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Abstract

Large Language Models (LLMs) have em-
powered generative recommendation systems
through fine-tuning user behavior data. How-
ever, utilizing the user data may pose sig-
nificant privacy risks, potentially leading to
ethical dilemmas and violations of data pro-
tection regulations. To address the privacy
concerns, Federated Learning for Recommen-
dation (Fed4Rec) has been identified as a
promising solution. However, directly applying
Fed4Rec in the LLM context introduces two
challenges: 1) exacerbated client performance
imbalance, which ultimately impacts the sys-
tem’s long-term effectiveness, and 2) substan-
tial client resource costs, posing a high demand
for clients’ both computational and storage ca-
pability to locally train and infer LLMs.

To tackle these challenges, we propose a feder-
ated framework for LLM-based recommenda-
tion (shorted as FELLRec). Generally, FELL-
Rec designs two key strategies. 1) Dynamic
balance strategy, which designs dynamic pa-
rameter aggregation and learning speed for dif-
ferent clients, aiming to ensure balanced perfor-
mance across clients. 2) Flexible storage strat-
egy, which selectively retains certain sensitive
LLM layers on the client side, while offload-
ing other layers to the server, aiming to pre-
serve privacy while saving resources. Experi-
ment results show that FELLRec can achieve
a more balanced client performance and im-
proved overall performance in a computational
and storage-efficient way while safeguarding
user privacy well.

1 Introduction

Large Language Models (LLMs) with advanced
contextual understanding abilities have demon-
strated potential in building generative recommen-
dation systems (Rajput et al., 2023; Gao et al.,
2023). Fine-tuning LLMs with user behavior data

∗Corresponding author.

is essential for learning user preferences (Bao et al.,
2023a; Li et al., 2023), however, it will face se-
rious privacy leakage risks like in the traditional
recommender models. The unintended disclosure
of sensitive user data could cause ethical issues and
infringe upon data protection laws such as the Gen-
eral Data Protection Regulation in the European
Union (Hoofnagle et al., 2019). Therefore, ensur-
ing the security and privacy of recommendation
data during the LLM fine-tuning process is crucial.

To address the data privacy concerns, Federated
Learning for Recommendation (Fed4Rec) emerges
as a promising solution (Muhammad et al., 2020;
Sun et al., 2022). Fed4Rec requires clients (e.g.,
user devices and platforms with a group of users)
to conduct local training using the client’s data, and
then exchange non-sensitive intermediate parame-
ters such as model parameters and gradients. This
approach protects sensitive user behavior data by
keeping them on the client side without the need for
sharing with others. In General, Fed4Rec mainly
employs two frameworks: 1) Peer-Peer Frame-
work (Yang et al., 2022; An et al., 2024), which
makes every client broadcast the updated parame-
ters to other clients directly within the peer-to-peer
network. However, this framework faces limitations
in LLM-based recommendation scenarios, primar-
ily due to the high communication costs incurred
by the large number of LLM parameters. 2) Client-
Server Framework (Zhang et al., 2023a,b), which
transmits the updated parameters of the clients to a
central server for aggregation. Previous works (Sun
et al., 2022; Yin et al., 2024) have demonstrated
that the client-server framework is more efficient in
terms of communication overhead, making it ideal
for LLM-based recommendations.

However, adapting the client-server framework
to LLM-based recommendation presents two chal-
lenges: 1) Exacerbated Client Performance Im-
balance: Based on our empirical analysis in Fig-
ure 1(a), it is evident that directly applying the
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Figure 1: (a) illustrates the exacerbated client perfor-
mance imbalance when applying a classical client-server
method (FedAvg (McMahan et al., 2017)) to LLM-
based recommender models (BIGRec) compared with
traditional recommender models (MF). (b) shows the
convergence rate of two selected clients when applying
FedAvg to LLM-based and traditional models. The ob-
servations are on Games.

client-server framework to LLM-based recommen-
dation models leads to a more significant client
performance imbalance compared to traditional
models. This exacerbated imbalance may cause
less accurate and equitable recommendations for
specific clients, ultimately impacting the system’s
long-term effectiveness and user satisfaction (Xu
et al., 2023a; Burke et al., 2018). This exacerbated
imbalance potentially stems from the accelerated
training convergence among clients, as depicted
in Figure 1(b), possibly due to the fast adaptation
capabilities of LLMs (Bao et al., 2023a,b). 2) Sub-
stantial Client Resource Costs: The client-server
framework necessitates that each client possesses
the capability to locally train and infer LLMs. How-
ever, the extensive computational and storage re-
sources required by LLMs pose a substantial chal-
lenge for individual clients in meeting these de-
mands (Chen et al., 2023; Fan et al., 2023).

To tackle the issues of exacerbated performance
imbalance and substantial resource costs, we refine
the client-server framework with two strategies: 1)
Dynamic Balance Strategy. To mitigate the per-
formance imbalance among clients, we introduce
a dynamic balance strategy: it involves designing
dynamic parameter aggregation and learning speed
for each client to ensure relatively equitable perfor-
mance across the board. 2) Flexible Storage Strat-
egy: To reduce client costs, we propose a flexible
storage strategy for the client model. Intuitively,
this strategy selectively allocates some LLM lay-
ers, especially those capable of extracting sensitive
user data, on the client side, while situating other
non-sensitive layers on the server to save cost.

In light of these, we propose a Federated Frame-
work for LLM-based Recommendation (FELL-
Rec). 1) FELLRec adapts dynamic balance strate-
gies for different clients. Specifically, FELLRec

preserves personalized parameters on each client
(e.g., Low-Rank Adaption (LoRA) (Hu et al.,
2021)) and employs a dynamic parameter aggre-
gation method based on attention mechanisms.
Meanwhile, FELLRec devises dynamic learning
speed by proposing a Curriculum Heating learn-
ing method (Chen et al., 2021) based on client
loss, which helps client undergoes a gradual pre-
warming phase to familiarize themselves with their
own data distribution. 2) FELLRec adopts the flex-
ible storage strategy to deploy those input and
output layers on the client side to ensure the pro-
tection of all sensitive information (see detailed
analysis in Section 4.3). Empowered with the two
strategies, FELLRec can safeguard data privacy for
LLM-based recommendations in a more balanced
and efficient way. We instantiate FELLRec on two
LLM backend models and conduct extensive exper-
iments on three datasets, validating its effectiveness
and efficiency.

Main Contributions: (1) We introduce a
privacy-preserving task for fine-tuning LLM-based
recommendation models, where we identify the
challenges of directly adopting Fed4Rec: exacer-
bated client performance imbalance and substan-
tial client resource costs. (2) We propose a feder-
ated framework for LLM-based recommendation
called FELLRec, which addresses the two chal-
lenges well while preserving data privacy. (3) Ex-
periments across three public datasets under vari-
ous settings, confirming its efficacy and efficiency.

2 Preliminary

2.1 LLM-based Recommendation

Let U , I be the user set and item set, for a given
user u ∈ U , the LLM-based recommender f(P)
will utilize the user’s historical interactions Hu

to generate a ranking list LK(Hu) ⊂ I as the
recommendation for user u, where K is the item
numbers in a ranking list and P is the parameter
set of LLMs. Hu is the user u’s browsing history:
Hu = [i1, i2, · · · , iN ], where in ∈ I is the n−th
item in the interaction history (typically in a natural
language form), and N is the history length.

2.2 Client-Server Framework under Fed4Rec

Let C be the client set, where each client c ∈ C
could be a user u or a group of users from a
specific platform. Each client c, equipped with a

Our code and data are released at https://github.com/
Polaris-JZ/FELLRec.
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model parameter Pc, has a local dataset Dc =
{(Hu, y), ∀u ∈ c}, which includes the users’ in-
teraction history Hu and the label y (usually the
next-interacted item) for training. Within the client-
server framework, the most classic approach is Fe-
dAvg (McMahan et al., 2017). Specifically, at each
training epoch, FedAvg utilizes a central server to
aggregate parameters from various clients to gener-
ate unified updated parameters for every client. For-
mally, at each epoch, each client is required to up-
date its parameter based on its local dataset: Pc =
argminPc

∑
(Hu,y)∈Dc

l(f(Hu;Pc), y),∀c ∈ C,
where l(·) is the loss function of recommenda-
tion. Subsequently, the central server will aggre-
gate parameters from all clients, and send the uni-
fied aggregated parameters back to every client:

Pc =
1

n

∑
c′∈C

|Dc′ |
|D| Pc′ , ∀c ∈ C. FedAvg ensures

privacy by obviating the necessity to transmit origi-
nal data to the server, concentrating instead on the
exchange of model parameters. However, directly
applying FedAvg to LLM-based recommendations
will meet the exacerbated client performance im-
balance and substantial client resource cost.

3 FELLRec

In response to exacerbated client performance
imbalance and significant client resource costs,
we introduce a Federated Framework for LLM-
based Recommendation (FELLRec), which en-
hances data privacy in LLM-based recommenda-
tion systems both equitably and efficiently. FELL-
Rec encompasses two strategies: 1) Dynamic bal-
ance strategy, which designs dynamic parameter
aggregation and learning speeds to ensure relatively
balanced performance across clients. 2) Flexible
storage strategy, which enables the flexible storage
of LLM layers to conserve resources. The architec-
ture of FELLRec is depicted in Figure 2.

3.1 Dynamic Balance Strategy

As illustrated in Section 1, directly applying the
client-server framework in LLM-based recommen-
dation exacerbates the performance imbalance
across clients. This imbalance may lead to less equi-
table recommendations for specific clients, thereby
detrimentally affecting the system’s overall effec-
tiveness and diminishing user satisfaction.

The imbalance could be potentially attributed to
two primary factors: 1) the diverse data distribution
among clients, which may lead to conflicting op-
timization objectives among clients, thus possibly

sacrificing the performance of specific clients. 2)
The varied learning difficulty levels among clients,
where those facing greater challenges may exhibit
relatively poorer performance.

To address these issues, FELLRec first en-
sures client personalization by maintaining client-
specific parameters for each client, including two
kinds: 1) LoRA (Hu et al., 2021), and 2) either
a part or the entirety of LLM’s own parameters.
To economize on client resources, the remaining
parameters are fixed. Our analysis primarily uti-
lizes LoRA as an illustrative example, as the same
principles apply to other methods.

Specifically, for client c, the model parameters
are denoted as Pc with LoRA Rc, where LoRA is
client-specific parameters and Pc is the fixed origi-
nal LLM model parameters. Subsequently, FELL-
Rec incorporates a dynamic balance strategy, which
involves designing dynamic parameter aggregation
and learning speeds for each client, addressing two
key factors of imbalance respectively.

An intuitive idea of our method is:

Rc =

∑
c′∈C dc,c′Rc′∑

c′∈C dc,c′
(1)

where dc,c′ is the dynamic aggregation weight and
it can be divided into two parts: dc,c′ = wc ·
sc,c′ , where sc,c′ is the attention-based aggregation
weight corresponding to the Sub-section 3.1.1 and
wc is the learning difficulty weight illustrated at the
Sub-section 3.1.2.

3.1.1 Dynamic Parameter Aggregation
Given the variability in data distribution among
clients, the optimization objectives for them may
diverge, potentially leading to conflicts when trying
to optimize a global model. Such conflicts may
inadvertently sacrifice the performance of specific
clients, which causes imbalance.

Given this, FELLRec incorporates an attention-
based parameter aggregation method. This method
customizes the aggregation process of each client
according to their unique data distribution, aiming
to mitigate performance imbalances without com-
promising the performance of specific clients. In-
tuitively, the client model prioritizes learning from
clients with similar data distributions while reduc-
ing the influence of those deemed non-relevant.
The prioritization mechanism involves aggregating
the client model parameters based on the cosine
similarity between the parameters of the current
client and those of other clients. Specifically, for
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Figure 2: FELLRec Structure. The left part is the flexible storage strategy which offloads non-sensitive LLM layers
to the server to save resources. The right part is the dynamic balance strategy which ensures relatively balanced
performance across clients.

client c, the aggregation formula is:

Rc =

∑
c′∈C sc,c′Rc′∑

c′∈C sc,c′
, where (2)

sc,c′ =
vec(Rc)

⊤vec(Rc′)

∥vec(Rc)∥2∥vec(Rc′)∥2
. (3)

∥ ·∥2 denotes the ℓ2 norm, Rc represents the client-
specific LoRA parameter of client c, vec(Rc)
represents flattened one-dimension client-specific
LoRA parameter of client c, and sc,c′ is attention-
based aggregation weight, which is cosine similar-
ity between vec(Rc) and vec(Rc′).

Through dynamic parameter aggregation, FELL-
Rec ensures more balanced performance across
clients by customizing the aggregation process of
each client based on its specific data distribution.

3.1.2 Dynamic Learning Speed
Given the varied heterogeneity within client
datasets, clients encounter different learning dif-
ficulties during training (Yang et al., 2023). Con-
sequently, the learning status of different clients
(e.g., ongoing learning, convergence or overfitting)
can vary significantly. If a client has not adequately
learned from its own data, excessively aggregating
parameters from other clients may detrimentally
affect its performance, potentially leading to per-
formance imbalances across clients.

In response to this challenge, we develop a
client-specific dynamic learning speed mechanism.
This mechanism dynamically adjusts the extent
of learning from other clients according to the
client’s current learning status, thereby personaliz-
ing the client’s learning process. FELLRec assesses
a client’s learning status via its local loss, which
serves as a gauge of the client’s learning difficulty,
and adjusts the extent of learning from peers ac-
cordingly. Based on this, FELLRec introduces a

Curriculum Heating learning method (Chen et al.,
2021), which is adapted based on client loss. Intu-
itively, clients experiencing higher losses undergo a
gradual pre-warming phase, allowing them to accli-
mate to their data distribution, whereas clients with
lower losses engage in a rapid convergence, en-
hancing training efficiency. Specifically, for client
c, warm-up coefficient is:

wc = tanh(
α

[
exp(Lc)/

∑N
i=1 exp(Li))

]t/β ), (4)

where α is the speed-related warm-up factor,
influencing the warm-up’s overall pace; β is the
time-related warm-up factor, affecting the temporal
impact on warm-up speed. In essence, a higher α
or a lower β accelerates warm-up for clients. wc is
posed on the similarity score with other clients to
control the learning speed: dc,c′ = wcsc,c′ , ∀c′ ∈
C, c′ ̸= c, where dc,c′ is the final dynamic aggrega-
tion weight. This approach, through the application
of the warm-up coefficient, dynamically adjusts a
client’s learning pace based on its current learn-
ing status, providing a tailored learning speed for
each client and mitigating performance imbalances
across the clients.

3.2 Flexible Storage Strategy
In LLM-based recommendation systems, training
and inference processes demand significant re-
source investment. Recognizing that not all clients
have the capacity for the storage and computational
demands of an LLM model, FELLRec introduces a
flexible storage strategy aimed at reducing resource
expenditure for clients.

FELLRec retains specific subsets of layers on
the client side, particularly those closer to the in-

The practical application of Apple Inc. demonstrates the
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put and output layers, due to their processing of
sensitive data. The rest of the layers are hosted on
the server side to save resources. Speicfically, for
client c, the client model parameters are denoted
as Pc with LoRA Rc. Both of this two parts Pc

and Rc can be divided into N layers: {P(i)
c }Ni=1,

{R(i)
c }Ni=1, respectively, where N is the total num-

ber of LLM layers. Therefore, we combine them
as T c for simplicity, where T c = {P(i)

c ,R(i)
c }Ni=1

Based on this, The layer retained on the client side
are {T (i)

c }ki=1 and T (N)
c , where k represents the

layer-allocation hyper-parameter. Conversely, the
layers stored on the server side are {T (i)

c }N−1
i=k+1.

During each training round, the client sends in-
put data Hu to its preserved input layers, which
then forwards the output embedding e

(k)
u =

g(Hu, {T (i)
c }ki=1) to the server for further pro-

cessing, where g(·) commonly is the attention
layer with feed-forward layer in the LLM sce-
nario. The server processes this embedding and
returns the output e(N−1)

u = g(e
(k)
u , {T (i)

c }N−1
i=k+1)

to the client to produce the final output embed-
ding eNu = g(e

(N−1)
u ,T (N)

c ). Subsequently, the
client calculates the loss using the preserved label
on the client side. Formally, the forward process
of FELLRec is described as T c = {T (i)

c }ki=1 ◦
{T (i)

c }N−1
i=k+1 ◦T

(N)
c , where ◦ represents operation

composition, with the output of the function on
the right being used as the input to the function
on the left. Following this, the backward process
begins, with gradients propagated in reverse: from
the client to the server and then back to the client.

When client and server configurations are consis-
tent, FELLRec’s performance is unaffected by the
parameter k since offloading layers to the server
doesn’t alter the training mechanics—only the stor-
age location of model parameters changes. Specifi-
cally, both the forward and backward propagation
processes proceed identically to scenarios where
no layers are offloaded to the server.

This strategy significantly reduces client re-
source costs during both training and inference,
as shown in Table 3. It is noteworthy that the de-
termination of the number of layers to preserve is
adaptable, enabling control over client costs. How-
ever, despite our method’s efforts to protect data
privacy, there may be malicious behavior from the
server side aimed at attacking the model to access

feasibility of deploying LLMs, such as those with 3 billion or
7 billion parameters, on the client side. (Inc., 2024)

Algorithm 1 FELLRec Training Phase
Require: The client set C, item set I, epoch num-

ber T , local round number R, warm-up pa-
rameter α, β, personalized parameters Rc and
local data Dc = {Hu, y}, ∀c ∈ C.

Ensure: Fine-tuned personalized parameters
Rc,∀c ∈ C.

1: Initialize client model Rc, c ∈ C
2: for all each epoch t = 1, 2, · · · , T do
3: Initialize Lc = 0
4: // Client Local Training
5: for all each client c ∈ C in parallel do
6: for all each round r = 1, 2, · · · , R do
7: lc(Rc) =

∑
(Hu,y)∈Dc

l(f(Hu;Rc), y)

8: Lc = Lc + lc
9: Rc = argminRc

lc(Rc)

10: Upload {R(i)
c }ki=1,R(N)

c ,∀c to server
11: // Aggregate param. for clients
12: wc = tanh(

α
[
exp(Lc)/

∑N
i=1 exp(Li))

]t/β )

13: sc,c′ =
vec(Rc)

⊤vec(Rc′)

∥vec(Rc)∥2∥vec(Rc′∥2)
,∀c, c′ ∈ C

14: dc,c′ = wcsc,c′

15: Rc =

∑
c′∈C dc,c′Rc′∑

c′∈C dc,c′
, ∀c ∈ C

16: Send {R(i)
c }ki=1,R(N)

c ,∀c ∈ C back to clients

user privacy data. Our subsequent experiments in-
dicate that retaining more layers on the server side
increases the vulnerability to attacks (as detailed
in Section 4.3), where we analyze the trade-off
between the risk of attacks and the costs.

3.3 FELLRec Framework

3.3.1 Training

In the training phase, FELLRec trains personalized
parameter Rc for each client c without sharing
their data. Specifically, at each epoch t, FELLRec
first conducts client local training and then aggre-
gates parameters of all clients to update their per-
sonalized parameter Rc.

Specifically, at the client local training phase,
each client updates their parameters Rc utiliz-
ing their respective local datasets Dc. During this
phase, the client model is not entirely stored on the
client side. Instead, parts of the model are stored
on the server side, as dictated by the flexible stor-
age strategy, to reduce the resource costs associ-
ated with training LLMs (see detailed analysis Sec-
tion 3.2). Subsequently, each client uploads their
client-preserved parameters to the server for aggre-
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Algorithm 2 FELLRec Inference Phase
Require: The client set C, item set I , ranking size

K, parameters of each client T c,∀c ∈ C, the
user u

Ensure: Ranking list LK(u)
1: // Offline Storage
2: for all client c ∈ C do
3: Get item embeddings ec(i) = f(i, {T (i)

c }Ni=1), ∀i

4: User u arrives in FELLRec;
5: Finding u corresponds to the client c;
6: // Client c executes
7: e

(k)
u = g(Hu, {T (i)

c }ki=1)

8: Upload e
(k)
u to Server;

9: // Server executes
10: e

(N−1)
u = g(e

(k)
u , {T (i)

c }N−1
i=k+1)

11: Upload e
(N−1)
u to Client;

12: // Client c executes
13: Get output embedding e

(N)
u = g(e

(N−1)
u , {T (N)

c )}
14: // Ranking Step
15: LK(u) = argminS⊂I,|S|=K

∑
i∈S distance(ec(i), e

(N)
u )

gation, making use of the parameters from other
clients to assist the update process.

In the aggregate phase, each client gets their dy-
namic aggregation weight dc,c′ ,∀c′ ∈ C through
dynamic parameter aggregation and dynamic learn-
ing speed. Subsequently, they get aggregated per-
sonalized parameters Rc based on their specific
aggregation weight and then send client-preserved
parameters back to clients. The training algorithm
of FELLRec is provided in Algorithm 1.

3.3.2 Inference
In the inference phase, for any given client c, FELL-
Rec utilizes the updated LoRA parameters Rc and
fixed parameters Pc to form the complete param-
eters T c, and then get ranking list LK as recom-
mendation for user u belongs to this client.

Specifically, the inference phase is divided into
four phases: 1) Client c independently stores the
embeddings ec(i) for all items from the item
corpus I, in preparation for the ranking step.
2) Client c gets the hidden embedding at k−th
layer of LLM through: e(k)u = g(Hu, {T (i)

c }ki=1);
3) Then the server receives the uploaded e

(k)
u

and continue to compute the hidden embedding
e(N−1) at (N − 1)−th layer of LLM through
e
(N−1)
u = g(e

(k)
u , {T (i)

c }N−1
i=k+1); 4) Finally, client

c directly computes the distance (e.g., cosine sim-
ilarity(Bao et al., 2023a) or L2 distance (Li et al.,
2023)) between the generated embedding e

(N)
u

and the item embeddings ec(i) from item corpus,
and get the final ranking list through: LK(u) =

argminS⊂I,|S|=K

∑
i∈S distance(ec(i), e

(N)
u ).

This approach preserves sensitive user data on
the client side during inference, thus enhancing
data privacy. Additionally, by offloading portions
of the computation to the server, FELLRec reduces
the computational load on clients and minimizes
their hardware requirements. The inference algo-
rithm of FELLRec is provided in Algorithm 2.

4 Experiments

In this section, we conduct a comprehensive ex-
perimental study to analyze the performance of
FELLRec and the impact of different components
(e.g., dynamic balance strategy and flexible storage
strategy) within it.

4.1 Experimental Settings
4.1.1 Datasets and Settings
We assess the effectiveness of FELLRec on three
popular benchmark datasets. 1) Games is from
the Amazon review datasets, which covers inter-
actions between users and video games with rich
textual features such as game titles and categories.
2) MicroLens is a newly released short video rec-
ommendation dataset. Each short video contains
raw modal information such as title, cover image,
audio, and video information. 3) Book is also de-
rived from Amazon review datasets, containing
users’ interactions with extensive books, encom-
passing a broad spectrum of genres and subjects.
The datasets’ statistics are detailed in Table 5. For
all three datasets, we organize user-item interac-
tions chronologically based on timestamps and di-
vide the data into training, validation, and testing
sets in an 8:1:1 ratio.

Within the context of LLM-based recommen-
dations, we explore two distinct fine-tuning ap-
proaches: 1) Few-shot fine-tuning fine-tunes
LLMs using a limited number of examples, e.g.,
1024-shot. 2) Full fine-tuning utilizes all samples
to fine-tune LLMs.

For the evaluation, we adopt full-ranking proto-
col (He et al., 2020) and evaluate using Recall@K
and NDCG@K, where K = 10 or 20.

4.1.2 Baselines
We compare FELLRec against competitive base-
lines. First, we select two superior backend

https://nijianmo.github.io/amazon/index.html.
https://github.com/westlake-repl/MicroLens.
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Table 1: Overall performance of FELLRec and other baselines in the LLM-based Recommendation scenario. Bold
signifies the best performance among the privacy-preserving methods under the same backend models. * denotes
statistically significant improvements of FELLRec over the second-best privacy-preserving methods under the same
backend models, according to the t-tests with a significance level of p <0.01.

Games Microlens BookMethod R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

BIGRec 0.0194 0.0316 0.0127 0.0164 0.0089 0.0132 0.0050 0.0062 0.0079 0.0097 0.0126 0.0116
+FedAvg 0.0145 0.0257 0.0093 0.0126 0.0021 0.0039 0.0012 0.0017 0.0081 0.0097 0.0119 0.0112
+FedProx 0.0143 0.0255 0.0090 0.0123 0.0033 0.0051 0.0032 0.0040 0.0081 0.0096 0.0120 0.0112
+Ditto 0.0147 0.0260 0.0091 0.0126 0.0040 0.0063 0.0041 0.0045 0.0077 0.0091 0.0113 0.0106
+RoLoRA 0.0128 0.0231 0.0079 0.0106 0.0019 0.0037 0.0013 0.0019 0.0052 0.0075 0.0101 0.0098
+Ours 0.0158* 0.0274* 0.0104* 0.0139* 0.0088* 0.0128* 0.0051* 0.0062* 0.0085* 0.0102* 0.0124* 0.0116*

RecFormer 0.0193 0.0360 0.0117 0.0169 0.0190 0.0369 0.0104 0.0155 0.0318 0.0512 0.0333 0.0380
+FedAvg 0.0149 0.0262 0.0089 0.0124 0.0086 0.0192 0.0045 0.0074 0.0078 0.0123 0.0085 0.0097
+FedProx 0.0150 0.0266 0.0086 0.0121 0.0086 0.0166 0.0041 0.0064 0.0071 0.0061 0.0083 0.0133
+Ditto 0.0162 0.0273 0.0091 0.0138 0.0091 0.0172 0.0046 0.0065 0.0102 0.0131 0.0107 0.0159
+RoLoRA 0.0132 0.0257 0.0081 0.0118 0.0084 0.0187 0.0029 0.0045 0.0071 0.0115 0.0079 0.0095
+Ours 0.0215* 0.0373* 0.0122* 0.0170* 0.0141* 0.0245* 0.0065* 0.0094* 0.0274* 0.0411* 0.0275* 0.0301*

Table 2: Overall performance of FELLRec and other traditional recommendation baselines. Bold signifies the best
performance among all methods. Underlined values indicate the second best. * denotes statistically significant
improvements of the best method over the second-best, according to the t-tests with a significance level of p <0.01.

Method Games Microlens Book
R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

Centralized MF 0.0101 0.0164 0.0070 0.0090 0.0044 0.0063 0.0026 0.0032 0.0050 0.0089 0.0060 0.0071
LightGCN 0.0153 0.0234 0.0101 0.0127 0.0078 0.0116 0.0044 0.0055 0.0065 0.0120 0.0078 0.0093

Federated

FedMF 0.0065 0.0108 0.0044 0.0058 0.0029 0.0045 0.0021 0.0027 0.0050 0.0070 0.0034 0.0041
LightFR 0.0088 0.0139 0.0051 0.0069 0.0041 0.0055 0.0024 0.0044 0.0048 0.0079 0.0049 0.0061
FedPerGNN 0.0145 0.0229 0.0093 0.0121 0.0043 0.0060 0.0024 0.0029 0.0062 0.0112 0.0075 0.0089
BIGRec+Ours 0.0158 0.0274 0.0104 0.0139 0.0088 0.0128 0.0051 0.0062 0.0085 0.0102 0.0124 0.0116
RecFormer+Ours 0.0215* 0.0373* 0.0122* 0.0170* 0.0141* 0.0245* 0.0065* 0.0094* 0.0274* 0.0411* 0.0275* 0.0301*

LLMs: 1) BIGRec (Bao et al., 2023a). 2) Rec-
Former (Li et al., 2023). Given the absence of
LLM-based privacy-preserving recommendation
method in existing literature, we incorporate two
well-established federated learning algorithms that
can be deployed on LLM: 3) FedAvg (McMa-
han et al., 2017). 4) FedProx (Li et al., 2020).
5) Ditto (Li et al., 2021). 6) RoLoRA (Chen
et al., 2024). Additionally, our comparison also
includes baselines from traditional recommenda-
tion methods. Specifically, we select MF (Gant-
ner et al., 2011) and LightGCN (He et al.,
2020) as the centralized-based method, along with
their federated counterparts: FedMF (Chai et al.,
2020), LightFR (Zhang et al., 2023b), and Fed-
PerGNN (Wu et al., 2022). Details of baselines
and implementation are shown in Appendix A.1
and A.2.

4.2 Overall Performance

We compare FELLRec with other baselines, shown
in Table 1 and Table 2. The result indicates that:
1) FELLRec outperforms other privacy-preserving
methods on all datasets and achieves performance
on par with centralized LLM-based methods. This
efficacy is largely due to the dynamic balance strat-

(a) Reconsturction Similarity Ratio under linear attack (b) Reconsturction Similarity Ratio under MLP attack

Figure 3: (a) and (b) shows the similarity between input
embeddings and predicted input embeddings according
to extracted embeddings of different layers from BI-
GRec under linear probe attack and MLP probe attack.

egy, which offers dynamic parameter aggregation
and learning speeds. 2) FedAvg and FedProx per-
formance fluctuates due to their inability to robustly
adapt to varied data distributions across clients and
the heterogeneity within clients (see detailed analy-
sis in Appendix A.4). Conversely, FELLRec consis-
tently excels, aided by its dynamic balance strategy.
3) FELLRec outperforms all traditional baselines
in both centralized and federated settings due to
the contextual comprehension and abundant pre-
trained knowledge of LLMs, along with the dy-
namic balance strategy.

4.3 Attack Model Analysis

To mitigate client-side resource consumption,
FELLRec employs the flexible storage strategy in
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(a) Cost of BIGRec-based FELLRec (b) Cost of RecFormer-based FELLRec

Figure 4: (a) and (b) show the time (s) and memory
(MiB) cost for different values of k under the BIGRec-
based and RecFormer-based FELLRec, respectively.

Table 3: Cost of FELLRec and FedAvg. k and N rep-
resent layer-allocation hyper-parameter and LLM layer
number, where k+1 < N . b and c represent the commu-
nication cost of uploading one layer of LLM parameters
and data embeddings to the server, respectively.

Storage Cost Inference Cost Communication Cost
FELLRec O(k + 1) O(k + 1) O((k + 1) · b+ 2 · c)

FedAvg O(N) O(N) O(N · b)

Section 3.2. However, putting some layers on the
server side may also bring the risk of attacking to
leak the privacy. In this section, we conduct an at-
tack simulation experiment to assess the possibility
of attacks via intermediate embeddings processed
on the server side.

We use BIGRec as a case study, extracting inter-
mediate output embeddings from all layers and
applying two typical types of white-box attack
methods: the linear probe attack and the Multilayer
Perceptron (MLP) probe attack (Kim et al., 2024).
These methods attempt to reconstruct the input em-
bedding from the layer embeddings separately (Xu
et al., 2024a). The detail of the selected attack mod-
els is shown in Appendix A.3. We report the cosine
similarity ratio between the reconstructed embed-
dings and the ground truth input embeddings, as
illustrated in Figure 3. We find that: 1) the likeli-
hood of reconstructing user historical interactions
from intermediate embeddings decreases with as-
cending layer number generally. 2) The possibility
of reconstruction from the last layer increases since
LLM training aims to align the final output with
the target interacted item, which may have higher
similarity with the input embeddings. Thus, the
choice of parameter k should be guided by this
attack simulation (in this case, k ≥ 21).

4.4 Efficiency Analysis
We analyze efficiency of FELLRec both experi-
mentally and theoretically. First, we calculate the
time and memory cost for different layer-allocation
hyper-parameter k in Figure 4. This reveals a trade-
off: storing more layers server-side raises the risk of
attack but reduces client resource cost. Thus, clients

can dynamically adjust layer allocation based on
capacity.

We also evaluate FELLRec against FedAvg
across various metrics, including storage cost,
communication cost, and local client inference
cost. The findings in Table 3 demonstrate that our
method outperforms FedAvg in storage and infer-
ence cost. For communication cost, our method out-
performs FedAvg under the conditions: (k+1) ·b+
2 ·c < n ·b, which simplifies to c < (n−k−1)b/2.
Intuitively, the lower the value of k, the greater the
likelihood of achieving superior communication
efficiency compared to FedAvg. Similarly, a lower
value of c, indicating a smaller device scope, fur-
ther enhances the superiority of our method. This
indicates that our method is particularly effective in
clients with limited scope, making it ideally suited
for user devices. Moreover, we can further reduce
communication costs for transferring model pa-
rameters and data by implementing asynchronous
updates (Xu et al., 2023b).

We also conduct a practical analysis of the com-
munication cost associated with uploading a por-
tion of the LLM’s parameters to the server. During
each communication round, only the LoRA param-
eters from the client side are uploaded to the server,
which significantly reduces the overall parameter
size. Since the size of the LoRA parameters for
LLaMA-7B is approximately 16 MB (Hu et al.,
2021), the communication cost remains manage-
able. To provide clarity, we quantified the commu-
nication cost of uploading LoRA parameters. For
LLaMA-7B, the full LoRA parameter size is ap-
proximately 16 MB per client. Assuming a 100
Mbps network (a common configuration), the up-
load time is approximately 1.28 seconds (McMa-
han et al., 2017). However, with our Flexible Stor-
age Strategy, only the saved layer parameters from
clients need to be uploaded, further reducing the
communication cost. Moreover, considering that
a typical training iteration for LLaMA-7B takes
approximately 110 seconds per batch in our ex-
periment, this communication time is negligible in
comparison to the overall training time.

4.5 Client Performance Analysis
To assess whether FELLRec mitigates the per-
formance imbalance among various clients, we
conduct client evaluation experiment, as detailed
in Table 4. Similar results are seen with the
Book dataset, but figures are omitted for brevity.
The imbalance degree is calculated as follows:
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Table 4: Client evaluation results of the centralized method, FedAvg and FELLRec. Bold represents the lowest
degree of imbalance among the methods evaluated, using the same backend model.

Recall@10 Games MicroLens
Client 1 Client 2 Client 3 Client 4 Client 5 Imbalance Client 1 Client 2 Client 3 Client 4 Client 5 Imbalance

BIGRec 0.0227 0.0338 0.0144 0.0163 0.0153 1.35 0.0148 0.0275 0.0059 0.0050 0.0031 4.50
+FedAvg 0.0157 0.0208 0.0235 0.0085 0.0127 1.76 0.0010 0.0047 0.0017 0.0001 0.0004 46.00
+FELLRec 0.0171 0.0211 0.0163 0.0136 0.0152 0.55 0.0170 0.0120 0.0066 0.0042 0.0062 3.04

Imbalance Degree = (mbest − mworst)/mworst,
where mbest is the Recall@10 of the best client,
and mworst is the Recall@10 of the worst client.
The results indicate that: 1) FELLRec effectively
mitigates the performance imbalance issue among
clients compared to FedAvg, primarily due to the
dynamic balance strategy, which customizes dy-
namic parameter aggregation and learning speed
for different clients. 2) The imbalance degree in
the MicroLens dataset is more pronounced under
FedAvg, which is potentially caused by the data dis-
tribution among clients being much more diverse
than others. Such diversity may lead to conflict
optimization objectives among clients, thus exacer-
bating the imbalance.

• More In-depth Experiments. Ablation study,
client heterogeneity analysis, client number study,
and hyper-parameter analysis are in Appendix A.4.

5 Related Work

• LLM-based Recommendation. Recent ad-
vances in LLMs for recommendation systems have
gained attention for their contextual understand-
ing and pre-trained knowledge (Lin et al., 2024).
Early efforts, such as P5 (Geng et al., 2022), TALL-
Rec (Bao et al., 2023b), focused on fine-tuning
LLMs with prompts and recommendation data.
Later works, like BIGRec (Bao et al., 2023a)
and TIGER (Rajput et al., 2023), refine LLMs by
grounding outputs in real item spaces and enhanc-
ing generative processes with semantic information.
This shift moves from simply integrating recom-
mendation data to fully leveraging LLMs for im-
proved performance. As performance improves, the
focus expands to include trustworthiness, such as
fairness and explainability (Zhang et al., 2023c;
Wang et al., 2023a). Studies like (Xu et al., 2024a;
Dai et al., 2024; Xu et al., 2024b) highlight user
unfairness in LLM-based recommendation, and
LLMHG (Chu et al., 2024) introduces an explain-
able framework combining LLM reasoning with
hypergraph neural networks.

• Federated Recommendation. Fed4Rec en-
hances data privacy in recommendation systems

using federated learning (Yin et al., 2024; Zhang
et al., 2024), operating under two main frame-
works: 1) Peer-Peer Framework (Yang et al.,
2022; Long et al., 2023a,b): Clients directly broad-
cast intermediate parameters to other clients, who
aggregate them into their models. For example,
SemiDFEGL(Qu et al., 2023) improves scala-
bility via device-to-device collaboration, while
DGRec (Zheng et al., 2023) uses a decentralized
graph neural network. However, this framework has
high communication costs due to large LLM param-
eters. 2) Client-Server Framework (Wang et al.,
2022; Liu et al., 2023; Imran et al., 2023; Zhang
et al., 2023a): Clients send local parameters to a
central server for aggregation and redistribution.
Examples include FedPerGNN(Wu et al., 2022),
which incorporates high-order information while
preserving privacy, and LightFR (Zhang et al.,
2023b), a lightweight federated matrix factoriza-
tion framework with efficient inference.

6 Conclusion

In this work, we proposed a federated frame-
work for LLM-based recommendation (FELLRec).
Firstly, we identified two key challenges in directly
applying Fed4Rec in the LLM-based recommen-
dation: exacerbated client performance imbalance
and high client resource costs. Subsequently, to
address these, FELLRec introduces: 1) dynamic
balance strategy, which designs dynamic param-
eter aggregation and learning speed for different
clients during training, aims to ensure relatively
equitable performance across clients. 2) Flexible
storage strategy, which selectively retains certain
sensitive LLM layers on the client side, while of-
floading other layers to the server, aims to save
resources. Overall, FELLRec offers an equitable
and resource-efficient approach to safeguard data
privacy in LLM-based recommendations.

Acknowledgments

This research/project is supported by the National
Research Foundation Singapore and DSO National
Laboratories under the AI Singapore Programme
(AISG Award No: AISG2-RP-2020-018)

2860



Limitations

First, the largest model we use in this work is
LLaMA-7B, exploring the potential of using even
larger LLMs could provide further insights into the
effectiveness of our method. Second, we primarily
utilize two common types of white-box attack meth-
ods for model analysis. Additionally, we only use
BIGRec as a case study for these attacks. However,
different LLMs may demonstrate varying levels of
resilience to different attack methods. In the future,
it would be beneficial to apply a broader range of
attack methods across various LLM architectures
to further validate the effectiveness of our approach.
Third, while the dynamic balance strategy we de-
signed for FELLRec has proven effective, it would
be promising to explore more fine-grained aggre-
gation strategies (e.g., layer-based aggregation) in
the future.
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A Appendix

A.1 Baselines

1) BIGRec (Bao et al., 2023a) using LLaMA-7B
as the LLM backbone, utilizing the item title to
present the user sequence. 2) RecFormer (Li et al.,
2023) using LongFormer as the LLM backbone, uti-
lizing both item titles and descriptions to represent
user sequences. 3) FedAvg (McMahan et al., 2017)
aggregates client model parameters without upload-
ing their data. 4) FedProx (Li et al., 2020) extends
FedAvg by adding a proximity term to the local
optimization, allowing for more robust handling of
heterogeneous data across clients. 5) Ditto is a per-
sonalized federated learning framework that simul-
taneously ensures fairness and robustness in statisti-
cally heterogeneous networks via a scalable solver.
6) RoLoRA employs an alternating minimization
approach for LoRA to enhance robustness against
reduced fine-tuning parameters and heightened data
heterogeneity. 7) MF (Gantner et al., 2011) is a
classical matrix factorization (MF) approach. 8)
LightGCN (He et al., 2020) leverages high-order
neighbor information to enhance the user and item
representations. 9) FedMF (Chai et al., 2020) is a
privacy-enhanced MF approach based on secure
homomorphic encryption. 10) LightFR (Zhang
et al., 2023b) is a lightweight federated recommen-
dation framework with privacy-preserving MF. 11)
FedPerGNN (Wu et al., 2022) designs a privacy-
preserving graph expansion protocol to incorporate
high-order information under privacy protection in
GNN-based recommendation.

A.2 Implementation

For all the baselines, we follow the original set-
tings in their paper for implementation. Besides,
we adopt the parameter-efficient fine-tuning tech-
nique LoRA to fine-tune BIGRec in 1024-shot
and fully fine-tune RecFormer. For the client par-
tition, we set the client number equal to 5, and
cluster users based on pre-trained MF user em-
beddings, leveraging the premise that users with
analogous characteristics and preferences are more
likely to congregate in similar areas or platforms.
For FedAvg, FedProx and FELLRec, we set the
same local round number to ensure a fair com-
parison. The best hyper-parameters are selected
with the searching scopes as follows: speed-related
warm-up factor and time-related warm-up factor
are tuned in {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3} and
{1, 3, 5, 10, 15, 20}. The experiments were con-

Table 5: Statistics of three datasets.
Dataset #User #Item #Interaction Density

MicroLens 45,886 12,413 332,730 5e-04
Games 50,532 16,857 452,894 5e-04
Book 64,989 56,394 4,963,757 1.3e-03
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Figure 5: Contributions of dynamic parameter aggrega-
tion and learning speed to FELLRec.

ducted under four NVIDIA V100.

A.3 Attack Model Selection
For the attack model, there are two kinds of attack
models: white-box (Gurnee and Tegmark, 2023)
and black-box (Papernot et al., 2017). White-box
means the attacker has complete knowledge of the
target model, including the model’s architecture,
parameters, and training data. Black-box means
attackers have very limited knowledge of the tar-
get model. They may only be able to speculate
about the model’s partial behavior through its in-
puts and outputs. To validate the robustness of our
approach, we conducted experiments involving two
typical types of white-box attacks: the linear probe
attack and the Multilayer Perceptron (MLP) probe
attack (Kim et al., 2024). These methods have bet-
ter attack capabilities than black-box methods due
to their access to more prior knowledge.

The linear probe attack involves training a linear
regression model on the intermediate output embed-
dings of LLM. This model attempts to recover the
original data from these intermediate embeddings.
We then compare the similarity ratio between the
reconstructed embeddings and the ground truth in-
put embeddings, where a lower similarity ratio in-
dicates greater difficulty for the attack model to
extract useful information. The MLP probe attack
is similar to the linear probe attack but employs a
Multilayer Perceptron (MLP) instead of a simple
linear regression model to probe the intermediate
representations.

A.4 In-depth Experimental analysis
A.4.1 Ablation Study
In this section, we evaluate the unique contribu-
tions of dynamic parameter aggregation and dy-
namic learning speed in comparison with FedAvg,
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Figure 6: Influence of Client Number to RecFormer-
based FELLRec and FedAvg in Games.

Table 6: Performance (R@10) of FedAvg and FELL-
Rec under different heterogeneity degrees in Games. As
concentration parameter c increases, the heterogeneity
degree decreases.

c 0.1 0.3 0.5 0.7 1

FedAvg 0.0134 0.0139 0.0141 0.0157 0.0162
FELLRec 0.0187 0.0211 0.0212 0.0216 0.0228

presenting the results in Figure 5 for the Games
and Microlens datasets (excluding the Book dataset
due to analogous trends). The analysis reveals that:
1) FELLRec with dynamic parameter aggregation
consistently surpasses FedAvg. This highlights the
benefits of an attention-based parameter aggrega-
tion method that tailors aggregation to the specific
data distribution within FELLRec. 2) Similarly,
FELLRec with dynamic learning speed invariably
outperforms FedAvg, emphasizing the advantages
of customizing the learning speed of each client
based on their learning status. 3) The effective-
ness of the two parts is consistent across different
datasets and backend models, further demonstrat-
ing their robustness and generalizability.

A.4.2 Influence of Client Heterogeneity
Degree

To further demonstrate the robustness of our frame-
work under different data distributions, we conduct
additional experiments to analyze the influence of
the heterogeneous data distribution degree across
clients on the performance of federated learning
baselines and our proposed method. Specifically,
we follow the prevailing strategy (Wang et al.,
2023b) and distribute samples to all clients based
on the Dirichlet distribution. We report the per-
formance under different heterogeneity degrees
in Table 6, with c as the concentration parame-
ter determining the heterogeneity degree across
clients. Intuitively, as the concentration parame-
ter c increases, the heterogeneity degree decreases.
The results indicate that: 1) FELLRec consistently
outperforms FedAvg when using the same back-
end model (BIGRec), demonstrating the superior
capability of the dynamic balance strategy under
different heterogeneity degree settings. 2) As the

(a) Speed-related Factor 𝜶 (Recall@20) (b) Time-related Factor 𝜷 (Recall@20)

Figure 7: Hyper-parameters analysis of Games.

heterogeneity degree increases, the performance
of FedAvg decreases, corroborating the conclu-
sion from Section 4.2 that the heterogeneity degree
significantly impacts FedAvg’s performance, caus-
ing fluctuations under different data distributions
across clients.

A.4.3 Influence of Client Number
To demonstrate the scalability of our approach with
an increased number of clients, we expanded the
client count from 5 to 100 and reported the compar-
ative results of FELLRec and FedAvg in Figure 6.
The findings indicate that: 1) With the escalation in
client numbers, there is a noticeable decline in the
performance of both FELLRec and FedAvg, likely
due to the amplified diversity acorss client data
distribution, which in turn aggravates the imbal-
ance and adversely affects overall performance. 2)
Nevertheless, FELLRec consistently outperforms
FedAvg in every client count scenario. This en-
hanced performance is attributed to the dynamic
aggregation strategy employed by FELLRec, effec-
tively countering the imbalances stemming from
the varied data distributions among clients.

A.4.4 Hyper-parameter Analysis
We select sensitive hyper-parameters, adjusting
them within the ranges delineated in Section 4.1.
The experiment outcomes are visually represented
in Figure 7. From our observations: The settings of
the speed-related warm-up factor α and the time-
related warm-up factor β significantly affect the
warm-up speed. Generally, enhancing the values of
α and β leads to improved performance, facilitating
the integration of parameters from other clients to
aid the learning process of the current client once it
has adequately learned from its data. Nevertheless,
overly aggressive acceleration in warm-up may pre-
maturely incorporate parameters from other clients
before the current client is prepared, potentially
disrupting the learning trajectory and adversely af-
fecting performance.
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