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Abstract

NLP models today strive for supporting mul-
tiple languages and modalities, improving ac-
cessibility for diverse users. In this paper, we
evaluate their multilingual, multimodal capabil-
ities by testing on a visual reasoning task. We
observe that proprietary systems like GPT-4V
obtain the best performance on this task now,
but open models lag in comparison. Surpris-
ingly, GPT-4V exhibits similar performance be-
tween English and other languages, indicating
the potential for equitable system development
across languages. Our analysis on model fail-
ures reveals three key aspects that make this
task challenging: multilinguality, complex rea-
soning, and multimodality. To address these
challenges, we propose three targeted inter-
ventions including a translate-test approach to
tackle multilinguality, a visual programming
approach to break down complex reasoning,
and a method that leverages image captioning
to address multimodality. Our interventions
achieve the best open performance on this task
in a zero-shot setting, boosting open models
LLaVA-v1.5-13B by 13.4%, LLaVA-v1.6-34B
by 20.3%, and Qwen-VL by 16.7%, while also
minorly improving GPT-4V’s performance.1

1 Introduction

Language technology today is continually evolving
to be more inclusive, with models becoming in-
creasing multilingual (Lai et al., 2023; Li et al.,
2022), multimodal (Yang et al., 2023), or both
(Chen et al., 2020; Zeng et al., 2023; Geigle et al.,
2023; Achiam et al., 2023). Even though this pro-
motes broader user accessibility, past research has
consistently highlighted differences in model per-
formance across languages (Blasi et al., 2022) and
cultures (Liu et al., 2021). Notably, these models
often favor North American or Western contexts,

1The code implementations and prompts can be found
at https://github.com/yueqis/Multilingual_Visual_
Reasoning.

Figure 1: Our Contributions: First, we evaluate the
multilingual visual reasoning abilities of various mod-
els; then, we analyze key challenges where models are
falling short; lastly, we propose three interventions to
address these challenges.

potentially leaving behind users from other regions.
(Liu et al., 2021; Hershcovich et al., 2022).

The NLP community is currently witnessing a
trend of moving away from openly releasing mod-
els to limiting their access through paid web APIs
(Abdalla et al., 2023). Additionally, the cost to
use these services is often higher for low-resourced
languages, despite poorer performance (Ahia et al.,
2023). While it is certainly desirable to have strong
and inclusive models available regardless of the
access method, open, well-documented, and rea-
sonably sized models have advantages from the
point of view of control, ownership, cost, and ad-
vancing scientific understanding.

In this work, we first compare and contrast the
multilingual, multicultural capabilities of the pro-
prietary systems GPT-4V(ision) (Achiam et al.,
2023) and Gemini 1.5 Pro (Team et al., 2023)
with a plethora of open models like LLaVA (Liu
et al., 2023c,a, 2024), Qwen-VL (Bai et al., 2023b),
Qwen2-VL (Wang et al., 2024), Cambrian (Tong
et al., 2024), Molmo (Deitke et al., 2024), Llama
(Llama Team, Meta, 2024), mBLIP (Geigle et al.,
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2023), CCLM (Zeng et al., 2023), using two
datasets on the same task of reasoning over texts
and pairs of images, NLVR2 (Suhr et al., 2019) and
MaRVL (Liu et al., 2021). We discuss this setup
in more details in §2 and §3. We find that GPT-4V
significantly outperforms all open models. One ad-
ditional unprecedented and surprising result is, as
shown in Figure 1, GPT-4V’s consistency in perfor-
mance across all languages, with performance on
some even surpassing that on the NLVR2 dataset in
English. In contrast, as we will discuss in §4, most
open models still show a significant gap between
English and other languages, perhaps due to defi-
ciencies in training data, or due to the well-known
“curse of multilinguality”, where smaller models
are less adept at processing low-resource languages
(Conneau et al., 2020). This begs the question:
“how can we take open models, and bring them
closer to achieving the exciting language-equitable
multimodal reasoning results demonstrated by the
opaque (and presumably bigger) GPT-4V?”

Towards this end, we conduct a careful analy-
sis of the results from testing models on the mul-
tilingual visual reasoning task and discover that
failures can arise from any of the three challeng-
ing aspects of the task: multilinguality, reasoning,
and multimodality. For multilinguality, we find a
significant gap in performance for other languages
as compared to English. For reasoning, we find a
negative correlation of performance and the compo-
sitionality of the statement. For multimodality, we
find that models were typically pretrained on single
image-text pairs, but haven’t seen pairs of images
in pretraining, which may lead to a mismatch be-
tween pretraining and evaluation objectives. We
will discuss this in more details in §5.

Based on our analysis, we design three inter-
ventions that address these challenges in section
6. The first simply tackles multilinguality – we
translate the MaRVL statements to English. Sur-
prisingly, translation leads to a drop in performance
for GPT-4V and Gemini-1.5-Pro (which might in-
dicate their advanced multilingual capabilities), but
helps improve performance for open models. Our
next intervention tackles both multilinguality and
reasoning, by generating programs to reason over
the set of images using the translated statements,
inspired by Gupta and Kembhavi (2023)’s VisProg
method. Our third (and most effective) interven-
tion tackles all three challenges by first captioning
images conditioned on the statement, and then rea-
soning over the captions, rather than the images,

Figure 2: Example from the MaRVL Dataset: Given
two images and a statement, the task is to infer whether
the statement is true or false of the given image pair.

using chain-of-thought capabilities of text-modality
LLMs (Wei et al., 2022). Using this intervention,
we obtain state-of-the-art zero-shot performance
on the MaRVL dataset for open models, and also
slightly improve the performance of GPT-4V itself,
as shown in Figure 1.

2 Dataset Description

We evaluate on two visual reasoning datasets, both
containing a statement in natural language and a
pair of images. The task is to reason whether the
statement is true based on the images, requiring rea-
soning over both images and the statement together.
Figure 2 shows an example of this task.

NLVR2 NLVR2 contains 107,292 examples of
English sentences with web photographs. Anno-
tators paired visually-rich images and were en-
couraged to come up with compositional and lin-
guistically diverse statements for each pair. The
dataset contains a train-validation-test split. Im-
ages were collected using search queries generated
from synsets derived from the ILSVRC2014 Ima-
geNet challenge (Russakovsky et al., 2015), with
each query resulting in 4 pairs of images from
Google Images2. Queries for ImageNet (Deng
et al., 2009) are based on the English WordNet
(Poli et al., 2010), whose concepts are more reflec-
tive of the North-American or Western cultures.

MaRVL MaRVL explores the same task as
NLVR2 in multilingual multicultural contexts.
MaRVL is a test-only dataset collected for five di-
verse languages: Indonesian, Swahili, Tamil, Turk-
ish, and Mandarin Chinese. Native speakers first
select concepts that are reflective of their speak-
ing population. Next, they curate images from the

2https://images.google.com/
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web that reflect those concepts within their specific
cultural context. Finally, native speakers pair and
write statements for each image pair, following the
same protocol as that laid out for NLVR2.

3 Models and Evaluation Protocols

We evaluate various open models, including
mBLIP (mt0-xl) (Geigle et al., 2023), LLaVA
(Liu et al., 2023a, 2024), Qwen-VL (Bai et al.,
2023b), Qwen2-VL-7B-Instruct (Wang et al.,
2024), Cambrian-8B (Tong et al., 2024), Molmo-
7B (Deitke et al., 2024), CCLM (Zeng et al., 2023),
and UNITERs (Chen et al., 2020); and a propri-
etary model GPT-4V(ision).3 We describe these
models in §A. We evaluate them in two settings:

Zero-shot. In this setting, models are not specif-
ically fine-tuned for the task of visual reasoning.
This setting is academically interesting, as it more
generally tests the ability of models to perform
tasks, and the results are more likely to be represen-
tative of performance on datasets for which training
data is not available. In addition, it is practically
useful since it can also be applied to LMs that can-
not as easily be fine-tuned, such as the proprietary
models GPT-4V and Gemini 1.5 Pro (due to their
closed nature), and some large open models such
as LLaVA and Qwen-VL (due to their relatively
large sizes). We test LLaVA, Qwen-VL, Qwen2-
VL-7B-Instruct, Cambrian-8B, Molmo-7B, mBLIP,
GPT-4V, and Gemini-1.5-Pro in this setting.

Finetuned. We finetune models that can more
easily be finetuned on the English NLVR2 dataset,
and test on NLVR2 and MaRVL. This represents
the realistic setting, adapting multilingual models
to particular tasks using English data, which is
relatively available. We test mBLIP, CCLM-4M,
xUNITER, and mUNITER in this setting.

4 How well do proprietary and open
models perform on multilingual visual
reasoning?

In this section, we perform an examination of how-
well these various models perform on multilingual
multimodal reasoning tasks. Table 1 shows perfor-
mance of humans, open models, and proprietary
models. For the models, we use the experiment
protocols as in §3 in the zero-shot and finetuned
settings. We ask the following questions:

3gpt-4-vision-preview (https://openai.com/research/
gpt-4v-system-card), abbreviated as "GPT-4V".

Which model performs the best? Answer:
GPT-4V on MaRVL, and mBLIP (mT0-XL) on
English post-fintuning. However, in the zero-shot
setting, the proprietary model GPT-4V performs
the best across all languages other than English,4

and open models lag behind especially in the mul-
tilingual setting. Note that despite GPT-4V’s im-
pressive performance, it still lags behind human
performance by 10% to 20% across all languages,
emphasizing that this task still is not completely
solved.

Which open model performs the best? An-
swer: mBLIP (mT0-XL), regardless of whether it
is finetuned. The other open LMMs, for example
LLaVA and Qwen-VL, are not explicitly trained
on multilingual data, so the gap in MaRVL and
NLVR2 performance is expected.

Do models perform equitably across lan-
guages? Under zero-shot setting, GPT-4V and
mBLIP both show equitable performance across
languages, which is encouraging, although the lat-
ter significantly lags in overall performance com-
pared to GPT-4V. Interestingly, post finetuning
on NLVR2, mBLIP shows better performance on
NLVR2 than GPT-4V, but still has lower perfor-
mance on MaRVL. The gap between English and
MaRVL languages also significantly increases for
mBLIP from the zero-shot to finetuned setting.
Maintaining the equity in performance across lan-
guages during finetuning is an interesting future
direction, which may help models surpass GPT-
4V’s performance on multilingual visual reasoning.
Other models lag mBLIP, both in overall perfor-
mance and equity with English.

5 What makes multilingual visual
reasoning challenging?

As noted in Table 1, the best model still lags hu-
man performance by 10% to 20%. In this section,
we aim to analyze what makes multilingual visual
reasoning so challenging, and identify three key
aspects as detailed below:

5.1 Multilinguality and Sub-Optimal
Cross-Lingual Transfer

In the finetuned setting, we observe a significant
drop in performance for MaRVL languages as com-

4We put GPT-4V in the zero-shot category because we
evaluate the performance of GPT-4V on NLVR2 and MaRVL
without finetuning on the NLVR2 training data. However,
we do not know if GPT-4V has seen examples of NLVR2 or
MaRVL during pretraining.
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Model NLVR2-en id sw ta tr zh MaRVL-Avg. MaRVL-Avg. - EN

Human 96.2 96.3 93.0 98.0 97.0 95.5 96.0 -0.2

Zero-Shot

GPT-4V 81.4 80.6 81.0 78.6 87.1 83.2 82.1 0.7

Gemini 1.5 Pro 76.4 71.2 67.8 70.0 75.4 75.8 72.0 -4.4

mBLIP (mT0-XL) 67.3 64.9 64.8 69.6 68.0 65.9 66.6 -0.7

LLaVA-v1.5-13B 60.1 54.8 52.6 50.2 55.3 52.9 53.2 -6.9

LLaVA-v1.6-34B 54.9 56.0 51.8 43.4 57.9 55.3 52.9 -2.0

Qwen-VL 60.3 54.5 50.7 50.3 55.4 58.4 53.9 -6.4

Qwen2-VL-7B-Instruct 81.5 73.5 54.8 60.5 69.9 75.1 66.2 -15.3

Cambrian-8B 75.4 64.7 53.6 56.7 65.2 68.9 61.8 -13.6

Molmo-7B 65.3 61.1 49.6 49.6 52.2 62.2 54.9 -10.4

Llama3.2-11B 64.5 62.7 52.4 54.0 61.6 59.5 58.0 -6.5

Finetuned

mBLIP (mT0-XL) 85.2 75.1 74.6 75.9 74.3 75.7 75.1 -10.1

CCLM-4M 80.2 67.6 64.4 60.5 69.0 69.2 66.1 -14.1

xUNITER 72.3 57.7 56.1 54.3 57.6 54.7 56.1 -16.2

mUNITER 73.2 55.0 51.5 52.2 54.7 56.8 54.0 -19.2

Table 1: NLVR2 and MaRVL performance across Human , Proprietary Models , and Open Models. Overall,
mBLIP outperforms GPT-4V in NLVR2 post finetuning, while GPT-4V shows the best performance across all other
languages without finetuning.

pared to NLVR2 in English. This is expected since
models are finetuned only in English but not in
these languages due to lack of training data. We
also note that performance on Swahili is consis-
tently lower across models (excluding GPT-4V),
which is the lowest-resource language amongst
MaRVL languages, as laid out by the language re-
source taxonomy (Joshi et al., 2020). This observa-
tion motivates us to evaluate models with MaRVL
data translated to English, as we discuss in §6.1.

In the zero-shot setting, GPT-4V and mBLIP
both exhibit equitable performance on MaRVL as
with NLVR2. Gemini 1.5 Pro also demonstrates
equitable performance among languages to some
extent. While LLaVA, Cambrian, Molmo, and
Llama are not expected to perform as well for non-
English languages and Qwen is not expected to per-
form as well for non-English and non-Chinese lan-
guages, they have poorer performance than mBLIP
on NLVR2. While mBLIP is pretrained on multi-
lingual multimodal data, LLaVA is not specifically
trained on multilingual data. However, Qwen-VL
is pretrained on Chinese data (Bai et al., 2023b),

and it is generally believed that LLaVA has mul-
tilingual abilities as it has seen multilingual data
during pretraining (Liu et al., 2023c,a, 2024).

Overall, models have better visual reasoning abil-
ities when given English inputs from US/European-
centric cultures, while still lagging behind when
facing multilingual and multicultural inputs.

5.2 Complex Reasoning

Data points in both NLVR2 and MaRVL require
complex reasoning. An example statement from
NLVR2 is "one image includes a silver stylus and
a device with a blue keyboard base and an open
screen propped up like an easel", which is seman-
tically diverse, long in length, and has a composi-
tional structure, requiring models to perform com-
positional and complex reasoning to infer the label.

As a proxy to the complexity of reasoning, we
measure the number of words of the NLVR2 and
MaRVL statements (translated to English), and
find that model performances drop as the num-
ber of words of the statement increases. Figure
3 shows a graph of the performance of GPT-4V
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Figure 3: Performance of GPT-4V decreases as state-
ment length increases.

plotted against the number of words in each state-
ment. We can clearly see a downward trend in the
graph. Based on this, we are motivated to exam-
ine methods that break down long, compositional
statements, as will be discussed in §6.2.

5.3 Multimodality and Mismatch between
Pretraining & Evaluation

NLVR2 and MaRVL contain two images per in-
stance, along with a statement describing them,
while vision-language models are typically trained
on a single image-text pair (Cao et al., 2020), lead-
ing to a mismatch in the input between pretraining
and evaluation. Further, multimodal reasoning is
known to be harder than reasoning over text alone
(Mogadala et al., 2021; Park and Kim, 2023). Al-
though Qwen has seen multi-image inputs during
training (Bai et al., 2023b), it still encounters diffi-
culties in handling the complexities presented by
multimodal reasoning during evaluation.

These, and the inherent difficulty of aligning
image data and text data during the reasoning pro-
cess make this task particularly challenging. This
motivates us to (1) move from processing a pair
of images together to processing each image sep-
arately; and (2) break down the two modalities of
image and text in the reasoning process, as in §6.3.

6 How can we address these challenges?

Based on our analysis from the previous section,
we now move on to examining whether we can de-
vise methods to further improve multilingual mul-
timodal reasoning abilities, particularly those of
open models. We examine three research questions,
which we discuss in more details in the following
subsections respectively. We will focus on a subset
of the models from Section 3. Figure 4 shows a
flow chart visualizing the interventions we perform

to address the research questions5.
RQ1) (multilinguality) Does translating the text
to English and reducing the cross-lingual gap aid
performance? Short Answer: it depends.
RQ2) (multilinguality+reasoning) Can we break
down the complex reasoning into modular pro-
grams which can be executed on a vision-text in-
put? Short Answer: yes, we adopt the Visual Pro-
gramming approach (Gupta and Kembhavi, 2023).
RQ3) (multilinguality+reasoning+multimodality)
Can we alleviate the need for multimodal interac-
tion during the reasoning process? Short Answer:
yes, we propose a new approach utilizing captions.

6.1 Addressing Multilinguality: Translate-Test
In §5.1, we find performance on NLVR2 is much
better than MaRVL. While both are visual reason-
ing datasets, MaRVL is multi-cultural and contains
data in 5 diverse languages. Since NLP systems per-
form significantly better with English data (Song
et al., 2023), we first simply translate the reasoning
statements to English using the Google Translate
API (Wu et al., 2016). A visualization of the pro-
cess of translate test can be found in Figure 4.

In addition to the models we evaluate in §3, we
also evaluate ViLT (Kim et al., 2021) for better
comparisons, as our next proposed intervention
in §6.2 uses ViLT. We didn’t evaluate ViLT on
MaRVL before translate test, since it doesn’t sup-
port the MaRVL languages. Our evaluation proto-
cols follows the ones introduced in §3 and results
are shown in Table 2.

All prior works, as per our knowledge, have ob-
served a gain in performance post translating to En-
glish (Liu et al., 2021). Our observation is consis-
tent with prior findings for all models, except GPT-
4V(ision) and Gemini 1.5 Pro. All models except
for GPT-4V and Gemini 1.5 Pro see an increase
in accuracy after performing translate test; while
surprisingly, GPT-4V and Gemini 1.5 Pro show a
sharp decrease in performance across almost all
MaRVL languages after translate test. However,
this is encouraging, because it speaks for the multi-
lingual capabilities of these models, and indicates
that the gains provided by translating to English are
lower than the errors made in translating cultural-
specific nuances in meaning.

For example, the MaRVL statement "右图有
青绿色的苹果" is translated to "the picture on
the right has turquoise apples", where "青绿色" is

5§C discusses additional computation cost incurred by the
interventions.

2658



Figure 4: Flow chart visualizing the end-to-end testing in §4 and all interventions performed in §6.

Model NLVR2-en id sw ta tr zh MaRVL-Avg. MaRVL-Avg. - EN

Zero-Shot

GPT-4V 81.4 78.4 75.5 70.2 78.2 78.4 76.1 -5.3

Gemini 1.5 Pro 76.4 70.1 65.3 71.0 71.9 72.6 70.2 -6.2

LLaVA-v1.5-13B 60.1 53.1 53.9 54.1 58.3 54.0 54.7 -5.4

LLaVA-v1.6-34B 54.9 55.7 53.1 52.8 55.3 55.4 54.5 -0.4

Qwen-VL 60.3 58.2 56.0 58.8 63.0 58.4 58.9 -1.42

Finetuned

CCLM-4M 80.2 72.3 69.2 69.7 77.6 71.8 72.1 -8.1

xUNITER 72.3 63.2 63.8 62.1 67.5 62.1 63.7 -8.6

mUNITER 73.2 59.8 63.4 62.3 69.2 62.7 63.5 -9.7

ViLT 73.7 61.7 62.0 65.1 69.8 60.9 63.9 9.8

Table 2: MaRVL translate-test accuracies across Open and Proprietary models.

translated to "turquoise". However, the color "青绿
色" means pure green with a little bit cyan in Man-
darin Chinese, which is different from "turquoise".
Given this, GPT-4V reasons correctly when pro-
vided the statement in Mandarin, but makes mis-
takes when given the translated statement6.

6See discussion on whether translate test may introduce
biases due to inaccuracies in translation in Appendix D.

6.2 Addressing Multilinguality + Reasoning:
Visual Programming

To improve performance of LLMs on reasoning
tasks, beyond naive prompting, several methods
have been introduced (Nye et al., 2021; Zhou et al.,
2022; Wei et al., 2022; Gao et al., 2023). Par-
ticularly, PAL (Gao et al., 2023) provides signifi-
cant improvements by decomposing a natural lan-
guage instruction into multiple programmatic sub-
modules, executed in an inference step to obtain the
final answer. Most recently, efforts like VisProg
(Gupta and Kembhavi, 2023), ViperGPT (Surís
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et al., 2023), Visual ChatGPT (Wu et al., 2023)
have followed suit to solve multimodal reasoning
using LLMs to generate visual programs, that lever-
age off-the-shelf computer vision models for image
processing during inference. Hence, we use Vis-
Prog to generate visual programs given translated
statements as obtained in §6.1. VisProg uses ViLT
(Kim et al., 2021) as its inherent vision module.

Figure 4 shows the flow of VisProg. For example,
given the statement: There is no one in the bedroom
on the left, and there is someone in the bedroom on
the right, the generated visual program is:

Listing 1: Visual program example
ANSWER0=VQA(image=LEFT ,question=’Is

there anyone in the bedroom?’)
ANSWER1=VQA(image=RIGHT ,question=’Is

there anyone in the bedroom?’)
ANSWER2=EVAL(ANSWER0 == False and

ANSWER1 == True)
FINAL_ANSWER=RESULT(var=ANSWER2)

If this program is executed on the images in
Figure 5, then it will have ANSWER0 = True,
ANSWER1 = False, so the final result is False.

Figure 5: VisProg example image pair.

For this intervention, we use text-davinci-0037 as
a representative of proprietary LLMs and LLaMA2-
70B (Touvron et al., 2023) to represent open LLMs.
Table 3 shows results to this method. Although this
method does not achieve as high accuracy as mod-
els evaluated end-to-end in Table 1, this approach
provides valuable insights of breaking down com-
plex reasoning into modular modules and utilizing
prompts to make use of LLMs’ strong in-context
abilities. In addition, this approach, without any
additional training, achieves on par performance
on MaRVL, as compared to ViLT post-fintuning.

Model NLVR MaRVL
id sw ta tr zh Avg.

GPT-3 67.0 64.5 59.8 60.3 67.3 64.3 63.2

LLaMA2-70b 67.3 58.2 57.2 58.1 65.8 61.9 60.2

Table 3: VisProg performance across models.

7text-davinci-003 is the model that the VisProg authors
utilized when running VisProg.

6.3 Addressing Multilinguality + Reasoning +
Multimodality: Reasoning with Captions

When analyzing errors for NLVR2, Gupta and
Kembhavi (2023) note that 69% of them are caused
by the vision module. This might be potentially
worse for MaRVL, because open visual modules
used in VisProg (Kim et al., 2021) are trained
on Western-centric datasets like Imagenet (Rus-
sakovsky et al., 2015). Text-based LLMs, on the
other hand, are trained on trillions of tokens, and
are known to exhibit cultural awareness, albeit it
may be limited (Yao et al., 2023). Hence, here we
target the last remaining challenge, that of multi-
modal interaction needed for the reasoning process,
by working with image captions instead of images.
Concretely, we first caption both images, and use
LLMs to reason about the statement with the two
captions, instead of with the two images. Figure 4
shows a flow chart of how this pipeline works.

To make sure the captions capture necessary in-
formation needed for reasoning about the state-
ment, as a first step of this intervention we use
LLMs to generate targeted instructions based on
the statement. Consider the statement "The picture
on the left has several pencils of different colors,
and the picture on the right has only one pencil"
from MaRVL-zh, the targeted instructions are:
Left image - "Write a short caption describing the
number and colors of pencils;"
Right image - "Write a short caption describing
the number of pencils".

Figure 6: Captioning example image pair.

As a second step, we generate captions following
the targeted instructions in step 1, using various
captioning models, including InstructBLIP (Liu
et al., 2023b), PromptCap (Hu et al., 2022), GPT-
4V, LLaVA-v1.5-13B (Liu et al., 2023a), LLaVA-
v1.6-34B (Liu et al., 2024), and Qwen-VL (Bai
et al., 2023b). The instructions can point them
to focus on targeted contents in the image. For
instance, for the statement in step 1 and the images
in Figure 6, the captions generated by GPT-4V are:
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Captioning Reasoning NLVR (en) id sw ta tr zh MaRVL-Avg.

InstructBLIP LLaMA2-70B 65.1 61.3 60.8 60.2 62.6 62.8 61.5

PromptCap LLaMA2-70B 63.2 59.3 58.9 58.3 59.2 59.9 59.1

GPT-4V
No Intervention 81.4 80.6 81.0 78.6 87.1 83.2 82.1

GPT4 82.2 81.2 81.8 76.1 90.1 85.4 82.92

LLaVA-v1.5-13B
No Intervention 60.1 54.9 52.6 50.2 55.3 52.9 53.2
LLaMA2-70B 68.6 65.8 65.9 65.8 69.9 70.8 67.6

LLaVA-v1.6-34B
No Intervention 54.9 56.0 51.8 43.4 57.9 55.3 52.9
LLaMA2-70B 77.8 75.9 71.3 71.2 80.6 78.3 75.5

Qwen-VL
No Intervention 60.3 54.5 50.7 50.3 55.4 58.4 53.9
LLaMA2-70B 70.3 72.1 66.3 65.1 76.7 72.8 70.6

Table 4: Captioning Pipeline Performance across Models. For rows with "No Intervention" stated in the "Reasoning"
column, we pull over the end-to-end results of that model from Table 1, for the sake of comparison.

Left image - A pencil case containing a single
natural wood colored pencil.;
Right image - A young mind sketches ideas with a
classic green pencil..

Lastly, we prompt LLMs to reason whether the
statement match caption pairs. For instance, for the
example above, GPT-4 reasons as follows:
Reasoning - The statement is False. This is be-
cause the left image is described to include only
a single pencil, which implies there are not sev-
eral pencils of different colors in the left image.
However, the statement claims that there should be
several pencils of different colors in the left image.
Meanwhile, the right image correctly shows a sin-
gle green pencil, but the statement is negated by
the inaccuracy of the part regarding the left image.

Using this approach, visio-linguistic models only
need to process one image at a time, instead of
processing a pair of images simultaneously. In
addition, reasoning is performed only over text,
instead of over both image and text modalities.

Table 4 shows the performance of this interven-
tion. Performance of InstructBLIP and PromptCap
under zero-shot setting is on par with UNITER
models post-finetuning. This intervention improves
performance of LLaVA-v1.5-13B by 10% to 16%,
LLaVA-v1.6-34B by 18% to 25%, and Qwen-VL8

by 10% to 21% depending on language, while also
minorly improving GPT-4V’s performance. On
average, our pipeline boosts LLaVA-v1.5-13B’s
performance on MaRVL by 13.4%, LLaVA-v1.6-
34B’s performance by 20.3%, and Qwen-VL’s per-

8§B discusses additional experiments on Qwen-VL.

formance by 16.7%. This intervention improves
performance of LLaVA and Qwen-VL, achieving
the best performance under zero-shot setting (with-
out training on reasoning of pairs of images).

7 Related Work

From Pretraining to Instruction Tuning Previ-
ous research on instruction tuning sparks multiple
works to finetune models on instructions, and create
general-purpose models that are good at perform-
ing tasks under zero-shot settings (Ouyang et al.,
2022; Liu et al., 2023b; Geigle et al., 2023). How-
ever, instruction tuning data is mostly in English
(Touvron et al., 2023; Liu et al., 2023b). Due to
the absence of multilingual instruction tuning data,
models may struggle to effectively process multi-
lingual inputs.

Moving Beyond English Past research efforts
has predominantly centered around English lan-
guage models, highlighting differences in model
performance across languages (Blasi et al., 2022;
Song et al., 2023). In the visio-linguistic domain,
research in instruction tuning also center on En-
glish, due to a lack of multilingual instruction train-
ing data (Geigle et al., 2023). To this end, mBLIP
(Geigle et al., 2023) translated instruction training
data to various languages, and perform instruction
tuning. This is the first multilingual instruction
tuned vision LLM.

Gap between Proprietary Models and Open
Models Currently, there is a trend of shifting
from openly releasing models to paid APIs (Ab-
dalla et al., 2023). Previous research on examining
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GPT-4V and Gemini 1.5 Pro demonstrates its un-
precedented multimodal capabilities, and there is
still a gap between this proprietary model and other
open source models (Yang et al., 2023). However,
it is still important for the community to have as
strong open source multimodal models.

8 Conclusion

In conclusion, we explore the evolving domain of
multilingual visual reasoning. We observe a trend
towards inclusivity in models, yet recognize per-
sistent disparities in performance across languages
and cultures. While proprietary systems like GPT-
4V exhibit notable and equitable accuracy across
languages, open models still face challenges in
bridging the gap, especially for low-resource lan-
guages. Our analysis highlights the superior perfor-
mance of GPT-4V but also underscores the need for
advancements in open models. Leveraging inter-
ventions addressing multilinguality, multimodality,
and reasoning, we demonstrate significant enhance-
ments in open model performance, achieving state-
of-the-art results under zero-shot settings for open
models. Our findings emphasizes the potential for
further advancements in multilingual visual rea-
soning, with the aim of narrowing down the gap
between human and machine performance, and the
gap between proprietary and open models.

Limitations

With the goal of evaluating the multilingual vi-
sual reasoning capabilities of models, we employ
NLVR2 and MaRVL, both of which engage in the
task of determining whether a pair of images corre-
spond to a given statement. This choice stems from
MaRVL being the sole visual reasoning dataset
with multilingual support, as far as our current
knowledge extends.

Representing Visual Reasoning It’s important
to acknowledge that the task of NLVR2 and
MaRVL solely represents a specific task of visual
reasoning. Other aspects and dimensions of this do-
main may not be fully represented by this particular
task.

Representing Multilinguality In addition, note
that the combination of NLVR2 and MaRVL covers
6 distinct languages: English, Indonesian, Swahili,
Tamil, Turkish, and Mandarin Chinese. This is only
a small subset of all languages worldwide.
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A Models and Evaluation Protocols

In this section, we introduce all multimodal models
that we evaluate in Section 4.

A.1 Open Models
A.1.1 Zero-Shot Evaluation (no labeled data

for task)
Recently, there has been a rise in multimodal lan-
guage models that are instruction-finetuned to solve
tasks in a zero-shot manner (Chung et al., 2022).
These systems may or may not be trained multi-
lingually. We evaluate these models by providing
the models with instructions on solving the task,
utilizing the models’ zero-shot learning abilities
and chain-of-thought reasoning abilities (Wei et al.,
2022). Below, we briefly describe the models that
we experiment with under a zero-shot setting:

mBLIP mBLIP (Geigle et al., 2023) extends
large multimodal models’ capabilities to be multi-
lingual. mBLIP re-align an image encoder previ-
ously tuned to an English LLM to a multilingual
LLM. Re-alignment training of mBLIP utilizes
multilingual data machine-translated from English
data.

LLaVA Large Language and Vision Assistant
(LLaVA) is a series of open large multimodal model
that are instruction tuned on machine-generated
instruction-following data (Liu et al., 2023c,a,
2024). LLaVA extends the capabilities of exist-
ing models by incorporating visual models and
large language models. It connects a vision en-
coder CLIP and an LLM decoder. LLaVA is not
explicitly trained to process multilingual data, but
the LLM decoder (Vicuna is the default LLM) is

known to have seen multilingual data in pretraining
(Chiang et al., 2023).

Qwen-VL Qwen-VL is an open large multilin-
gual multimodal model trained on English and Chi-
nese data. It is based on Qwen-7B (Bai et al.,
2023a), incorporating a language-aligned visual
encoder and a positionaware adapter. It is trained
to be able to process multi-image inputs.

Qwen2-VL Following Qwen-VL, Qwen2-VL is
also trained on English and Chinese data. It is
based on Qwen2 (Yang et al., 2024).

Cambrian Cambrian-8B is a vision-centric mul-
timodal LLM that focuses on bridging the gap be-
tween visual representation learning and language
models (Tong et al., 2024). It introduces the Spatial
Vision Aggregator (SVA), which efficiently inte-
grates high-resolution visual features with language
models. Cambrian also offers a new benchmark
called CV-Bench to evaluate 2D and 3D visual un-
derstanding. Through its open release of model
weights, code, and datasets, Cambrian aims to fos-
ter advancements in multimodal AI systems and
visual representation research.

Molmo Trained from scratch, Molmo (Deitke
et al., 2024) is a family of models trained from
scratch. It is especially trained on a special 2D-
pointing dataset.

Llama3 Extending Llama 2 (Touvron et al.,
2023) with an 8B-parameter model, Llama 3 in-
creases multilinguality, coding, reasoning, and tool
usage (Llama Team, Meta, 2024). It offers a con-
text length up to 128K, uses grouped-query atten-
tion for faster inference, and applies Direct Prefer-
ence Optimization (DPO) and rejection sampling
to align with human preferences, achieving com-
petitive performance across multiple benchmarks.

A.1.2 Evaluation Post-Finetuning on NLVR2
(labeled data for task in English)

Several end-to-end encoder-based models have
been proposed that are pretrained on multilingual
multimodal data, and typically need to be fintuned
prior to evaluation (Devlin et al., 2018). Pretrain-
ing objectives typically include masked language
modeling (text), image-text matching, masked re-
gion modeling (image), and multimodal contrastive
learning (Chen et al., 2020; Zeng et al., 2023).

To test on MaRVL, they need to be finetuned
on task-specific data. Since MaRVL is a test-only
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dataset, we finetune on the training data of NLVR2
which is only in English. Note that these models
are pretrained on a single image-text pair. To deal
with a pair of images in finetuning, each image is
separately paired with the statement in two forward
passes, and a concatenation of obtained embed-
dings is passed to a linear classifier to make the
prediction. Here, we experiment with CCLM and
UNITER-based models as described below. We
also finetune mBLIP, but not LLaVa, due to com-
putational constraints introduced by its size.

UNITER The UNiversal Image-TExt Represen-
tation Learning (UNITERs) framework focuses on
achieving end-to-end reasoning across different
modalities (Chen et al., 2020). This model aims
to unify the processing of textual and visual in-
formation, fostering more coherent and integrated
reasoning capabilities. We experiment with mU-
NITER and xUNITER, which are initialized from
UNITER with mBERT and XLM-R respectively.

CCLM The Crosslingual Cross-modal Language
Model (CCLM) is an open pretrained multilingual
multimodal that delves into conditional masked
language modeling and contrastive learning tech-
niques to enhance cross-modal understanding
(Zeng et al., 2023). This model contribute valu-
able insights into improving the alignment between
textual and visual representations in multilingual
scenarios.

A.2 Proprietary Model GPT-4V

GPT-4V(ision) Incorporating multimodality into
GPT-4, GPT-4V is able to process image inputs
and text inputs together, paving the way for various
downstream tasks including visual reasoning tasks
(Achiam et al., 2023; Yang et al., 2023). Since
GPT-4V is also know for its zero-shot learning
abilities (Yang et al., 2023), plus finetuning is not
supported by GPT-4V9, we evaluate GPT-4V under
a zero-shot setting as discussed in §A.1.1.

Gemini-1.5-Pro With context length up to one
million tokens, Gemini-1.5-Pro (Gemini Team,
Google, 2024a) uses a Mixture-of-Experts (MoE)
(Shazeer et al., 2017) design for efficiency. Com-
pared to Gemini 1.0 (Gemini Team, Google,
2024b), it achieves better multimodal reasoning
(text, images, video, code), offers in-context learn-
ing, and integrates safety/ethics testing throughout

9https://platform.openai.com/docs/guides/
fine-tuning/what-models-can-be-fine-tuned

development.

B Additional Experiments on Qwen-VL

To better understand multilingual and multicultural
understanding abilities of our proposed pipeline,
we performed additional experiments on Qwen-
VL. This is because Qwen-VL is trained on Chi-
nese data, while all other open models we eval-
uated are pretrained with a focus on English cul-
ture, without seeing much data from the local cul-
ture. Therefore, in addition to the experiments we
discussed in Section 6.3, we also performed the
third intervention with Qwen-VL on the MaRVL
Mandarin Chinese dataset where we caption im-
ages using the native language. This experiment
resulted in 73.4% accuracy, while using our inter-
ventions with English captions gives 72.8% accu-
racy, and using Qwen without interventions gives
58.4% accuracy. These results extended our points
that visio-linguistic models need better understand-
ing of culturally-specific elements. For example,
Siheyuan is a culturally specific concept from Chi-
nese culture, where if a model has never seen such
concepts previously, it might not be able to gener-
ate the correct response for queries containing the
concept Siheyuan.

C Additional Computation Cost

For the first intervention in §6.1, we use the trans-
lated statements provided in the MaRVL dataset,
so no additional training cost is incurred.

For the second intervention in §6.2, training cost
is not directly comparable, since we finetune ViLT
if not using the intervention, and use the pretrained
ViLT if using the intervention.

For the third intervention, with a 3% increase
in total evaluation time, we see a 13% average im-
provement in performance for LLaVA-v1.5-13B.
There is no additional training cost brought by the
intervention. Noteworthily, total inference time us-
ing LLaVA is halved when using this intervention.

D Machine Translation V.S. Human
Translation

In the translation test described in Section 6.1, we
used the Google Translate API (Wu et al., 2016).
To investigate whether potential translation inac-
curacies could omit certain linguistic nuances in
non-English contexts, we also evaluated models on
a human-translated version of the dataset.
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Model Machine (zh) Human (zh)

xUNITER 63.3 64.4
GPT-4V 78.4 79.9

Table 5: MaRVL-ZH results (Machine translation vs.
Human translation).

Specifically, we tested xUNITER (finetuned
on NLVR2) and GPT-4V (zero-shot) on the Chi-
nese subset of MaRVL using human-translated
data provided by the original MaRVL paper (Liu
et al., 2021). Table 5 shows the results. Notably,
the human-translated data yields only marginal
improvements over machine translation. While
we acknowledge the limitations inherent in the
translation-based approach, these findings support
using machine translation for broader evaluations
due to its practicality under resource constraints.

Moreover, the small discrepancy in performance
between human and machine translations suggests
that the translation method itself may have only mi-
nor influences on model performance. Accordingly,
we relied on the Google Translate API, consistent
with the MaRVL translate test setting (Liu et al.,
2021).
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