
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 2711–2727

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Advancing Persian LLM Evaluation
Sara Bourbour Hosseinbeigi2, Behnam Rohani1, Mostafa Masoudi4,
Mehrnoush Shamsfard3, Zahra Saaberi3, Mostafa Karimi Manesh3,

Mohammad Amin Abbasi5,

1Sharif University of Technology, 2Tarbiat Modares University,
3Shahid Beheshti University, 4University of Tehran,

5Iran University of Science and Technology
Correspondence: s.bourbour@modares.ac.ir

Abstract

Evaluation of large language models (LLMs)
in low-resource languages like Persian has re-
ceived less attention than in high-resource lan-
guages like English. Existing evaluation ap-
proaches for Persian LLMs generally lack com-
prehensive frameworks, limiting their ability to
assess models’ performance over a wide range
of tasks requiring considerable cultural and con-
textual knowledge, as well as a deeper under-
standing of Persian literature and style. This
paper first aims to fill this gap by providing
two new benchmarks, PeKA and PK-BETS, on
topics such as history, literature, and cultural
knowledge, as well as challenging the present
state-of-the-art models’ abilities in a variety of
Persian language comprehension tasks. These
datasets are meant to reduce data contamina-
tion while providing an accurate assessment of
Persian LLMs. The second aim of this paper
is the general evaluation of LLMs across the
current Persian benchmarks to provide a com-
prehensive performance overview. By offering
a structured evaluation methodology, we hope
to promote the examination of LLMs in the
Persian language.

1 Introduction

Large language models (LLMs) have become in-
creasingly essential in natural language processing
(NLP) across multiple domains, necessitating eval-
uation. While significant progress has been made
in developing benchmarks and evaluation methods
for high-resource languages such as English, the as-
sessment of LLMs in low-resource languages like
Persian remains limited.

The most advanced Persian language models
are multilingual, transferring knowledge and skills
from high-resource languages such as English to
Persian. Although these models can grasp general
concepts and skills that can be transferred from
one language to another (Xu et al., 2023; Qi et al.,

2023), they are unable to fully capture the com-
plexity of Persian and learn knowledge accessible
solely in Persian sources.

Despite the growth of multilingual LLMs, most
studies have focused on worldwide languages, leav-
ing Persian’s particular linguistic, cultural, and
contextual problems largely unexplored. Current
benchmarks for Persian LLMs are often challeng-
ing a general skill or knowledge (Shariati et al.),
which can be borrowed and generalized from an
English setting to Persian.

Existing tools tend to focus on specific areas,
such as basic NLP tasks (Khashabi et al., 2021),
rather than providing a thorough evaluation of
Persian-specific tasks. To address this issue, this
study introduces new datasets designed specifically
for evaluating LLMs in Persian. These datasets
cover a wide variety of topics, including history,
literature, social knowledge, and Persian cultural
understanding. By utilizing these datasets, we can
provide a more accurate and culturally relevant as-
sessment of Persian LLMs.

Our primary goal is to evaluate the performance
of open-source and proprietary LLMs using the
available Persian benchmarks along with a trans-
lated version of ARC (Clark et al., 2018), and a
set of newly created Persian benchmarks: PeKA
and PK-BETS. These benchmarks are intended to
test models on tasks that require not only general
language skills, but also a thorough comprehension
of Persian culture, linguistic intricacies, and con-
textual reasoning. The study examines LLMs using
a variety of NLP tasks, including multiple-choice,
short-answer, and open-ended questions. These
tasks were carefully chosen to highlight the most
challenging aspects of Persian language compre-
hension and generation. We examine the perfor-
mance of the best models in Persian and how much
they borrow from other high-resource languages by
adding a wide range of domains and themes.

Along with benchmarking models over multiple-
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choice questions, it is also highly important to eval-
uate the performance of the models on open-ended
questions and compare their generative capabilities.
We use LLM-as-a-Judge for this purpose, using two
methods: pairwise comparison and single-answer
grading (Zheng et al., 2023).

2 Related Work

In recent years, the evaluation of Large Language
Models (LLMs) has become increasingly impor-
tant, particularly for languages with limited re-
sources ike Persian. Substantial progress has been
made in building benchmarks and toolkits for eval-
uating LLMs in high-resource languages, but many
issues within the low-resource languages remain
unexplored.

2.1 Open-source widely-used English
benchmarks

Open-source benchmarks like MMLU (Hendrycks
et al., 2021), ARC (Clark et al., 2018), Wino-
grande (Sakaguchi et al., 2021), BBH (Suzgun
et al., 2023), HellaSwag (Zellers et al., 2019),
GSM8k (Cobbe et al., 2021), and TruthfulQA (Lin
et al., 2022) are widely used to assess language
models in diverse tasks. MMLU evaluates mod-
els across 57 academic and professional subjects,
whereas ARC tests scientific reasoning through
standardized exam questions. Winogrande assesses
commonsense reasoning by resolving ambiguous
pronouns, whereas BBH addresses challenging
logic and mathematics challenges. HellaSwag is a
dataset for physically situated commonsense rea-
soning. GSM8k tests models on grade-school-level
math word problems, and TruthfulQA measures
a model’s truthfulness and resistance to generate
misleading or inaccurate information. By translat-
ing several of these benchmarks into Persian, we
ensure that the models’ cross-lingual performance
is thoroughly evaluated.

2.2 Open-source Persian benchmarks
To test LLMs in Persian, several datasets are avail-
able for different NLP tasks like NER (Poost-
chi et al., 2016; Shahshahani et al., 2018), NLI
(Amirkhani et al., 2023; Khashabi et al., 2021),
sentiment analysis (Khashabi et al., 2021; Sharami
et al., 2020; Nazarizadeh et al., 2022), paraphrasing
(Khashabi et al., 2021; Mohtaj et al., 2022; Sadeghi
et al., 2022), irony detection (Golazizian et al.,
2020), reading comprehension (Khashabi et al.,
2021; Abadani et al., 2021; Ayoubi, 2021; Darvishi

et al., 2023), summarization (Farahani et al., 2021b;
Behmadi Moghaddas et al., 2013; Salemi et al.,
2021; Farahani, 2020; Hasan et al., 2021), transla-
tion (Khashabi et al., 2021; Kashefi, 2020; Karimi
et al., 2018), and spell correction (Persian, 2021;
Mirzababaei et al., 2013). Recently, Persian-
MMLU was introduced by Ghahroodi et al. (2024),
covering substantial gaps in previous research
by offering a culturally nuanced dataset specif-
ically designed for Persian, with 20K multiple-
choice questions across 38 diverse domains, rang-
ing from elementary to secondary education lev-
els. Also, Khashabi et al. (2021) provided a test
set in multiple-choice question format with 2.4K
instances derived from Persian educational texts,
such as exams and employment tests in three do-
mains: literature, commonsense, and mathematics.
Abaskohi et al. (2024) also released two new bench-
marks of math problems consisting of 279 samples
drawn from elementary school questions and en-
trance exams for talented students.

2.3 Evaluation of Persian language

As multilingual LLMs have improved, demonstrat-
ing considerable promise for comprehending and
producing Persian material, the necessity to assess
their performance across several facets of the Per-
sian language has grown. Abaskohi et al. (2024)
took on this challenge by researching GPT-3.5
(Brown et al., 2020) and GPT-4 (OpenAI et al.,
2024) as closed-source models, alongside Open-
Chat3.5 (Wang et al., 2024) as an open-source al-
ternative. They evaluated the models across dif-
ferent NLP tasks, incorporating an investigation
into various prompt engineering techniques to en-
hance performance. Khashabi et al. (2021) evalu-
ated multilingual language models like mT5 (Xue
et al., 2021) and Persian-specific models such as
ParsBERT (Farahani et al., 2021a). They also of-
fered a number of BERT-based models for vari-
ous tasks that have been fine-tuned using Persian
datasets. Additionally, Ghahroodi et al. (2024) pro-
vided a benchmark to assess the performance of
both open-source and closed-source LLMs, such
as GPT-4, XVERSE1, Aya (Üstün et al., 2024),
and Claude (Anthropic, 2024). There are also two
GitHub projects dedicated to benchmarking Per-
sian. MofidAI (Fallahnejad and Zarezade) bench-
marks HuggingFace Persian language models, such
as mT5 and BERT-based models, using a variety of

1https://github.com/xverse-ai
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available datasets. The repository addresses chal-
lenges such as the absence of standardized eval-
uation codes and specified test sets. ParsBench
(Shariati et al.) is a toolset designed exclusively
to benchmark LLMs in Persian. It covers a wide
range of tasks, including sentiment analysis, ma-
chine translation, and multiple-choice question an-
swering, using datasets like ParsiNLU and Persian-
MMLU. ParsBench has also developed a leader-
board on Huggingface that ranks several LLMs, in-
cluding well-known open-source and closed-source
models, as well as those fine-tuned specifically for
Persian. Our work has broadened the evaluation
of the Persian language from multiple perspectives.
This includes establishing a generalizable assess-
ment framework, expanding the variety of bench-
marks available and examining a diverse range of
LLMs.

3 Extending Persian benchmarks

We provide two benchmarks designed exclusively
for the Persian language, which cover a wide range
of domains and tasks. These benchmarks are devel-
oped with a thorough grasp of Persian culture, en-
suring that the majority of examples are native and
contextually relevant to real-world use cases within
the Persian-speaking community. Our work fills
a major gap in the availability of Persian-centric
benchmarks for evaluating LLMs in Persian and
identifying model shortcomings. Each benchmark
is described separately below.

3.1 PeKA: Persian Knowledge Assessment

This dataset is constructed so that answering these
questions requires knowledge about Persian com-
munity, particularly Iran, and its culture from a
variety of perspectives. It is worth noting that
the majority of the essential information is avail-
able on the internet. This data set contains 3600
multiple-choice questions divided into 12 different
categories, each with 300 high-quality examples.
The Categories are as follows: history, literature,
religion, general knowledge, geography, nature,
art, music, television shows, movies, food, and
sports which cover a wide range of cultural and
native topics for Persian speakers.

Data Construction Method. The data for PeKA
was derived from Quiz of Kings, a popular quiz
game created by an Iranian gaming firm. This game
allows participants from across Iran to compete in
a variety of knowledge areas. While the majority

of the questions are publicly available through the
game, additional curated data was obtained directly
from the producers for research purposes. The
questions were verified by specialists appointed
by the company, ensuring their factual correctness
and contextual relevance. Additionally, the game’s
terms of use, agreed upon by users at the start,
allow for the use of user reactions to assess the
quality of questions.

Each question is filtered through numerous
stages to ensure that it is correct and valid. Ini-
tially, the same user base in the app votes to iden-
tify defective or incorrect questions. The chosen
questions are then verified by specialists in each
discipline. Each row of the data includes additional
information on the number of people who chose
each option or did not answer the question at all.
The questions are then classified into three levels
of difficulty: easy, medium, and hard based on
the ratio of the people who have chosen the cor-
rect answer in each question (including those who
have not chosen an answer within the limited time).
(See Figure 1). Certain examples of dataset are
illustrated in Appendix C.
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Figure 1: Distribution of correct choice ratio for each
difficulty class

3.2 PK-BETS: Persian Knowledge - Bias
Ethics Toxicity and Skills

This benchmark consists of a comprehensive set of
domains meant to test the model’s knowledge and
language abilities in Persian. One major shortcom-
ing in the research is the poor evaluation of models
for Persian text generating tasks. To tackle this
issue, PK-BETS is designed to include a variety
of question types, such as multiple-choice, short
answer, long answer, and open-ended questions.
This allows us to evaluate not only the model’s
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capabilities using multiple-choice questions, but
also its ability to generate coherent and meaningful
content. The dataset is organized into 16 distinct
categories so that each of them can fill a gap in the
evaluation of the Persian language. Appendix D
provides more information on these categories.

Data Construction Method The primary objec-
tive of this dataset is to identify and analyze the
cultural and contextual weaknesses of the Llama 3
model, which, at the time, was the best-performing
open-source model supporting Persian. The dataset
creation process involved defining culturally spe-
cific categories related to Iran. For each category,
we collaborated with one or more domain experts
who were free to select reliable sources based on
their expertise. These experts formulated questions
directly from these sources, ensuring the cultural
and contextual accuracy of the data.

The primary aim of PK-BETS is to identify areas
where Llama-3 exhibited weaknesses in tasks spe-
cific to Persian cultural and contextual knowledge.
Approximately 50% of the questions were selected
where Llama-3 provided accurate answers, while
the remaining 50% highlighted its hallucinations
or errors.

When creating this dataset, we start by carefully
selecting varied sources to extract questions that
are culturally and contextually relevant to the Per-
sian population. These sources include books, uni-
versity tests, and expert insights. Questions are
generated directly from these sources or by human
authors. We then consider Llama-3 70B’s answers
to these questions. We filter and curate a subset
of the dataset, maintaining a suitable proportion of
the questions that the model answers properly and
instances where the model hallucinates or fails to
provide accurate responses. This organized method
produces a rich and diverse dataset, showcasing the
model’s strengths and limitations in interpreting
and addressing culturally relevant queries.

The ground truth for PK-BETS was established
by the contributing experts independently of Llama-
3’s answers. These experts formulated questions
and determined correct answers based on their cho-
sen credible sources. Llama-3’s outputs were used
only to analyze its performance, and its responses
did not influence the dataset’s ground truth. This
process ensures that the benchmarks derived from
PK-BETS are robust, unbiased, and reflective of
expert knowledge.

The dataset’s questions were sourced and se-

lected in collaboration with domain-specific spe-
cialists from multiple categories. A variety of
sources were used for each topic to ensure diversity
and richness in the dataset. All references were
carefully vetted by specialists to ensure quality and
relevance. Examples include:

Legal Based on the Islamic Republic of Iran’s
Constitution and other legal references regularly
utilized by the Iranian judiciary.

Religious Based on widely used references, such
as Ayin-e Zindegi (Life’s Ethics), a university text-
book, and other culturally significant religious
texts.

Medical Sourced from books and university cur-
ricula frequently utilized in Iranian educational and
medical contexts, covering both mainstream and
traditional Iranian medicine.

Cultural and Social Inspired by Persian litera-
ture, proverbs, and history, with references to edu-
cational books and curated knowledge from Iranian
scholars.

To guarantee authenticity and diversity, experts
were allowed to create questions on their own and
select trustworthy sources that were pertinent to
their fields. These sources were either widely rec-
ognized or based on their professional expertise.

3.3 Translation of widely-used open English
benchmarks

Numerous benchmarks have been developed to
evaluate LLMs in English, covering a wide range
of tasks and dimensions. To extend these evalu-
ations to Persian, we translated the ARC dataset
using GPT-4o and GPT-4o-mini model APIs. Our
analysis examines the performance degradation of
multilingual models when comparing the original
English ARC dataset to its Persian translation (See
Table 1). We ensured that the translation procedure
for this specific benchmark was of high quality.
Appendix B provides more information about the
translation process and quality.

4 Benchmarking open-source LLMs for
Persian

Several benchmarks are provided including the
most useful available Persian datasets as well as
newly created and translated benchmarks on vari-
ous open-source and proprietary LLMs in different
sizes. Our evaluation framework organizes and
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Params ARC Challenge
0-shot

Original Translated

Llama 3 8B 77.59 62.23
70B 92.36 86.00

Llama 3.1 8B 80.08 65.15
70B 93.81 88.15

Aya-23 8B 66.69 60.08
35B 83.43 75.27

Qwen 2 7B 83.94 65.92
72B 94.16 87.46

Qwen 2.5
7B 86.35 68.49
14B 91.41 82.23
32B 92.10 86.00

Command-r 35B 83.17 72.87

Table 1: The drop in models’ accuracy from the original
ARC benchmark (challenging subset) to the translated
version in Persian.

cleans our experiments (see Appendix E for more
details), providing insight into the current status
of large language models in Persian. This review
aims to identify gaps and potential for improve-
ment, guiding future research and development in
the subject. The models, tasks, prompts, and re-
quired resources are detailed below.

Models. Some of the examined models explicitly
state that they only support specific languages but
include Persian in their capabilities, whereas others
officially include Persian as part of their multilin-
gual functionality. We conduct our evaluations on
Llama3, Llama3.1 (Dubey et al., 2024), Qwen2
(Yang et al., 2024), Qwen2.5 (Team, 2024), Aya-
23, and Command-r-v012 models. Table 2 summa-
rizes the evaluated models, their parameter counts,
and whether they officially support the Persian lan-
guage. Also, models’ setup during experiments is
explained in Appendix A

Model Name #Params
Persian

supported
Meta-Llama-3.1-Instruct 8B,70B No
Meta-Llama-3-Instruct 8B,70B No

Qwen2-Instruct 7B,72B Yes
Qwen2.5-Instruct 7B,14B,32B, 72B Yes

c4ai-Aya-23 8B, 35B Yes
c4ai-Command-r-v01 35B Yes*

Table 2: Evaluated models and Persian support status.
∗: Persian data in just pre-training.

2https://huggingface.co/CohereForAI/c4ai-command-r-
v01

Tasks. Our test data are picked from available
open-source Persian datasets, our own new bench-
marks, and translated datasets to ensure a thorough
evaluation and proper ordering of LLMs based
on their skills in Persian. We aim to represent
a model’s abilities in important tasks and domains.
Assessed datasets, their size and tasks are shown in
Table 3.

Dataset Task Test Size

ParsiNLU

MCQ 1k
NLI 1.7K

Query Paraphrasing 1.9K
PersianMMLU MCQ 20K

ARC (translated) MCQ 3.5K
PeKA MCQ 3.6K

PK-BETS MCQ + Open-ended Questions. 4K
PQuAD Reading Comprehension 8K

Table 3: Datasets which are used for our evaluation
tests. MCQ: multiple-choice question. NLI: Natural
Language Inference (Textual Entailment).

Prompts. We run our experiments in different set-
tings based on the dataset and test various prompt
structures for each task to identify a prompt that
achieves the highest score. Since our assessment is
focused on the Persian language, we try to find
the best prompts whose content is almost com-
pletely Persian, but English prompts are also tested.
We explore the impact of using or not using the
chat template, along with various general and task-
specific system prompts, and proceed with experi-
ments based on the best-performing setup.

Resources. We use 1, 2, or 3 Nvidia A100 80G
to evaluate open-source models in the range of ~8,
~35, or ~70 billion parameters respectively.

5 Results

The evaluation results of open-source and propri-
etary models are shown in Table 4. When we
compared Qwen and Llama models, we observed
that Qwen struggled in knowledge-based questions,
whereas Llama demonstrated a considerably deeper
understanding and awareness of Persian history,
culture, and almost every other domain. Llama 3.1
performed particularly well, excelling in the two
new benchmarks provided: PeKA and PK-BETS.

However, when it comes to reasoning and textual
entailment, Qwen models with around 7 billion
parameters outperformed other models of the same
size. Particularly, it was able to answer difficult
math and logic questions from PersianMMLU.
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Moreover, Qwen-2.5-32B demonstrated skills
on par with the models of size ~70B and even per-
forming better than them in several benchmarks
despite having a lower capacity to reach them in
knowledge-based benchmarks.

5.1 Analysis of PeKA based on categories

We conduct a detailed analysis of the performances
of open-source models in different sizes on the
PeKA benchmark, which focuses on Persian knowl-
edge (See Table 5). A trend in model ranking is
observed across the categories in this benchmark
in Figure 2, showing the correlation between the
knowledge capacity of models and their number of
parameters. Furthermore, it is observed that Llama
models’ knowledge is strictly superior to that of
Qwen’s models when it comes to Persian in almost
every category.

Generally, the models demonstrate stronger
knowledge in more prominent and frequently cov-
ered areas, such as history, general knowledge, and
religion. In contrast, their performance is weaker
in less emphasized or specialized categories, such
as TV, music, cinema, and food, where little to no
information is available about them in other lan-
guages like English. This suggests that the models
are better at understanding widely known and re-
peated information, carrying it from rich languages
such as English to Persian, but struggle with less
common or more culturally specific knowledge
only available in Persian sources.

5.2 Analysis of PK-BETS categories

The performance of the models on different cat-
egories of PK-BETS (only multiple-choice ques-
tions) are presented in Table 6.

Cultural and Contextual Clarity In categories
with legal or religious questions, the prompts ex-
plicitly instructed the models to provide answers
aligned with Iranian cultural, legal, and medical
norms. For instance:

Law Prompts emphasized alignment with Iranian
law, including phrases like “Answer this question
based on Iranian’s laws.”

Medicine Prompts specified whether they re-
ferred to traditional Iranian practices or modern
medicine to reduce ambiguity.

Traditional Medicine Questions based on tradi-
tional Iranian medicine were clearly categorized,

emphasizing their cultural significance and distin-
guishing them from conventional medical prac-
tices.

When confronted with questions in a Persian-
specific context, existing multilingual, cutting-
edge models perform badly in disciplines such as
medicine and law. They lack essential linguistic
skills in identifying metaphor and irony in Persian
writing, lacking an understanding of toxicity, hu-
man bias and different emotions. These domains
are where Persian and English style differs tremen-
dously. This is where a knowledge or a skill, based
solely on English writing, cannot be applied to
the same writing in Persian, which is why it can
hurt the performance of multilingual models in the
above-mentioned tasks.

5.3 Evaluation by LLM-as-a-Judge

It is crucial to go beyond the typical evaluation
of LLMs by benchmarks, which only focuses on
multiple-choice questions. Therefore, we also as-
sess and compare models on generation tasks that
provide significant insights into their generative
capabilities. The generation tasks included in the
PK-BETS dataset offer a valuable resource for this
type of evaluation. We evaluate smaller (~7-8B)
open-source LLMs with two evaluation methods,
(i) pairwise comparison and (ii) single-answer
grading (Zheng et al., 2023). We also compare
four open-source and proprietary models as judges
for single-answer grading method.

5.3.1 Pairwise comparison of LLMs
In this method, the answers of two models are given
to GPT-4o as a judge to decide if one model’s re-
sponse is superior, both are equally good (tie), or
both are equally bad (bad tie). We selected a sub-
set of 100 samples from the PK-BETS generation
questions, ensuring that different categories and
topics are used in the final evaluation. The pair-
wise comparison results for five different models
are presented in Figure 3.

A subset of size 100 is picked for human eval-
uation. This is later used for measuring the agree-
ment of judge’s decision with human preferences
using Cohen’s kappa score (Cohen, 1960; McHugh,
2012). See table 7.

5.3.2 Single answer grading evaluation
To assess models’ generating capabilities in Per-
sian, we present a well prepared dataset of 40 ques-
tions. These questions ask the model to tell a story,

2716



Params
PeKA
0-shot

PK-BETS
(MCQA)

0-shot

Khayyam
Challenge

0-shot

ParsiNLU
(MCQA)

0-shot

ParsiNLU
(NLI)*

ParsiNLU
(QQP)*

PQuAD
2-shot

GPT-4o N/A 81.66 73.96 52.26 – – – –
GPT-4o-mini N/A 62.90 64.68 – – – – –

Qwen 2.5

7B 37.59 45.94 38.68 41.52 70.71 83.56 71.94
14B 42.62 52.84 41.87 48.00 78.24 84.97 78.27
32B 47.68 58.82 49.19 53.80 81.53 86.63 81.31
72B 54.20 61.30 51.20 57.52 81.35 87.73 79.06

Qwen 2 7B 37.32 47.81 37.01 41.71 69.28 82.67 51.34
72B 52.57 60.65 47.91 53.05 77.76 82.51 –

Llama 3 8B 41.59 47.24 34.92 40.09 60.60 80.69 78.43
70B 57.90 58.52 45.12 53.90 78.66 88.15 66.17

Llama 3.1 8B 44.10 48.76 35.70 42.67 59.41 80.58 77.37
70B 62.38 64.12 48.65 58.57 78.54 88.47 84.39

Aya-23 8B 41.12 42.73 31.17 36.86 57.14 60.49 65.63
35B 52.99 53.84 37.20 42.48 67.36 87.58 74.48

Command-r 35B 52.99 50.63 36.32 40.48 59.77 84.50 62.3

Table 4: Accuracy of open-source and proprietary models across various benchmarks. The best-performing model is
highlighted in bold for each benchmark. *On NLI and QQP benchmarks, models are evaluated in different few-shot
settings and the maximum score is considered. Maximum of 0,2,5,10-shots for QQP and maximum of 0,3,5,10-shots
for NLI.

Llama 3 Llama 3.1 Qwen 2 Qwen 2.5 Aya-23 Command-r GPT-4o
GPT-4o

mini
8B 70B 8B 70B 7B 72B 7B 14B 32B 72B 8B 35B 35B N/A N/A

History 37.33 51.67 39.00 60.33 35.67 45.33 37.00 39.67 47.33 73.66 47.00 46.67 48.33 90.66 79.66
Literature 32.33 37.33 34.00 44.33 32.33 39.00 28.33 31.00 36.00 53.33 31.67 37.33 34.67 81.66 60.66
Religion 48.33 72.33 55.33 74.33 44.67 61.00 43.33 48.33 60.67 65 45.00 63.33 59.33 89.333 71.33

Knowledge 52.00 72.33 54.00 74.00 42.67 60.00 49.50 51.00 51.67 68.56 51.83 69.57 67.67 90.30 78.26
Geography 52.67 79.67 58.00 84.00 42.00 68.67 40.33 58.67 62.33 62.33 47.00 68.00 66.67 90.66 75.33

Nature 40.00 58.00 40.67 62.67 34.33 46.00 35.33 37.33 46.33 52.33 47.00 48.67 53.33 86.0 65.33
Art 36.33 48.00 36.00 51.00 34.33 50.67 34.33 36.00 43.67 64.66 41.67 47.33 47.33 87.0 69.0

Music 40.67 58.33 45.00 65.67 42.00 56.67 42.00 41.33 50.00 35 45.33 57.00 56.33 63.33 42.33
TV 27.00 31.00 29.67 32.67 27.00 26.67 21.00 21.00 21.67 24.33 24.00 29.00 29.00 56.66 36.0

Cinema 32.00 49.33 35.33 55.67 30.67 45.00 32.00 37.00 40.00 50 33.67 42.33 47.33 82.0 57.66
Food 56.19 70.90 59.20 76.59 49.50 71.91 49.50 54.85 61.54 44 51.84 42.33 69.23 78.0 53.66

Sports 40.67 58.33 45.00 65.67 42.67 56.67 42.00 41.33 50.00 57.33 45.33 57.00 56.33 84.33 65.66

Table 5: Performance (%) of various models across different categories of PeKA benchmark.
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Qwen2.5-32B-Instruct
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Figure 2: Llama vs Qwen; PeKA results for each category.

describe certain scenarios from a specific point of
view, or characterize a conversation between two

people with different viewpoints. The model’s re-
sponses are then scored on a scale of 0 to 5 by
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Llama 3 Llama 3.1 Qwen 2 Qwen 2.5 Aya-23 command-r GPT-4o GPT-4o-mini
8B 70B 8B 70B 7B 72B 7B 14B 32B 72B 8B 35B 35B N/A N/A

Persian Language 44.50 65.25 42.50 68.25 57.25 74.00 56.25 65.00 71.50 75.25 36.50 52.25 47.75 83.0 67.5
Respecting

Others’ Rights 40.00 60.00 41.67 60.00 45.00 65.00 41.67 41.67 68.33 73.33 50.00 65.00 56.67 81.66 68.33

Text Generation 50.91 61.82 43.64 69.09 60.00 63.64 41.82 49.09 67.27 65.45 60.00 63.64 52.73 83.63 76.36
Bias 45.29 44.12 41.76 63.53 35.29 65.29 41.18 54.12 58.24 57.64 36.47 42.35 45.29 71.76 61.17

Emotion Analysis 49.8 57.6 56.2 63.8 49.2 60.6 44.2 54.4 55.4 54.6 51.4 58.4 52.4 69.8 65.4
Medicine 37.50 52.50 38.12 55.62 40.00 49.38 35.62 45.00 46.88 54.37 38.75 40.00 42.50 73.12 59.37

Paraphrase 76.0 76.0 62.0 78.0 74.0 80.0 74.0 54.0 86.0 80 58.0 62.0 58.0 86.0 86.0
Recommendation 54.76 69.05 47.62 76.19 53.57 65.48 41.67 47.62 59.52 69.04 50.00 60.71 58.33 77.38 73.80

Style Transfer 62.0 60.0 76.0 66.0 46.0 64.0 64.0 54.0 70.0 74 38.0 68.0 62.0 86.0 74.0
Toxicity 30.97 54.87 49.56 54.87 34.51 32.74 44.25 44.25 42.48 48.67 27.43 47.79 52.21 45.13 40.70

Encyclopedic
Knowledge 43.5 61.0 42.5 66.5 33.0 53.0 29.5 42.5 47.5 57.5 33.0 54.5 49.5 84.5 68.0

Law 48.10 52.38 48.10 60.00 48.10 52.86 45.24 50.00 51.90 53.33 43.33 48.57 48.10 63.33 55.23
Metaphor 28.33 38.33 36.67 56.67 40.00 48.33 28.33 36.67 51.67 51.66 25.00 40.00 30.00 66.66 51.66

Irony 56.0 60.0 55.0 65.0 54.0 56.0 56.0 51.0 64.0 58 50.0 62.0 55.0 65.0 66.0
Empathy
Intimacy

Trust
79.31 79.31 74.14 87.93 70.69 82.76 68.97 77.59 82.76 82.75 68.97 79.31 81.03 91.37 86.20

Religion 45.71 62.86 60.00 57.14 37.14 60.00 48.57 51.43 51.43 57.14 34.29 57.14 54.29 80.0 71.42

Table 6: Performance (%) of various models across different categories of PK-BETS benchmark (only multiple-
choice question-types).
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Figure 3: Win rate of models against each other in pair-
wise comparison method using GPT-4o as judge. For
each pair of models, they both respond to 100 questions
of generative problem-types in PK-BETS.

GPT-4o GPT-4o-mini LLaMA
κ 0.54 0.41 0.24

Table 7: Cohen’s κ score of different models as judge
for the task of pairwise comparison with a given ground-
truth.

GPT-4o for six linguistic criteria: coherency, flu-
ency, grammar, naturalness, repetition, and diver-
sity. The evaluation outcomes of various models’
responses are provided in Table 8.

In general, the responses generated by Aya-23-
8B showcased an extremely higher quality in terms
of creativity, storytelling, and following natural lin-
guistic structures than the other models. Aya-23-8B

supports Persian (Table 2), which contributes to its
outstanding performance in certain areas. Addition-
ally, Llama 3.1, despite its substantial multilingual
capabilities, is behind Qwen2 in terms of quality of
generated text. However, Llama 3.1 significantly
outperforms the previous Llama 3, demonstrating
a notable improvement. The major problem with
Llama 3 is that it tends to respond in English even
though the input prompt is given in Persian, which
radically lowers the language score in the final re-
sults.

Llama-3 Llama-3.1 Qwen2 Qwen2.5 Aya-23
Coherency 2.17 4.1 4.3 4.35 4.76
Diversity 1.85 3.25 3.8 3.87 4.2
Fluency 2.02 3.72 4.02 4.1 4.42
Grammar 2.07 4.22 4.17 4.15 4.42
Naturalness 2 3.75 4.07 4.1 4.47
Repetition 1.65 2.7 3.07 3.275 3.5
Average 1.85* 3.63 3.92 3.99 4.30

Table 8: Performance comparison of candidate ~7-8B
models across different LLM-as-a-Judge metrics to eval-
uate the quality of generated responses by models. *Low
score of Llama 3 is due to sometimes generating re-
sponses purely in English when given a question in
Persian.

Agreement of LLM judge with human evalua-
tion We report Kendall’s Tau correlation score,
a metric used to measure the correlation between
two sets of ordinal data (Kendall, 1938), between
the scores assigned by the LLMs and four different
human evaluators. For this purpose, a dataset is cre-
ated consisting of 400 responses generated by 10
different models across 40 questions mentioned ear-
lier. We then compute this measure for judge mod-
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els Llama 3.1 70B, Qwen2 72B, GPT-4o mini, and
GPT-4o, comparing their scores to human judge-
ment, as shown in Table 9. A Kendall’s Tau coeffi-
cient above 0.5 generally indicates a strong positive
correlation. Both GPT-4o and GPT-4o mini show-
case a higher alignment with human judgement
compared to Llama 3.1 and Qwen2.

Criteria LLaMA Qwen2 GPT-4o mini GPT-4o
Grammar 0.46 0.34 0.49 0.54
Fluency 0.47 0.51 0.51 0.55
Coherency 0.56 0.54 0.57 0.60
Naturalness 0.51 0.51 0.51 0.56
Diversity 0.60 0.62 0.65 0.62
Repetition 0.56 0.55 0.52 0.60

Table 9: Kendall’s τ coefficient between LLM and hu-
man judges.

6 Conclusion

In this study, we addressed the significant gaps in
evaluating large language models (LLMs) in Per-
sian by introducing two new benchmarks. These
benchmarks cover a diverse range of topics and
tasks, providing a rich framework for assessing the
proficiency of LLMs in Persian.

Through extensive experiments, we evaluated
both open-source and proprietary models across
various benchmarks, examining models of differ-
ent sizes and capabilities. Our results show that
Llama 3.1 and Qwen 2.5 outperformed others in
the majority of tasks among open-source models.
However, both models still lag behind the propri-
etary GPT-4o, which demonstrated a strictly supe-
rior performance in almost all domains and tasks.
Additionally, in generation problem-types where
LLMs act as evaluators, we found that GPT-4o ex-
hibited better alignment with human judgment for
Persian open-ended questions.

Interestingly, the smaller Aya-23-8B model gen-
erated responses that were well-suited to Persian
linguistics, though it did not achieve the highest
performance on the broader benchmarks. This sug-
gests that while certain models may excel in spe-
cific linguistic tasks, their overall capacity to han-
dle a wide range of challenges in Persian language
remains limited.

Our findings highlight the need for ongoing de-
velopment in proprietary and specially open-source
models to fully capture the intricacies of the Per-
sian language. Our benchmarks provide a critical
foundation for future work in this area, enabling

more accurate and culturally nuanced evaluation of
LLMs in Persian.

7 Limitations

This research focuses primarily on Qwen, Llama,
and CohereForAI’s models, which proved capable
in Persian language. However, it is worthwhile to
also checkout other open-source models such as
Mistral, Phi, and Yi. The other proprietary models
such as Claude Sonet 3.5 should also be tested
as it also demonstrated high-level capabilities in
Persian.

We refrained from reporting the results in sum-
marization and translation tasks because of poor
quality and unreliability of current Persian bench-
marks due to possible data contamination. It is help-
ful to introduce fresh and diverse datasets for trans-
lation and summarization tasks and report the corre-
sponding results of current state-of-the-art models
on them.

Although PK-BETS covers several gaps in the
evaluation of models in Persian linguistic tasks, the
size of this dataset is relatively small. Extending
the current benchmark with more instances can be
helpful.

We only test LLM-as-a-Judge for relatively
smaller models due to the lack of computational
resources and the high cost of proprietary models
as evaluators.

There are still many aspects of the Persian lan-
guage that are left unexplored. A further research
into the performance of multilingual models on
Persian-specific tasks and general tasks can en-
lighten strengths and weaknesses of these models.
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A Models’ setup during inference

We fix the setting of models during inference so that
experiments are comparable with each other. The
specified values for these parameters are provided
in Table 10

temperature 0.01
do_sample True

top-k 50
top-p 1.0

repetition_penalty 1.0
max_new_tokens based on task

Table 10: Hyperparameters of models during evaluation.
All other parameters are the set to default values.

The max_new_tokens parameter that restricts
the number of generated tokens varies based on
the task; it is set to 32 for multiple choice ques-
tions where we just wish to extract the option’s
label or the actual answer, 680 for CoT configs that
need space to reason and find the final answer (e.g.
BBH), and also 512 for open-ended questions or
long answers.

B Translation of widely-used open
English benchmarks

We translate datasets with GPT-4o API from En-
glish to Persian. To choose the best model for
translation, GPT-4, GPT-4o and GPT-4o-mini are
compared. One hundred examples from the ARC
dataset are chosen randomly and the responses
of these models are compared. A native Persian
speaker serves as the annotator, choosing the best-
performing model for each example. Ultimately,
GPT-4o, which demonstrated the best performance
in terms of translation accuracy and fluency, was
selected.

C PeKA Dataset Examples

Several examples of the PeKA dataset are presented
in Table 11.

D PK-BETS Dataset Details

The dataset’s 16 categories are explained in 10
different classes:

0. Persian Language: This section is designed
to assess the proficiency of LLMs in various
linguistic skills, including syntax, sentence
structures, idioms, proverbs, and lexical se-
mantics (such as analogies).

0. Style transfer: This assignment demands the
model to interpret and adapt writings in a vari-
ety of styles, such as polite, colloquial, formal,
and comical.

0. Social Knowledge Understanding: In this
section, various aspects of social knowl-
edge, such as emotion analysis, deciphering
metaphors and irony, recognition of insults
and aggression, as well as humanistic con-
cepts like empathy, intimacy, and trust, are
evaluated.

0. Ethics and Bias: This section evaluates the
model for potential biases in several cate-
gories such as gender, religion, politics, and
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Example Label Category
است؟ کدام کبیر کورش پسر نام

اهورا (۴ ارسلان الب (۳ کمبوجیه (۲ اسفندیار (۱
English equivalent: What is the name of Cyrus the Great’s son?"

1) Esfandiar 2) Cambyses 3) Alp Arslan 4) Ahura

2 History

است؟ استان کدام دیدنی مناطق از سبز بام
گیلان (۴ اصفهان (۳ گلستان (۲ رضوی خراسان (۱

English equivalent: Bame Sabz is one of the scenic areas of which province?
1) Khorasan Razavi 2) Golestan 3) Isfahan 4) Gilan

4 Nature

Table 11: PeKA benchmark examples.

race. It also requires assessing the model’s
adherence to ethical principles and respect for
the rights of others.

0. Medicine: This area includes general, spe-
cialized, and medical emergency knowledge
in the fields of traditional medicine, such as
medical terminology and drug names. These
medical terms are typically provided in Per-
sian and in some cases, English equivalent
terms are provided.

0. Law: The questions are designed based on
the officially approved Constitution of Iran, as
well as the country’s legal and criminal laws.

0. Religion: The religious questions are derived
from the teachings of Islam, sourced from
treatises written by religious scholars, Islamic
texts, or frequently asked questions by the
general population.

0. Encyclopedic knowledge: The questions are
prepared in a variety of subjects, including
social sciences, humanities, literature, sports,
art, politics, economics, and culture. They
are designed in such a way that the responses
remain consistent and do not alter with time.

0. Recommendation: This component of the
dataset is intended to evaluate the model’s
ability to make logical, accurate, and relevant
suggestions. Each question describes a unique
scenario in detail, allowing the model to make
decisions and make recommendations based
on the circumstances. Answering these issues
usually involves a combination of common
sense and the ability to use reasoning abilities
successfully.

0. Text Generation: This section assesses the
model’s text generation capabilities across var-

ious tasks, which include: (i) generating a
cohesive text on a topic that requires general
knowledge across different areas, (ii) writing
from a specific point of view, demonstrating
an understanding of that perspective and its
unique conditions, (iii) producing text in a
particular speaking style, requiring familiarity
with different tones and linguistic styles, (iv)
continuing an incomplete text, (v) construct-
ing sentences using a limited set of words, (vi)
generating poems and songs, and (vii) para-
phrasing text on different topics.

Several examples of dataset are presented in Ta-
ble 12.

E Our Evaluation Framework

Evaluating LLMs in large-scale and systematic
ways has many complexities that require a compre-
hensive framework. There are many open-source
frameworks with specific features that help us eval-
uate open-source and API-based models on various
benchmarks.

The Promptbench (Zhu et al., 2024) is one of
the most popular frameworks that support a varti-
ety of models, datasets, prompt engineering tech-
niques and attack methods, and other useful fea-
tures to make it a unified and complete framework
for LLM evaluation. Also, there are other tools
such as DeepEval (ConfidentAI) and MLflow LLM
Eval (LinuxFoundation) that can be used for the
same purpose.

Inspired by open-source tools, we implement a
framework to automate our evaluation experiments
on various Persian benchmarks using customizable
prompts. The framework is designed to be flexible
and extendable, allowing users to easily add new
datasets, integrate models, and actually create new
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Example Category
است؟ موقعی چه آنفلوانزا واکسن تزریق زمان بهترین

English equivalent: When is the best time to inject the flu vaccine?
Medicine

باشیم؟ داشته سوسابقه ابد تا میشود باعث جرم ارتکاب آیا
English equivalent: Does committing a crime cause us to have a criminal record forever?

Law

نمونه مدیر عنوان به پیاپی سال سومین برای امسال است، شرکت ارشد مدیران از یکی که اکبری
بده. توضیح را خود انتخاب دلیل آقا؟ یا است خانم اکبری شد. تقدیر او از و شد انتخاب

English equivalent: Akbari, who is one of the senior managers of the company, was chosen
as an exemplary manager for the third year in a row and was honored.
Is Akbari a lady or a gentleman? Explain the reason for your choice.

Bias

میدهد. بهار بوی نفسش و میخندد چشمهایش دیدی؟ مرا ماه
دارد؟ وجود متن این در هایی استعاره چه و استعاره چند

English equivalent: How many metaphors and which type of metaphors are used in the following text?
"Did you see my moon? Her eyes are smiling and her breath smells like spring."

Persian Language

Table 12: Examples from some of PK-BETS dataset categories

evaluation pipelines. Our framework is currently
under development to incorporate additional fea-
tures and capabilities. In the following, the main
components and capabilities of the framework are
briefly explained.

5.1 Framework components

Our evaluation framework consists of four key com-
ponents forming an evaluation pipeline.

Dataset. A variety of benchmarks, covering a
wide range of NLP tasks, are supported, comprised
of translated English datasets as well as new, cultur-
ally relevant Persian benchmarks, with the capabil-
ity to add and handle custom datasets. Additionally,
we supply both multiple-choice and open-ended
benchmarks for assessing LLMs’ understanding
and generation capabilities. This component sim-
plifies dataset integration, allowing easy loading
and answer extraction, which is crucial for evalua-
tion on a MCQA benchmark.

Model. This component supports both API-based
models (OpenAI VLLM) and open-source models
(Huggingface library), handling a range of decoder-
only models like Llama, Qwen, and others. Mod-
els can be loaded in base (without chat-template)
or instruct (with chat-template and optional sys-
tem prompt) configurations, depending on the task.
Model loading, default or extended tokenizer con-
figuration, and control of model predictions are
handled here.

Prompt. Accurate evaluation depends heavily on
prompt engineering. Our system supports zero-
shot, few-shot, and chain-of-thought prompting to
leverage models’ in-context learning and reasoning
capabilities. Different datasets may require specific
prompts, and our framework provides pre-designed

prompts for each dataset to ensure accurate testing.
A general prompt format is implemented to allow
customization for various dataset needs.

Additionally, this component manages inference
batching with two methods:

Simple batching is the default approach where
data is processed in fixed batch sizes, set at the start
of an experiment. It requires manual configuration
based on available resources.

Smart batching is an additional, more dynamic
method that adapts batch sizes based on avail-
able system resources. It monitors VRAM across
CUDA devices, estimates memory usage per input,
and adjusts batch sizes to maximize GPU utiliza-
tion efficiently. This ensures optimal performance,
especially in resource-constrained or variable envi-
ronments.

Metric. We cover standard metrics such as ac-
curacy, ROUGE, BLEU, and more, tailored for
specific tasks. For generation tasks, traditional met-
rics are insufficient, so we introduce an LLM-as-a-
Judge approach to evaluate the fluency, coherency,
relevance, and correctness of responses. Details of
LLM-as-a-Judge is described in Section 5.2.

5.2 LLM-as-a-Judge

Due to the limitations of metrics for generation
tasks, we use the LLM-as-a-Judge evaluation
method for three specific tasks:

(i) Similarity Score: This task involves scoring
two texts based on several criteria, including mean-
ing, sentiment, recall, precision, agreement, and an
overall general assessment.

(ii) Language Score (single-answer grading):
The evaluation focuses on the quality of the answer
in terms of grammar, fluency, diversity, repetition,
coherence, naturalness, and an overall general as-
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sessment.
(iii) Battle Score (pairwise comparison): This

involves comparing the answers generated by two
models to a question against the ground truth to
determine which model performs better.

The models used for judging must be compati-
ble with the OpenAI API, such as GPT-4o or the
Llama-3.1-70B model, both of which are accessi-
ble through the API.
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