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Abstract

In automated essay scoring (AES), recent ef-
forts have shifted toward cross-prompt set-
tings that score essays on unseen prompts for
practical applicability. However, prior meth-
ods trained with essay-score pairs of specific
prompts pose challenges in obtaining prompt-
generalized essay representation. In this work,
we propose a grammar-aware cross-prompt
trait scoring (GAPS), which internally captures
prompt-independent syntactic aspects to learn
generic essay representation. We acquire gram-
matical error-corrected information in essays
via the grammar error correction technique
and design the AES model to seamlessly inte-
grate such information. By internally referring
to both the corrected and the original essays,
the model can focus on generic features dur-
ing training. Empirical experiments validate
our method’s generalizability, showing remark-
able improvements in prompt-independent and
grammar-related traits. Furthermore, GAPS
achieves notable QWK gains in the most chal-
lenging cross-prompt scenario, highlighting its
strength in evaluating unseen prompts.

1 Introduction

Automated essay scoring (AES) emerged as a vi-
able alternative to human graders to assist language
learners in acquiring writing skills, alleviating the
burden and costs of grading. To practically supply
AES in educational situations, the model’s capabil-
ity to generalize well to new prompts (i.e., unseen
in training) is essential yet challenging (Li and
Ng, 2024). Accordingly, unlike the earlier prompt-
specific AES systems, which aim to assess essays
written on the seen prompts (Taghipour and Ng,
2016; Dong and Zhang, 2016; Wang et al., 2022;
Do et al., 2024a,b), recent attention increasingly
moves on cross-prompt AES to grade new prompts’
essays (Ridley et al., 2021; Do et al., 2023; Chen
and Li, 2024; Li and Ng, 2024).

To achieve cross-prompt scoring with multiple
trait setting, previous studies primarily focus on
learning essay representation with score labels in
concatenation with prompt-independent features
(Jin et al., 2018; Ridley et al., 2020; Li et al., 2020;
Ridley et al., 2021; Chen and Li, 2023; Do et al.,
2023; Li and Ng, 2024). To obtain consistent es-
say representations, some studies additionally de-
veloped contrastive learning (Chen and Li, 2023,
2024) or prompt-aware networks (Do et al., 2023;
Jiang et al., 2022). However, as these models are
typically trained on essays responding to specific
prompts differ from the target, generalizability to
unseen prompts still remains a challenge. Notably,
they exhibit the lowest performance in the most
prompt-agnostic Conventions trait (20% gap to the
best trait), further highlighting the shortcomings.

In this work, we propose a grammar-aware cross-
prompt essay trait scoring, which integrates gram-
mar error correction (GEC) before the scoring pro-
cess. By informing the model of the syntactic er-
rors contained in the essay, our method facilitates
capturing generic syntax information during scor-
ing. Internally, we design a shared structure to
trade knowledge between original and corrected es-
says, facilitating accurate score derivation. As non-
semantic aspects are less dependent on prompts,
our grammar-aware learning via directly providing
error-corrected essays leads to the intrinsic acquisi-
tion of generic essay representation.

Empirical experiments demonstrate that our
grammar-aware method assists in capturing generic
aspects, enhancing related trait-scoring perfor-
mances in cross-prompt settings. Notably, signif-
icant enhancements observed in prompt-agnostic
traits, such as Conventions and Sentence Fluency,
support the advancement towards prompt general-
ized representation. Surprisingly, informing error-
corrected essays also improves semantic traits, such
as Content and Narrativity, suggesting that refer-
ring to a revised essay has the potential for facili-
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tating a deeper contextual understanding.

2 Related Works

To improve the performance of AES, several stud-
ies have auxiliary trained the model with vari-
ous other tasks such as morpho-syntactic labeling,
type and quality prediction, and sentiment anal-
ysis (Craighead et al., 2020; Ding et al., 2023;
Muangkammuen and Fukumoto, 2020). Instead
of jointly training auxiliary tasks, our direct use
of corrected text output significantly reduces the
training burden.

There have been attempts to apply grammatical
error information. Suggesting that detecting gram-
matical errors is a beneficial indicator for the qual-
ity of the essay, Cummins and Rei (2018) jointly
trained grammatical error detection task with the
scoring model. Also, Doi et al. (2024) utilize
grammatical features proposed by Hawkins and
Filipović (2012) and Liu et al. (2019) use GEC to
measure the number of grammar corrections. Un-
like the existing studies, we directly utilize the text
output generated by the GEC without additional
training as input for the scoring model.

3 Method: GAPS

Our method comprises two main steps: (1) Essay
correction and (2) Grammar-aware Essay Scoring.
Initially, we automatically identify the grammar
errors included in the essay and then pass them to
the scoring model along with the original essay.

3.1 Essay Correction
We employ the T5-based pre-trained GEC model
(Rothe et al., 2021) to obtain the grammar-
corrected essay text without additional training.
The student’s original essay, which contained di-
verse types of errors, is input into the model, and
the cleaned essay is output. Grounded on one of
the representative error types presented in the er-
ror annotation toolkit (ERRANT) (Bryant et al.,
2017)1, we classify errors into three major cate-
gories: Missing (M), Replacement (R), and Unnec-
essary (U). Missing refers to a required token that
is not present but must be inserted, replacement
indicates the substituted token that is revised, and
unnecessary means the deleted token that does not
fit in the syntax. For the input essay, we add the cor-
rection tag, <corr> Category: Token </corr>,
for the identified error corrections. For instance, in

1https://github.com/chrisjbryant/errant

Original Essay Corrected Essay

Dear local newspaper , I think <corr> 
M: the </corr> effects computers
have on people are great learning
skills / affects because they give us
time to chat with friends / new
people , <corr> R: help </corr> us
learn about the globe ( astronomy )
and <corr> R: keep </corr> us out of
<corr> R: trouble </corr> !

Dear local newspaper, I think effects
computers have on people are great
learning skills/affects because they give
us time to chat with friends/new
people, helps us learn about the
globe(astronomy) and keeps us out of
troble!
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Figure 1: The overview of the proposed GAPS method.

Figure 1, for the missed token “the" in the essay,
<corr> M: the </corr> is applied. Explicitly no-
tifying the revisions could place greater emphasis
during training.

3.2 Grammar-aware Essay Scoring

Essay encoders We construct individual essay
encoders for the original and corrected essays, re-
spectively, but with the same structure. Our de-
sign intends to first understand each document and
then share the informed knowledge. We believe
enabling the model to internally distinguish each
element separately, rather than combining or con-
catenating them, facilitates more sophisticated in-
formation exchange in subsequent layers.

We adopt a hierarchical structure for essay en-
coding, which obtains trait-specific document-level
representations based on sentence-level represen-
tations (Dong et al., 2017; Ridley et al., 2021).
To obtain a generalized representation, we employ
part-of-speech (POS) embedding2, as in previous
studies (Ridley et al., 2021; Do et al., 2023; Chen
and Li, 2024). After passing through POS embed-
ding, the output ci from the 1D convolution layer
(Kim, 2014) is subjected to attention pooling layer
(Dong et al., 2017): s = Poolingatt([c1 : cw]),
where w denotes the number of words in the sen-
tence. To effectively capture all parts of the essays,
we adopt multi-head self-attention (Vaswani et al.,

2NLTK toolkit is used: https://www.nltk.org/
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2017), motivated by (Do et al., 2023):

Hi = att(SW 1
i , SW

2
i , SW

3
i ) (1)

M = concat(H1, ...,Hh)W
O (2)

where Hi and att indicate the i-th head and the
scaled-dot product attention, respectively. W 1·3

i

is the parameter matrices. Then, the LSTM layer
(Hochreiter and Schmidhuber, 1997) is applied, fol-
lowed by the attention pooling, obtaining the orig-
inal essay vector, Eo, and the grammar-corrected
essay vector, Eg.

Knowledge-sharing layers Given two represen-
tations of the original and the grammar-corrected
essay, we introduce the knowledge-sharing layers
via the cross-attention leveraging multi-head at-
tention mechanism. Specifically, with the orig-
inal essay vector Eo as the key and value and
the grammar-corrected vector Eg as the query, the
knowledge-sharing layer is defined as follows:

Hi = att(EgW
1
i , EoW

2
i , EoW

3
i ) (3)

M = concat(H1, ...,Hh)W
O (4)

Subsequently, m trait-specific layers are obtained
for m distinct traits. Following previous studies,
we concatenate the prompt-independent features of
Ridley et al. (2021) to each trait-wise essay repre-
sentation vector. To refer to other traits’ representa-
tions during training, we employ the trait-attention
mechanism (Ridley et al., 2021).

Training For the loss function, we use mean
squared error: L(y, ŷ) = 1

n·m
∑n

i=1

∑m
j=1(ŷij −

yij)
2, with n number of essays and m trait scores.

As different prompts are evaluated by different
traits (Apendix 1), the masking mechanism is ap-
plied to mark empty traits as 0 (Ridley et al., 2021).

4 Experiments

For experiments, we use the Automated Student
Assessment Prize (ASAP3) and ASAP++4 (Math-
ias and Bhattacharyya, 2018) dataset, which are
publicly available and representative for AES. The
dataset includes eight prompts and corresponding
essays written in English, and multiple trait scores
are assigned by human raters (Table 1).

In the cross-prompt setting, each target prompt
is used for testing, while the other seven prompts
are used for training. For instance, when the target

3https://www.kaggle.com/c/asap-aes
4https://lwsam.github.io/ASAP++/lrec2018.html

Pr Evaluated Traits # Essays Essay Type
P1 Cont, Org, WC, SF, Conv 1,783 Argumentative
P2 Cont, Org, WC, SF, Conv 1,800 Argumentative
P3 Cont, PA, Lan, Nar 1,726 Source-Dependent
P4 Cont, PA, Lan, Nar 1,772 Source-Dependent
P5 Cont, PA, Lan, Nar 1,805 Source-Dependent
P6 Cont, PA, Lan, Nar 1,800 Source-Dependent
P7 Cont, Org, Conv, Style 1,569 Narrative
P8 Cont, Org, WC, SF, Conv, Voice 723 Narrative

Table 1: ASAP/ASAP++ combined dataset statistics.
Pr denotes the prompt number. WC: Word Choice; PA:
Prompt Adherence; Nar: Narrativity; Org: Organiza-
tion; SF: Sentence Fluency; Conv: Conventions; Lang:
Language.

prompt is 8, only 1–7 prompts are used in training
and testing with P8. We used the 2080ti GPU, batch
10, epoch 50, selecting the model with the best
validation. We use the efficient GEC model pro-
posed by Rothe et al. (2021), which is pre-trained
on sentence-level corrupted mC4 corpus and fine-
tuned on cLang-85 dataset. As the official code is
absent, we used an open-source implementation of
the model6, fine-tuned on English benchmark data
on T5 (Raffel et al., 2020), achieving F0.5 scores
of 65.01 on CoNLL-2014-test (Ng et al., 2014) and
70.32 on BEA-19 test set (Bryant et al., 2019).

5 Results and Discussions

Comparison with single encoder As our goal is
to validate the impact of the proposed grammar-
aware approach, we primarily compare GAPS
against the Single Encoder model, which processes
only the original essay without incorporating gram-
matical error-corrected versions yet within our de-
signed structure. Trait-wise results in Table 2 high-
light that referring to corrected essays with GAPS
remarkably enhances the scoring performance for
all traits except for Overall. Notably, the improve-
ment is more pronounced in syntactic and lexical-
related traits; nevertheless, the observed QWK en-
hancements in contextual assessment traits suggest
that our method also facilitates the capture of se-
mantic aspects. Prompt-wise results in Table 3
demonstrate that GAPS consistently outperforms
the single-encoder model, confirming the efficacy
of referring to error correction information.

Generalizability across prompts Grammar
serves as a universal, prompt-agnostic criterion for
evaluation, largely unaffected by the specific in-

5https://github.com/google-research-datasets/
clang8

6https://github.com/gotutiyan/gec-t5
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Model Traits AVG SD(↓)
Overall Content Org WC SF Conv PA Lang Nar -

Hi att 0.453 0.348 0.243 0.416 0.428 0.244 0.309 0.293 0.379 0.346 -
AES aug 0.402 0.342 0.256 0.402 0.432 0.239 0.331 0.313 0.377 0.344 -
PAES (Ridley et al., 2020) 0.657 0.539 0.414 0.531 0.536 0.357 0.570 0.531 0.605 0.527 -
CTS (Ridley et al., 2021) 0.670 0.555 0.458 0.557 0.545 0.412 0.565 0.536 0.608 0.545 -
PMAES (Chen and Li, 2023) 0.671 0.567 0.481 0.584 0.582 0.421 0.584 0.545 0.614 0.561 -
PLAES (Chen and Li, 2024) 0.673 0.574 0.491 0.579 0.580 0.447 0.601 0.554 0.631 0.570 -
ProTACT [TA+ PA ] (Do et al., 2023) 0.674 0.596 0.518 0.599 0.585 0.450 0.619 0.596 0.639 0.586 ±0.009

Single Encoder 0.673 0.567 0.480 0.578 0.573 0.437 0.571 0.548 0.612 0.560 ±0.012
GAPS [ GA ] 0.672 0.573 0.485 0.580 0.586 0.451 0.582 0.567 0.630 0.570 ±0.014

GAPS [TA+ GA ] 0.669 0.595 0.514 0.585 0.579 0.465 0.615 0.603 0.648 0.586 ±0.017
GAPS [TA+ PA + GA ] 0.670 0.597 0.515 0.595 0.590 0.472 0.621 0.608 0.650 0.591 ±0.011

Table 2: Five runs averaged QWK scores over all prompts for each trait. TA and PA denote the prompt-aware
and trait-aware methods in ProTACT (Do et al., 2023), respectively, while GA represents our grammar-aware
approach.

Model Prompts AVG SD(↓)
1 2 3 4 5 6 7 8

Hi att 0.315 0.478 0.317 0.478 0.375 0.357 0.205 0.265 0.349 -
AES aug 0.330 0.518 0.299 0.477 0.341 0.399 0.162 0.200 0.341 -
PAES (Ridley et al., 2020) 0.605 0.522 0.575 0.606 0.634 0.545 0.356 0.447 0.536 -
CTS (Ridley et al., 2021) 0.623 0.540 0.592 0.623 0.613 0.548 0.384 0.504 0.553 -
PMAES (Chen and Li, 2023) 0.656 0.553 0.598 0.606 0.626 0.572 0.386 0.530 0.566 -
PLAES (Chen and Li, 2024) 0.648 0.563 0.604 0.623 0.634 0.593 0.403 0.533 0.575 -
ProTACT [TA+ PA ] 0.647 0.587 0.623 0.632 0.674 0.584 0.446 0.541 0.592 ±0.016

Single Encoder 0.633 0.562 0.595 0.620 0.616 0.562 0.406 0.534 0.566 ±0.016
GAPS [ GA ] 0.631 0.587 0.610 0.637 0.614 0.580 0.421 0.520 0.575 ±0.016
GAPS [TA+ GA ] 0.627 0.626 0.633 0.640 0.660 0.591 0.469 0.494 0.593 ±0.022
GAPS [TA+ PA + GA ] 0.654 0.614 0.636 0.646 0.665 0.590 0.469 0.498 0.597 ±0.019

Table 3: Five runs averaged QWK scores over all traits for each prompt; SD is the averaged standard deviation for
five seeds, and bold text indicates the highest value.

structions within a prompt; thus, it can be a great
indicator for prompt generalization. This is partic-
ularly evident in the Convention trait, which evalu-
ates writing conventions such as spelling and punc-
tuation, independent of prompt-relevant informa-
tion (Mathias and Bhattacharyya, 2018). While
even robust previous models, such as PMAES
(Chen and Li, 2023), PLAES (Chen and Li, 2024),
and ProTACT (Do et al., 2023), have shown sig-
nificantly lower performance in this trait, GAPS
demonstrates substantial improvements in the Con-
vention. These results emphasize the robustness
of our method’s prompt generalization capabilities.
Furthermore, in a prompt-wise examination, we
observe substantial performance gains for the chal-
lenging Prompt 7, which presents a difficult cross-
prompt setting due to its differences in type and
evaluated trait compositions (Table 1). Although
Prompt 8 shares the same type, it is constrained by
a smaller dataset of only 723 samples. Thus, the
notable improvements in Prompt 7 indicate GAPS’
ability to effectively evaluate essays of new, unseen
prompts, even in more challenging settings.

Avg 

Conv 

Org 

Content 

0.20 0.25 0.30 0.35 0.40 
QWK Score 

TA+PA 
TA+GA 

- TA+PA+GA 

0.45 0.50 

Figure 2: QWK scores for traits evaluated in Prompt 7.

Impact of grammar-aware vs. prompt-aware
approaches We directly compare GAPS, our
grammar-aware (GA) approach, with ProTACT’s
prompt-aware (PA) method, which leverages
prompt information directly. Since ProTACT also
introduces trait-relation-aware (TA) methods, such
as trait-similarity loss, we incorporate TA into
our model for a fair comparison (i.e., TA+GA vs.
TA+PA). Results in Table 2 show that PA excels
in Organization, Word Choice, and Sentence Flu-
ency, indicating its strength in capturing logical
flow and prompt adherence. In contrast, GA out-
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Model Traits AVG SD(↓)
Overall Content Org WC SF Conv PA Lang Nar

GAPS 0.672 0.573 0.485 0.580 0.586 0.451 0.582 0.567 0.630 0.570 ±0.014
w/o KS 0.672 0.570 0.488 0.561 0.564 0.446 0.570 0.571 0.632 0.564 ±0.015
w/o GCT 0.667 0.559 0.467 0.580 0.569 0.420 0.571 0.546 0.611 0.554 ±0.011

Table 4: Five runs averaged ablation QWK results over all prompts for each trait. KS and GCT denote the
Knowledge Sharing and Grammar Correction Tagging, respectively.

performs PA in Conventions, Language, and Nar-
rativity, demonstrating its superiority in enhancing
grammatical correctness and structural coherence.
Notably, GA’s impact on Conventions emphasizes
the direct benefits of referring to grammatically
corrected contexts. For most traits, using GA with
PA yields better performance.

We also investigate the effects of GA on the
traits evaluated in Prompt 7 (Figure 2). Interest-
ingly, in this low-resource cross-prompt scenario,
where similar types are scarce, GA outperforms PA
in all traits. This result suggests that incorporating
grammar-revised essays is much more beneficial
than relying on prompt information alone, espe-
cially in challenging cross-prompt settings.

Effects of knowledge sharing We further exam-
ine the impact of the designed knowledge-sharing
layer by comparing GAPS with a version that omits
the knowledge-sharing component (Table 4; w/o
KS). Instead of using Equations 3 and 4, we sim-
ply concatenate the obtained Eo and Eg vectors
and subsequently input them to the LSTM layer.
Removing the KS module results in a marked de-
cline in the Word Choice, Sentence Fluency, and
Convention traits, underscoring the pivotal role of
knowledge sharing in effectively capturing both
structural and syntactic features. Without the KS
module, the model struggles to integrate the origi-
nal and grammar-corrected essay representations,
which hinders its ability to make accurate judg-
ments of these traits.

Effects of grammar correction tagging To in-
vestigate whether the inclusion of grammar cor-
rection tags is effective, we conducted an ablation
study to eliminate the tags, utilizing only the pure
corrected essay (Table 4). Notably, specifying the
correction tags in the essay significantly improves
scoring performance across most traits, revealing
the importance of key entity identification for bal-
anced generalization. These findings are consistent
with existing studies, which show that underscor-
ing the key entities improves performance on down-
stream tasks (Ryu et al., 2024).

6 Conclusion

We propose a grammar-aware cross-prompt trait
scoring to enhance prompt generalizability. By di-
rectly utilizing grammar error-corrected essays as
the input, the model can learn more syntactic-aware
representations of essays. In addition, we intro-
duce tagging the corrected tokens, which leads the
model to better focus on critical parts for grading.
Our experiments demonstrate that grammar-aware
essay representation obtained with our straightfor-
ward model structure remarkably assists the scor-
ing of lexical or grammatical traits. Further, the
notable performance increase in the most challeng-
ing prompt implies our model’s internal acquisition
of prompt-independent features.

7 Limitations

We have explored the use of grammar error correc-
tion to assist in obtaining invariant essay represen-
tation for cross-prompt trait scoring. Our limitation
relates to the possible dependency on the GEC
performance, which is not handled in this work.
Although we used the robust and effective GEC
method, further experiments with different mod-
els will provide another room for scoring quality
improvement on cross-prompt settings.

8 Ethical Statement

We used publicly available datasets in this work.
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