Donbas are being orches-
trated by the Kremlin, say (E5) Ukrainian offi-
cials.”

The true temporal order is (E1 → E2 = E3 =
E4 → E5), while the model predicted (E1 → E2
→ E3 → E4 → E5). This example demonstrates
that our model tends to confuse the order of events
when dealing with multiple overlapping events, of-
ten identifying them as sequential BEFORE and
AFTER relations. This may be due to the model’s
reliance on relative time prediction. In future re-
search, we plan to design a module for global time-

Model TRMF MATRES TCR

Ours (BERT) 75.1 83.0 86.9
Ours (RoBERTa) 76.3 83.4 88.1
Ours (RoBERTa) w/o TEMPROB 75.6 82.6 86.9
Ours (RoBERTa) w/o RT 71.0 82.8 86.6
Ours (RoBERTa) w/o VAT 75.4 82.3 85.4

Table 5: Ablation Study of the MFRV on Three
Datasets.

line construction to better capture and reflect com-
plex event relationships. Additionally, recognizing
EQUAL and VAGUE relationships can be more
subtle and context-dependent than BEFORE and
AFTER relationships, resulting in lower accuracy.
We plan to introduce more finely annotated train-
ing data in future research. Error Analysis and
Discussion on the MTRES and TCR dataset will
be presented in the appendix E.

Ablation Study we designed an ablation study
to understand the importance of RoBERTa, rela-
tive event time prediction, and virtual adversarial
training combined with the MoCo method. The ex-
perimental results are shown in Table 5. To better
explore the impact of word embedding represen-
tations on the performance of the MFRV model,
we replaced RoBERTa with BERT (Devlin et al.,
2019). As shown in the table, RoBERTa provides
better performance compared to BERT. In Table
5, RT represents relative time prediction, and VAT
represents virtual adversarial training.

It is evident from the table that both relative
event time prediction, TEMPROB knowledge base,
and virtual adversarial training combined with the
MoCo method improve the model’s performance.
Removing either component results in a loss of
performance, which strongly demonstrates the ef-
fectiveness of our proposed methods.
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5 Conclusion

We propose an event temporal relation extraction
model, MFRV, designed for the military field,
based on relative event time prediction and vir-
tual adversarial training. Relative event time pre-
diction serves as an auxiliary task to enhance the
model’s understanding of event temporal relation-
ships, thereby optimizing its performance. Virtual
adversarial training aims to enhance the model’s
generalization capabilities by generating adversar-
ial samples. We combine virtual adversarial train-
ing with the MoCo method, thereby improving the
model’s convergence and overall performance. To
address the lack of datasets for event temporal rela-
tion extraction in the military field, we constructed
a dataset named TRMF through a combination of
large language models and human review. Experi-
mental results on the TRMF, MATRES, and TCR
datasets demonstrate the effectiveness of the MFRV
in event temporal relation extraction tasks in both
military and general fields.

Limitations

We acknowledge that the datasets we create and
utilize still exhibit certain limitations in terms of
quality and scale. In the research on event tempo-
ral relation extraction, the issues of dataset quality
and scale have consistently posed significant chal-
lenges. Considering the high standards that deep
learning systems demand for data, these problems
are particularly pronounced. A promising future
direction is to enhance both the quality and scale of
datasets, which will not only enrich data resources
but also improve the effectiveness and precision
of deep learning techniques. Additionally, mod-
eling global timelines is crucial to addressing the
issue of error propagation in practical applications.
An incorrect event timeline can disrupt the causal
chain of events, which may lead to faulty decision-
making and misinterpretation of event relationships.
By accurately modeling the overall event timeline,
we can minimize such errors and ensure more re-
liable outcomes. Our current work focuses solely
on temporal relations between events. In the future,
this work could be extended to include other types
of event relationships, such as causal relations, en-
tailment relations, and more.

Ethical Considerations

The objective of the proposed method is to iden-
tify and determine the temporal relationships be-

tween different events in a text, including estab-
lishing the sequence in which events occur. In the
most optimistic scenario, the method can achieve
results comparable to providing the same text to a
human reader and having them explain the event
relations. Therefore, ethical considerations are pri-
marily focused on the construction of the dataset.
In this paper, the raw data used to construct our
dataset is sourced from publicly available news ar-
ticles. As long as users employ the data legally,
our dataset and methods will not have any direct
harmful impact. However, we emphasize the impor-
tance of using the TRMF dataset in a responsible
manner. Users should avoid applications that may
exacerbate conflicts or cause harm to civilians. The
dataset should be utilized for constructive purposes,
such as crisis management or humanitarian efforts,
to mitigate the impact of disasters and improve
decision-making processes in sensitive situations.
Ethical usage of the dataset is critical to ensure
it contributes positively to societal needs without
inadvertently fueling harmful actions.
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A Prompts and Example

Figure 5: Our Utilized Prompts and Example.

B The statistical data of TRMF

Figure 6 presents the top 10 cities and coun-
tries where military news events occurred most
frequently. The top four cities are Washington,
Moscow, Kyiv, and London. This result aligns
with common sense since national leaders typically
announce political views or decisions from their
offices in the capitals. Correspondingly, the four
countries that appear most frequently are the United
States, Russia, Ukraine, and the United Kingdom.
As shown in Figure 7, these four major countries
are the most closely associated with military issues
related to Ukraine.
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Figure 6: Top Ten Cities in Military News Locations.

C Hyperparameter Analysis

We conducted a grid search to determine the op-
timal hyperparameter combination for the model.
The search range for the learning rate was 1e-6, 5e-
6, 1e-5, 5e-5, 1e-4, for the noise variance was 1e-7,
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Figure 7: Top Ten Countries in Military News Loca-
tions.

1e-6, 5e-6, 1e-5, 1e-4, for the noise scaling factor
was 1e-8, 1e-7, 5e-7, 1e-6, 5e-6, 1e-5, and for the
adversarial step size was 1e-4, 5e-4, 1e-3, 5e-3,
1e-2. The experimental results indicate that hyper-
parameter tuning has a certain impact on model
performance, but overall, the performance remains
stable.

D Performance Comparison with
Baseline Models on the TCR Dataset

Table A1 lists the performance comparison be-
tween the MFRV and baseline models on the TCR
dataset. The MFRV achieved the highest F1 score,
surpassing the previously best OntoEnhance model
by 1.3 percentage points. The TCR dataset pri-
marily focuses on two types of temporal relations:
BEFORE and AFTER. The MFRV achieved an
F1 score of 90.7 in the BEFORE category and an
F1 score of 83.1 in the AFTER category, which
demonstrates the effectiveness of the MFRV on the
TCR dataset.

Model Precision Recall F1

Joint Constrained Learning (Wang et al., 2020) 83.9 83.4 83.7
Bayesian-Trans (Tan et al., 2023) 89.8 82.6 86.1
OntoEnhance (Zhuang et al., 2023a) 89.6 84.3 86.8
ChatGPT_ZS (Yuan et al., 2023) 29.2 27.5 28.3
ChatGPT_ER (Yuan et al., 2023) 25.7 21.7 23.5
ChatGPT_PE (Chan et al., 2024) 37.9 36.8 37.3
MFRV 89.7 86.5 88.1

Table A1: Performance Comparison with Baseline Mod-
els on the TCR Dataset.

When comparing the performance of the MFRV
across three datasets, we found that the model ex-
hibited a distinct overall advantage on the TCR
dataset. Upon further analysis, we discovered that
the TCR dataset contains a higher proportion of BE-
FORE and AFTER temporal relations. Given that
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the MFRV is designed with a relative event time
prediction capability, it tends to favor predicting
relations as BEFORE and AFTER. Consequently,
this predisposition results in better performance on
the TCR dataset.

E Error Analysis and Discussion

On the MATRES dataset, the model is relatively
more successful in distinguishing between BE-
FORE and AFTER relations, though there is still
some confusion between these two categories. We
hypothesize that this may be due to potential vari-
ations in the quality and consistency of the anno-
tation within the training data. It is also observed
that the VAGUE category significantly impacts the
model’s judgments, particularly when the sample
size is relatively small. Some samples that origi-
nally belonged to the BEFORE and AFTER cat-
egories are predicted as VAGUE, and conversely,
some VAGUE samples are incorrectly classified as
BEFORE and AFTER. We believe this may be due
to the imbalance in the number of samples between
types, which has affected the model’s learning and
generalization capabilities. Compared to this, the
recognition errors between the BEFORE and AF-
TER categories are fewer. This suggests that im-
proving the accuracy of determining the presence
of temporal relations can effectively enhance model
performance.

On the TCR dataset, we found that the model
struggles to effectively identify the EQUAL cate-
gory. Samples originally belonging to the EQUAL
category are misclassified as other categories by the
model. We believe this is due to the limited number
of EQUAL samples in the training data, which re-
stricts the model’s ability to learn this relationship
during training and results in poor generalization
capability. Therefore, addressing the issue of small
sample sizes in categories like EQUAL is a signifi-
cant direction to consider in future work.
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