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Abstract

Emotion recognition in conversation (ERC)
involves identifying emotional labels associ-
ated with utterances within a conversation, a
task that is essential for developing empathetic
robots. Current research emphasizes contextual
factors, the speaker’s influence, and extract-
ing complementary information across differ-
ent modalities. However, it often overlooks the
cross-modal noise at the semantic level and the
redundant information brought by the features
themselves. This study introduces a diffusion-
based approach designed to effectively address
the challenges posed by redundant informa-
tion and unexpected noise while robustly cap-
turing shared semantics, thus facilitating the
learning of compact and representative fea-
tures from multimodal data. Specifically, we
present the Multi-Condition Guided Diffusion
Network (McDiff). McDiff employs a modal
prior knowledge extraction strategy to derive
the prior distribution for each modality, thereby
enhancing the regional attention of each modal-
ity and applying the generated prior distribution
at each diffusion step. Furthermore, we propose
a method to learn the mutual information of
each modality through a specific objective con-
straints approach prior to the forward process,
which aims to improve inter-modal interaction
and mitigate the effects of noise and redun-
dancy. Comprehensive experiments conducted
on two multimodal datasets, IEMOCAP and
MELD, demonstrate that McDiff significantly
surpasses existing state-of-the-art methodolo-
gies, thereby affirming the generalizability and
efficacy of the proposed model.

1 Introduction

The objective of Emotion Recognition in Conver-
sation (ERC) is to accurately identify the emo-
tions expressed by each participant in a conver-
sation. This research has applications across vari-
ous domains, including intelligent customer service
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(Han et al., 2020), human-computer interaction
(Li et al., 2022), and social media analysis (Wang
et al., 2023). Unlike traditional emotion recogni-
tion, which typically focuses on isolated utterances,
the emotional dynamics within a conversation are
influenced not only by the semantics of the utter-
ances but also by contextual factors and the emo-
tional interplay between speakers. Consequently,
current research emphasizes the development of
methodologies to extract contextual and speaker-
specific information. Notable advancements in this
field have been achieved through models utilizing
gated recurrent units (Hazarika et al., 2018), graph
neural networks (Ghosal et al., 2019; Joshi et al.,
2022), and Transformer architectures (Zhang and
Li, 2023; Qiu et al., 2023).

Moreover, multimodal information plays a com-
plementary role and can significantly enhance ERC
performance. Most contemporary multimodal ERC
models focus on cross-modal interaction and infor-
mation fusion. For example, MM-DFN (Zhang and
Li, 2023) minimizes redundancy and strengthens
modal complementarity by dynamically capturing
contextual elements. Similarly, Joyful (Li et al.,
2023) promotes deep interaction and the fusion
of global context with unimodal features, while
TelME (Yun et al., 2024) employs cross-modal
knowledge distillation to enhance the performance
of weaker modalities.

However, these approaches encounter significant
challenges in extracting high-level semantics when
addressing the same object across different modali-
ties, primarily due to inconsistencies or misalign-
ments in semantic information. For instance, while
an image and its corresponding textual description
may convey similar content, the image may include
details that are absent from the text, or the text may
emphasize aspects not represented in the image.
Furthermore, these methods often overlook the re-
dundancy inherent in multimodal data features, as
different modalities may convey highly overlapping
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core information. For example, both images and
text may express emotions along the same dimen-
sion; however, differences in semantic space can
lead to redundancy issues that hinder the effective-
ness of ERC. Therefore, effectively leveraging the
valuable information present in utterances to miti-
gate the effects of noise and redundancy is crucial
for enhancing ERC performance.

Recently, the Denoising Diffusion Probabilistic
Model (DDPM) (Ho et al., 2020) has demonstrated
significant success in image generation, synthesis
tasks, and text generation by iteratively refining
the quality of images. However, its potential for
advanced semantic applications remains largely un-
derexplored. Given its ability to gradually gener-
ate complex semantic structures, DDPM can con-
struct high-level semantic representations from low-
level features, achieving semantic alignment and a
deeper understanding of multimodal data through
a conditional generation mechanism. Therefore, it
holds considerable promise for multimodal emo-
tion recognition.

To address these challenges, this paper intro-
duces a McDiff method designed to resolve the
multimodal ERC issue. We implement a multi-
conditional guided diffusion process to mitigate
the noise resulting from high-level semantic mis-
alignment between modalities. By incorporating
modal priors and initial modal embeddings that en-
capsulate contextual and situational information as
conditions, we enhance the collaborative function-
ing of different modalities, thereby reducing the
adverse effects of high-level semantic inconsisten-
cies. The McDiff method is organized into three
stages: Modal Prior Knowledge Extraction, Spe-
cific Objective Constraint, and Multi-Conditional
Diffusion. McDiff derives the prior distribution for
each modality by extracting contextual information
and employing cross-modal interaction techniques.
Subsequently, the prior distribution of each modal-
ity is utilized in the specific objective constraint
stage to reduce inherent redundancy in the features
and enhance their generalization capabilities. Fi-
nally, this prior distribution is applied during the
forward sampling process, where the prior distribu-
tions of the three modalities and the initial modal
embeddings serve as conditional priors to guide the
reverse process. This approach achieves distribu-
tion consistency of the fused features and facilitates
semantic disambiguation. We conducted a series of
experiments on two publicly available benchmark

multimodal datasets, IEMOCAP and MELD, with
results consistently indicating that McDiff signif-
icantly outperforms various existing multimodal
ERC methods.

The primary contributions of this article are as
follows:
• We propose a novel diffusion-based model for

multimodal emotion recognition classification.
To our knowledge, this is the first instance of a
diffusion-based ERC model, which effectively
mitigates unexpected noise generated during the
interaction process.

• We introduce modal prior knowledge to guide
the reverse process, utilizing contextual informa-
tion and unimodal prior distributions generated
through cross-modal interactions to adjust the dif-
fusion steps. By conducting the diffusion process
at a high semantic level across modalities, our
method demonstrates fine-grained discrimination
capabilities.

• We employ specific objective constraint meth-
ods to learn the mutual information within the
latent space of each modality. This approach
reduces feature redundancy and enables the net-
work to model robust feature representations that
are shared across multiple modalities and ses-
sions.

• We conducted extensive experiments on two pub-
licly available benchmark multimodal datasets,
IEMOCAP and MELD. The results demonstrate
that our proposed McDiff method outperforms
all existing state-of-the-art baseline models in
terms of effectiveness and superiority.

2 Related Work

2.1 Emotion Recognition in Conversation

The rapid growth of social media has highlighted
ERC in sentiment analysis. ERC methods are di-
vided into text-based and multimodal approaches.
Text-based methods emphasize context modeling
and speaker relationships, with recent research en-
hancing conversation-level understanding through
pre-trained language models. Graph-based meth-
ods and those using common sense knowledge have
also emerged (Ghosal et al., 2019). Given the com-
plexity of emotion recognition, multimodal infor-
mation is essential, providing diverse emotional
cues. Significant progress in multimodal methods
includes Joyful (Li et al., 2023), which introduced
a fusion mechanism for deep interaction between
global context and unimodal features, and a graph
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contrastive learning framework for better represen-
tation of emotional samples. To address encod-
ing differences, researchers projected multimodal
features into a shared subspace with a trainable
basis matrix. TelME (Yun et al., 2024) applied
knowledge distillation to improve cross-modal per-
formance by transferring information from a lan-
guage model to a non-language model, using a
student network to support the teacher’s mobile
fusion method.

Recent investigations into multimodal ERC have
primarily concentrated on contextual factors and
cross-modal interactions. In contrast to these
methodologies, our research emphasizes the chal-
lenges posed by noise and redundant information
at the semantic level, drawing upon foundational
research to develop the Multi-Conditional Guided
Diffusion Network (McDiff). This network is de-
signed to facilitate the guidance of semantic in-
formation within the features through a set of a
priori conditions, enabling a systematic extraction
of sentiment cues.

2.2 DDPM
Denoising Diffusion Probabilistic Models (DDPM)
(Ho et al., 2020) have attracted considerable inter-
est within the domain of generative modeling in
recent years. The core principle of DDPM involves
the progressive addition of noise to the data until it
is entirely converted into random noise, followed
by the reconstruction of the original data through a
methodical denoising process. This methodology
can be described as a Markov chain, where each
iteration involves a slight modification dictated by
a Gaussian distribution. In terms of practical appli-
cation, DDPM consists of two main components:
the forward process and the reverse process. The
forward process systematically introduces noise to
the data, and its mathematical formulation is as
follows:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where, βt denotes the predetermined parameter for
noise scheduling, while xt and xt−1 signify the
states of the data at time steps t and t− 1, respec-
tively. Additionally, N (·) indicates that xt adheres
to a normal distribution. The reverse process ini-
tiates from a state of pure noise and progressively
reduces the noise, as represented by the following
formula:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (2)

where, µθ(xt, t) signifies the anticipated mean for
inferring xt−1 from xt, as determined by the pa-
rameterized model θ.The expression σ2

t I represents
the covariance matrix employed for noise model-
ing, with σ2

t regulating the magnitude of the noise,
while I denotes the identity matrix.

The DDPM training process minimizes the dis-
crepancy between the reverse process and the actual
data distribution. Its loss function includes recon-
struction loss, which keeps denoised data close to
the original, and Kullback-Leibler (KL) divergence
loss, which reduces the difference between the pre-
dicted and true noise distributions.

Diffusion models have been widely adapted
across various fields. For instance, (Ho et al., 2020)
demonstrated that DDPM excels in high-quality im-
age generation, often surpassing Generative Adver-
sarial Networks (GANs). The framework has also
been effectively used in audio generation (Kong
et al., 2021), showcasing its potential in speech syn-
thesis. In natural language processing, researchers
have applied the DDPM framework to text data
(Gong et al., 2023).

Recent advancements in diffusion models in-
clude Nichol and Dhariwal’s improved noise
scheduling strategy (Nichol and Dhariwal, 2021),
which enhances generation quality, and Salimans
and Ho’s accelerated sampling method (Salimans
and Ho, 2022), which improves sampling effi-
ciency.

3 Problem Formulation

A conversation consists of a sequence of utter-
ances U = {u1, u2, . . . , uN} and M speakers
P = {p1, p2, . . . , pM}. Each utterance ui con-
tains ni tokens {wi1, wi2, . . . , wini} and is spoken
by speaker pϕ(ui). The N utterances correspond
to N emotion labels {y1, y2, . . . , yN}. The aim
of conversation emotion recognition is to analyze
the conversation and classify the emotional tone of
each utterance. Each utterance includes data from
three modalities: Audio (a), Visual (v), and Text (t),
represented as ui = [uai , u

v
i , u

t
i], where uai ∈ Rda ,

uvi ∈ Rdv , and uti ∈ Rdt . Here, d(·) denotes the
dimension of the features.

4 Proposed Model

Figure 1 provides an overview of the McDiff model
we proposed. After obtaining unimodal features
at the utterance level, the multi-conditional diffu-
sion model comprises two modules: the Modal
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Prior Knowledge Extraction (MPKE), which ex-
tracts prior knowledge from each modality, and the
Multi-Conditional Diffusion (MCD), which learns
guided by multiple conditional priors. Additionally,
we introduce a specific objective constraint method
and design a loss function to capture the mutual
information in the latent space between modalities.

4.1 Modal Prior Knowledge Extraction

We consider three modalities: audio, visual, and
text. First, we employ three independent one-
dimensional temporal convolution layers to aggre-
gate sequential information and extract low-level
multimodal features: Xm ∈ Rdm , where m ∈
{a, v, t} denotes the different modalities. After
this initial encoding, each modality retains the tem-
poral dimension of the input, allowing us to address
both aligned and unaligned cases simultaneously.
Furthermore, all modalities are scaled to the same
feature dimension, specifically dt = dv = da = d.
To optimize the extraction of emotional cues from
a single modality, we propose a method that distin-
guishes between primary and secondary modalities.
We alternately designate the modality requiring pro-
cessing as the primary modality, while the remain-
ing modalities provide rich semantic information
to support the current primary modality. When the
text modality is treated as the primary modality, it
is represented as follows:

Ha
t = att(Xt, Xa, Xa)

Hv
t = att(Xt, Xv, Xv)

Ht = att(Ha
t , H

v
t , Xt)

(3)

where att(Q,K, V ) denotes the attention mecha-
nism, Ht ∈ RN×d. The operations for extracting
emotional cues from speech and images are analo-
gous to those used for text; consequently, we can
derive Ha ∈ RN×d and Hv ∈ RN×d. To cap-
ture speaker information within the utterance se-
quence, we utilize speaker embeddings to enhance
the modal representations. In the conversation, the
speaker Pj is represented as a vector. To facili-
tate more effective information transmission and
achieve gradient control, speaker features can be
integrated with modal features and input into a
normalization layer. This method optimizes the
model’s training process while preserving interac-
tions among different features, thereby enhancing
its capacity to represent complex characteristics.

The specific formula is as follows:

P
′
j = WembO(pj) ∈ R3d , j = 1, 2, · · · ,M,

P
′
= [P

′
ϕ(u1)

, P
′
ϕ(u2)

, · · · , P ′
ϕ(uN )]

[H
′
t ;Ha

′
;Hv

′
] = Norm([Xt;Xa;Xv] + P

′
)

[H
′′
t ;H

′′
a ;H

′′
v ] = Norm(FFN([H

′
t ;Ha

′
;Hv

′
])

+ [H
′
t ;Ha

′
;Hv

′
])

ŷm = cls(selfatt(H
′′
m)) , m ∈ (A, T, V )

(4)
where, let M denote the total number of speak-
ers, while Wemb ∈ R3d×M represents a train-
able matrix for speaker embeddings. The notation
O(pj) ∈ RM indicates the mapping of speaker pj
to a one-hot encoded vector, and P ′ ∈ R3d×N sig-
nifies the feature representation of speakers across
all utterances within a conversation. The notation
[; ; ] is used to indicate a concatenation operation,
selfatt(·) represents the self-attention mechanism,
and cls(·) denotes the emotion classifier. Ulti-
mately, the prior distribution ŷm for each modality
is obtained.

4.2 Specific Objective Constraints
To mitigate the impact of redundancy within
each modality and enhance the complementar-
ity between modalities, this paper introduces a
method with specific objective constraints to learn
the distributional characteristics of each modal-
ity, thereby maximizing the mutual information
between modalities. Considering the stochastic na-
ture of feature noise and the fact that real-world
data adheres to a specific distribution, we adopt
a weighted summation approach to reduce the ef-
fect of noise. Consequently, we take the weighted
average of the prior distributions of the three modal-
ities as the final prior distribution yprior, assigning
a weight of 1 to each modality. Following this,
we use the following specific formula to compute
the Kullback-Leibler (KL) divergence between the
prior distributions of the three modalities and yprior:

DKL(p∥ q) =
N∑

i=1

p(i) log
p(i)

q(i)

yprior = mean(ŷa + ŷv + ŷt)

LSOC =
∑

m∈{t,a,v}
DKL(yprior ||ŷm)

(5)

where p(i) denotes the target distribution and q(i)
signifies the approximate distribution. Addition-
ally, ŷa, ŷv, and ŷt represent the prior distributions
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Figure 1: McDiff Model Framework Diagram.

associated with the three modalities. Typically, the
cross-entropy loss and the model architecture are
capable of capturing complementary information
from these three priors. However, the specific ob-
jective constraints method preserves the mutual
information between each prior distribution and
the target distribution. This approach enhances the
network’s ability to effectively model shared fea-
tures across various conditions, thereby facilitating
more rapid and stable convergence.

4.3 Multi-Condition Diffusion
In most conditional diffusion models, the condi-
tional prior is usually represented by a single piece
of information. Discrepancies arising from multi-
ple modalities, along with weak alignment or mis-
alignment between these modalities, lead to unex-
pected noise. Additionally, the redundancy inher-
ent in the features themselves further complicates
the process of modality fusion. To address these
challenges, we have developed a multi-conditional
guided diffusion model that integrates the prior dis-
tributions of three modalities at the beginning of
the sampling process for the noise variable yt:

yt =
√
ᾱty0 + (1−√

ᾱt)(ŷa + ŷv + ŷt)

+
√
1− ᾱtε

(6)

where, we define ᾱt =
∏

t αt, ε follows a stan-
dard normal distribution N(0, 1), and we define
αt = 1− βt, where βt is a parameter that controls

the amount of noise added at each time step. Subse-
quently, we input the noise variable yt along with
the concatenated vector of the triple conditional
prior into the denoising model εθ to estimate the
noise distribution, which is expressed as:

εθ(Xm, ŷa, ŷl, ŷv, yt, t)

= D(E([ŷa; ŷl; ŷv; yt], Xm, t), t)
(7)

where, [·] denotes a series operation, while E(·)
and D(·) represent the encoder and decoder of the
UNet, respectively. It is important to note that the
initial modal feature embedding Xm is further in-
tegrated with the original embedding during the
diffusion process as a condition. This integration
enables the model to concentrate on high-level se-
mantics, resulting in more robust feature represen-
tations. In the forward process, our objective is to
minimize the noise estimation loss Lϵ:

Lϵ = ||ϵ− ϵθ(Xm, ŷa, ŷl, ŷv, yt, t)|| (8)

4.4 Loss Function

In the training process of McDiff, we utilize stan-
dard cross-entropy along with specific objective
constraint methods as the loss function. Further-
more, we define Lϵ as the loss function for the

3219



denoising network:

Lm
CE = − 1

N

N∑

i=1

C∑

j=1

yi,j log(ŷmi,j)

LMPKE = LSOC +
∑

m∈{t,a,v}
Lm
CE

(9)

where N represents the total number of conversa-
tions, C denotes the number of utterances in conver-
sation i, ŷmi,j indicates the probability distribution
of the predicted emotional label for utterance j in
conversation i for modality m, and yi,j is the pre-
dicted category label for utterance j in conversation
i. We use the Adam optimizer (Kingma and Ba,
2015) from the stochastic gradient descent algo-
rithm to train our network model.

5 Experiments

We evaluated the effectiveness of the model using
two established benchmark datasets: IEMOCAP
(Busso et al., 2008) and MELD (Poria et al., 2019).
During the evaluation process, we first discussed
the experimental results of the proposed model in
comparison to the baseline model and conducted
an ablation study to explore the contributions of
MCD and SOC. Next, we performed a parameter
analysis to investigate the experimental results and
their performance trends. To further validate the
model’s effectiveness, we also conducted case stud-
ies and assessed the performance of the diffusion
reverse process in this task through visualization
experiments (for details, see Appendices A, B). For
comprehensive information regarding the baseline
models, feature extraction, datasets, and their im-
plementation details, please refer to Appendices E,
C, D, and F.

5.1 Comparison with Other Baseline Models
Table 2 shows the experimental results of our McD-
iff model against baseline models on the IEMO-
CAP and MELD datasets. Some data cells are
missing as certain models provide only overall av-
erages or do not use the specified evaluation met-
rics. Most models use graph-based structures for
context propagation and cross-modal interaction,
but their performance is often worse than RNN- or
GRU-based baseline models. This suggests that
assimilating extensive contextual information com-
plicates feature alignment, resulting in noise and
redundancy.

The CMCF-SRNet model employs a cross-
modal local constraint Transformer for multimodal

interaction and a graph-based semantic refinement
network to enhance high-level semantics, improv-
ing performance. In contrast, TelME features a
knowledge distillation module that enriches emo-
tional cues by optimizing weaker modalities, ad-
dressing the limitations of nonverbal modes. McD-
iff, on the other hand, adeptly integrates modality-
agnostic information and modifies distributions
through a multi-condition guided reverse process,
effectively mitigating high-level semantic noise and
feature redundancy. As a result, McDiff outper-
forms all baseline models in terms of accuracy and
weighted F1 score in overall multimodal emotion
recognition.

As shown in Table 1, the McDiff model outper-
forms baselines in most emotion classification tasks
on the IEMOCAP dataset but struggles with "Sad"
and "Frustrated" categories due to overlapping
acoustic features, particularly in speech prosody.
Despite this, it maintains high accuracy.

In the MELD dataset, Figure 2 reveals class im-
balance, with neutral samples dominating and re-
ducing the recognition rate of minority classes such
as "fear" and "disgust". It is worth noting that the
"happy" and "sad" labels show different perfor-
mances across models (Table 1), which may be
due to the limited labels and complexity of emo-
tions, resulting in the lack of generalizable feature
learning for these labels.

5.2 Ablation Study

To investigate the contributions of the two modules
proposed in McDiff, we systematically eliminated
the primary components of McDiff and assessed
their effects on model performance. McDiff is pri-
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Figure 2: Comparison of McDiff with two baseline
models, Joyful and TelME, on the MELD dataset across
each emotion category.
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Table 1: Comparison of WF1 for each emotion category between McDiff and other baseline models on the
IEMOCAP test set.

IEMOCAP

Happy Sad Neutral Angry Excited Frustrated

ICON 32.80 74.40 60.60 68.20 68.40 66.20
DialogueGCN 42.75 84.54 63.54 64.19 63.08 66.99
MMGCN 42.34 78.67 61.37 69.00 74.33 62.32
MM-DFN 42.22 78.98 66.42 69.77 75.56 66.33
COGMEN 51.90 81.70 68.60 66.00 75.30 58.20
Joyful 60.94 84.42 68.24 69.95 73.54 67.55
CMCF-SRNet 52.20 80.90 68.80 70.30 76.70 61.60
CORECT 59.30 80.53 66.94 69.59 72.69 68.50
TelME - - - - - -

McDiff 62.69 83.47 72.75 70.33 78.36 68.19

Table 2: Experimental results on the IEMOCAP and
MELD datasets. The blanks indicate instances where
the baseline is not open-sourced or where a specific
evaluation metric was not employed. The best results
are highlighted in bold.

IEMOCAP MELD

ACC WF1 ACC WF1

ICON 64.00 63.50 - -
DialogueGCN 63.22 62.89 60.31 56.36
MMGCN 66.06 65.65 61.26 57.97
MM-DFN 68.21 68.18 62.49 59.46
COGMEN 68.20 67.60 - -
Joyful 70.55 71.03 62.53 61.77
CMCF-SRNet 70.50 69.60 62.30 -
CORECT 69.93 70.02 - -
TelME 70.48 - 67.37 -
McDiff 72.77 73.19 67.94 68.78

marily composed of three modules: Modal Prior
Knowledge Extraction (MPKE), Specific Objective
Constraint (SOC), and Multi-Condition Guided
Diffusion (MCD). In this analysis, we focus ex-
clusively on the latter two modules, considering
MPKE as a fundamental classifier that can operate
as a complete classifier by executing a weighted
average of the three generated modal priors. The
following settings are considered in our study:
• basic: We have eliminated all diffusion opera-

tions and specific objective constraint losses from
the network, which means that the basic model
utilizes the most fundamental classifier.

• C1: We applied the MCD to the basic model,

thereby constructing an additional baseline net-
work.

• C2: Further apply the method of SOC to the dif-
fusion process to construct the baseline network.
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Figure 3: Confusion matrix of each ablation group in
the IEMOCAP dataset.
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Figure 4: Confusion matrix of each ablation group in
the MELD dataset.

We conducted a series of experiments to evaluate
the efficacy of the proposed network components
and developed three baseline networks based on
our research methodology. The first network was
constructed by removing all diffusion operations
and SOC losses. Subsequently, we introduced the
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Table 3: Efficacy of each module in our McDiff system.

IEMOCAP MELD

MCD SOC ACC WF1 ACCC WF1

Basic - - 0.679 0.681 0.652 0.663
C1 ✓ - 0.698 0.690 0.667 0.679
C2 ✓ ✓ 0.728 0.732 0.679 0.688

Figure 5: Presents a three-dimensional bar chart illustrat-
ing the results of parameter sensitivity experiments con-
ducted on the IEMOCAP dataset (left) and the MELD
dataset (right).

multi-condition diffusion process, resulting in the
"C2" network, which incorporates constraint loss.
As illustrated in Figures 3 and 4, "C2" significantly
outperforms "C1" in terms of the F1 score across
individual categories. Table 3 presents the experi-
mental results for accuracy and weighted F1 scores
on the IEMOCAP and MELD datasets. Compared
to the baseline model, "C1" improved accuracy by
0.019 and weighted F1 by 0.009, indicating the ef-
fectiveness of the multi-condition guided diffusion
mechanism in extracting discriminative features for
multimodal emotion classification. Furthermore,
"C2" surpassed the baseline model in both accuracy
and weighted F1, demonstrating that the combina-
tion of our proposed guiding strategy and constraint
method significantly enhances model performance.
Additionally, "C2" also exceeded "C1" in accuracy
and weighted F1, further suggesting that the in-
troduction of constraint loss prior to the diffusion
process effectively improves the model’s perfor-
mance.

5.3 Parameter Analysis

We conducted experiments to examine the effects
of varying the number of attention heads (n) and
the diffusion time step (t) on model performance.
Figure 5 shows the results across different configu-

rations. For the IEMOCAP dataset, n varied from
4 to 16 and t from 50 to 250, while for the MELD
dataset, n remained the same, and t ranged from
150 to 350. We selected a diffusion step size lower
than typically used in literature, as our findings
indicated that exceeding 2000 steps significantly
reduced the model’s restoration capabilities. Con-
versely, lower step sizes improved performance,
likely due to the sensitivity of high-level semantic
cues and dataset limitations. Optimal performance
for McDiff on the IEMOCAP dataset was achieved
with n = 8 and t = 150, while satisfactory per-
formance on the MELD dataset was attained with
n = 8 and t = 250.

6 Conclusion

This article introduces a novel multimodal emo-
tion recognition approach known as McDiff. The
fundamental premise of this model is the incorpo-
ration of a multi-condition guidance strategy into
the conventional diffusion model (DDPM), along-
side the application of specific objective constraint
losses prior to the diffusion process to improve
classification efficacy. Through a series of ablation
experiments, we elucidate the significance of each
component within McDiff. In comparison to exist-
ing literature on ERC, our experimental findings on
multimodal classification datasets reveal that McD-
iff surpasses current state-of-the-art methodologies
in terms of performance.

Limitation

McDiff faces significant challenges related to high
computational complexity and the complexities of
cross-modal collaborative processing. The genera-
tive process inherent in diffusion models requires
multiple sampling iterations, leading to consider-
able consumption of computational resources. Ad-
ditionally, McDiff must effectively integrate infor-
mation from various modalities, including audio,
visual, and textual data, throughout the diffusion
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process. Experimental results suggest that the inte-
gration of information across different modalities
presents difficulties due to potential asynchrony
or inconsistency. Although the model employs
additive and concatenation techniques, further opti-
mization and the incorporation of additional tech-
nologies are necessary to improve overall perfor-
mance. Future research will focus on accelerating
algorithm development and enhancing cross-modal
collaborative processing.
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A Visualization of the Diffusion Process

To illustrate the inverse process of diffusion
guided by multiple conditions, we use the UMAP
(McInnes and Healy, 2018) tool to visualize the
denoised feature embeddings at consecutive time
steps. Figure 6 shows the results of this process
on two datasets. As the time steps advance, the
denoising diffusion model gradually removes noise
from the feature representation, making the class
distribution in the Gaussian distribution clearer,
further verifying the effectiveness of the McDiff
model structure. The total number of time steps
required for inference depends on the complexity
of the dataset.

B Case Study

Figure 7 shows a conversation excerpt from the
MELD dataset. Unlike the IEMOCAP dataset,
MELD has fewer utterances per conversation, com-
plicating the emotion recognition task. This conver-
sation features nine utterances between two speak-
ers, highlighting emotional transitions. Speaker
S1 feels neglected, leading to anger and demands
on Speaker S2, which in turn provokes S2’s anger.
This results in a trust crisis, with S1 questioning
S2’s loyalty. Ultimately, S2 decides to end the
relationship, leading to sadness. Our findings re-
veal that when a speaker’s emotions transition, our
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Figure 6: Shows the denoised feature embeddings from the diffusion reverse process during inference across two
datasets. The variable t indicates the current time step, and as it progresses, noise is reduced, leading to a clearer
class distribution. For better visibility, refer to the last column, which can be enlarged.

S1:I mean, I don’t feel like I 

even have a girlfriend anymore.

S2:You want me to just quit 

my job so that you can feel 

like you’ve got a girlfriend?

S1:Is this about Mark?

S2:Oh my God.

S1:Okay, it’s not, it’s not.
S1:Fine, you’re right.

S2:Oh my God. I cannot 

keep having this same 

fight with you Ross! 

Look, urrgh, maybe we 

should take a break.

S1:Let’s ah, let’s take a 

break,  let’s cool off, okay, 

let’s get some frozen 

yoghurt, or something.

neutral    surprise     fear     sadness     joy     disgust     anger

S2:No. A break from us.

Time Line

Figure 7: Illustrates a case analysis, where each color denotes a specific emotion. The utterance color indicates the
conveyed emotion, and below it are the emotion predictions from the McDiff model (left) and the TelME model
(right).

model performs better than in the Joyful category,
indicating that multi-condition reinforcement en-
hances its understanding of emotional cues and
improves performance in complex emotional dy-
namics.

C Feature Extraction

C.1 Text Feature

Using the RoBERTa Large model (Liu et al., 2020)
to extract text features, we leverage a pre-trained
architecture based on a multi-layer transformer en-
coder, which represents an enhancement over the
original BERT model. This model has been trained
on larger and more diverse datasets, enabling it to
effectively learn nuanced text representations. We

fine-tuned RoBERTa Large to identify emotions in
conversation text, utilizing the embedding of the
[CLS] token from the final layer as the text feature.
The dimensionality of the extracted text features is
1024.

C.2 Audio Feature
Using openSMILE (Eyben et al., 2010) for audio
feature extraction, openSMILE is a versatile toolkit
specifically designed for signal processing. It offers
a scriptable console application that allows users to
configure modular feature extraction components.
After utilizing the openSMILE toolkit, the Fully
Connected (FC) layer reduces the audio feature
representation of IEMOCAP to 1,582 dimensions,
while MELD is reduced to 300 dimensions.
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C.3 Visual Feature

Using DenseNet (Huang et al., 2017) for pre-
training on the Facial Expression Recognition Plus
dataset allows for the extraction of visual features.
DenseNet is an efficient convolutional neural net-
work (CNN) architecture composed of multiple
dense blocks, each containing several layers. The
output dimension of DenseNet is set to 342, indi-
cating that the dimensionality of the visual feature
representation is 342.

D Dataset and Evaluation Metrics

We conducted an assessment of our model’s effi-
cacy utilizing two established benchmark datasets,
namely IEMOCAP (Busso et al., 2008) and MELD
(Poria et al., 2019). Both datasets are characterized
as multimodal ERC datasets, encompassing text,
speech, and visual elements. The distribution of
data across the two datasets is presented in Table
4. IEMOCAP is a multimodal ERC dataset com-

Table 4: Distribution of IEMOCAP and MELD.

Dataset #Conversation #Utterance
train+val test train+val Test

IEMOCAP 120 31 5810 1623
MELD 1153 280 11098 2610

prising conversations performed by pairs of actors
based on scripted scenarios. It encompasses a total
of 7,433 utterances across 151 conversations, with
each utterance categorized into one of six emo-
tional classifications: happy, sad, neutral, angry,
excited, and frustrated. Conversely, MELD derives
its data from the television series "Friends," con-
taining 13,708 utterances and 1,433 conversations.
Unlike the binary structure of IEMOCAP, MELD
incorporates conversations featuring three or more
speakers, with each utterance assigned to one of
seven emotional categories: neutral, surprise, fear,
sadness, joy, disgust, and anger. Following the
work of previous researchers in this area, we aim
to comprehensively assess the classification perfor-
mance of the model for each category while con-
sidering the imbalanced classes. In the upcoming
experiments, we will utilize the weighted F1 score
(WF1) and accuracy (ACC) of various sentiment
categories to evaluate the performance of McDiff.
The calculation methods for WF1 and ACC are

outlined below:

WF1 =

∑R
j=1Nj ∗ F1j
∑R

j=1Nj

(10)

ACC =

∑R
j=1Nj ∗Accuracyj

∑R
j=1Nj

(11)

where, R represents the number of emotion cate-
gories in the dataset, Nj is the number of state-
ments in the j-th emotion category, F1j repre-
sents the score for the j-th emotion category, while
Accuracyj indicates the accuracy score for the j-th
emotion category.

E Baseline Model

1)ICON (Hazarika et al., 2018) employs two Gated
Recurrent Units (GRUs) to model speaker informa-
tion and track emotional state transitions with an ad-
ditional global GRU. It features a multi-layer mem-
ory network for overall emotional state represen-
tation but struggles in multi-speaker environments.
2) DialogueGCN (Ghosal et al., 2019) uses Graph
Convolutional Networks (GCNs) for ERC, generat-
ing comprehensive features. Both Relational GCN
(RGCN) and GCN are non-spectral models for en-
coding graph data. 3) MMGCN (Hu et al., 2021)
employs a GCN framework to extract contextual in-
formation, overcoming DialogueGCN’s limitations
in multimodal dependencies while incorporating
speaker information for emotion recognition. 4)
MM-DFN (Hu et al., 2022) improves multimodal
contextual integration through a graph-based dy-
namic fusion module, enhancing emotion identi-
fication in conversations. 5) COGMEN (Joshi
et al., 2022) presents a multimodal emotion recog-
nition system using a Contextualized Graph Neu-
ral Network that integrates local and global con-
texts to model complex conversational dependen-
cies. 6) Joyful (Li et al., 2023) tackles the chal-
lenge of representing global and local features in
multimodal emotion recognition through modality
fusion, optimizing graph contrastive learning and
emotion recognition together. 7) CMCF-SRNet
(Zhang and Li, 2023) enhances multimodal interac-
tion with a framework that integrates cross-modal
local constraint context fusion and a semantic re-
finement module for improved ERC. 8) CORECT
(Nguyen et al., 2023) introduces a relational tem-
poral graph neural network that captures session-
level cross-modal interactions and utterance-level
temporal dependencies, emphasizing key factors
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represented by modalities. 9) TelME (Yun et al.,
2024) uses cross-modal knowledge distillation to
transfer information from a language model to a
non-language model, enhancing the weaker modal-
ity’s effectiveness and strengthening the teacher’s
mobile fusion approach for multimodal feature in-
tegration.

F Implementation Details

The proposed model is implemented using the Py-
Torch framework, with specific hyperparameter
configurations. The initial learning rate is set to
1×10−4 for the IEMOCAP dataset and 1×10−5 for
the MELD dataset. A batch size of 16 is utilized for
both datasets. In the context of the one-dimensional
convolutional layers, the input channels for the text,
audio, and visual modalities in IEMOCAP are con-
figured to 1024, 1582, and 342, respectively, cor-
responding to their respective feature dimensions.
For the MELD dataset, these values are adjusted to
1024, 300, and 342. A dropout rate of 0.5 is applied
uniformly across both datasets. The MPKE module
incorporates eight attention heads. The diffusion
time step t is drawn from a uniform distribution
within the range [1, T ], and the noise is scheduled
linearly with β1 = 1 × 10−4 and βt = 0.02. Em-
pirical observations indicate that the total diffusion
time step T is set to 150 for IEMOCAP and 250 for
MELD, which is notably lower than that reported
in most existing studies. Following a pre-training
phase of the classification model for 10 epochs, the
denoising diffusion model and the classification
model are jointly trained to achieve the end-to-end
McDiff for multimodal emotion recognition. All
training and testing procedures are conducted on a
single RTX 3090 GPU, with the total training time
amounting to 8.3 hours for the IEMOCAP dataset
and 10.6 hours for the MELD dataset, respectively.
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