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Abstract

Word-level alignment in speech-text pre-
training has demonstrated significant effective-
ness, particularly with models like SPECTRA
that enhance cross-modal interactions and un-
derstand multi-turn dialog contexts. How-
ever, these advancements are constrained by
a reliance on word-level annotated data, lim-
iting their broader applicability and failing
to fully exploit the vast amount of unanno-
tated data available. This paper introduces
an Unsupervised Speech-text word-level align-
ment with Dynamic Programming (USDP),
which reduces the dependency on scarce anno-
tated resources. We propose an iterative train-
ing method for USDP, inspired by the EM algo-
rithm. This approach uses Dynamic Program-
ming and EM principles to iteratively refine
temporal alignment predictions. Initially, corre-
sponding speech segments are identified based
on the model’s temporal predictions. A pre-
dictor then forecasts text words, and Dynamic
Programming is applied to determine the opti-
mal alignment, further refining the model’s pre-
dictions. Furthermore, we conduct extensive
experiments on six benchmark datasets across
four different downstream speech-text tasks, in-
cluding Emotion Recognition in Conversation
(ERC), Multimodal Sentiment Analysis (MSA),
Spoken Language Understanding (SLU), and
Dialogue State Tracking (DST). The experi-
mental results demonstrate that our method sig-
nificantly enhances the accuracy of models on
these speech-text downstream tasks compared
to existing approaches.

1 Introduction

In recent years, significant breakthroughs in learn-
ing cross-modal feature vector representations have
been achieved through speech-text pre-training,
which leverages large-scale training corpora to
mine data. These successes have been applied
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across a variety of unimodal and multimodal down-
stream tasks (Chuang et al., 2019; Kang et al.,
2022; Kim et al., 2021b; Li et al., 2021; Tang et al.,
2022). These achievements are primarily attributed
to the adoption of multimodal self-supervised pre-
training loss functions, such as masked modeling
and cross-modal contrastive learning, aimed at pre-
cisely aligning feature vectors of speech segments
with corresponding text sentences.

Despite notable progress in speech-text pre-
training models, developing an efficient and inte-
grated model to deeply understand spoken dialogue
remains a significant challenge, a problem that has
not been sufficiently explored in earlier research.
Current methods are mostly designed for specific
multimodal downstream tasks, such as speech-
to-text translation (Liu et al., 2020) and speech-
language understanding (Chung et al., 2020), and
struggle to perform as well across a broad range of
speech-text tasks as pure text pre-training models
do. The word-level alignment-based pre-training
methods SPECTRA (Yu et al., 2023) have demon-
strated excellent performance across multiple tasks
and learned higher quality, finer-grained cross-
modal alignments. However, SPECTRA’s reliance
on word-level alignment annotations not only in-
curs high costs but is also time-consuming. There-
fore, exploring a method that does not require word-
level alignment annotations has become the focus
of our research.

In the text-to-speech domain, researchers have
explored word-level alignment of phonemes in
speech and text forms using parallel corpora with-
out word-level alignment annotations. Early meth-
ods treat words as sequences of phonemes and use
existing aligners, such as teacher models (Ren et al.,
2019) or external tools like the Montreal Forced
Aligner (Ren et al., 2020), to determine the length
of each word or pronounced phoneme. This ap-
proach considers the length of each word within
the sequence as a random variable, thereby forming
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a hidden Markov model for the entire sequence of
word length variables. Later, Glow-TTS (Kim et al.,
2020) introduce a novel algorithm based on auto-
encoders and dynamic programming. This algo-
rithm embeds speech and phonemes into the same
hidden feature space and then uses dynamic pro-
gramming to find the most likely matching route.
The subsequent developments, such as VITS (Kim
et al., 2021a), have improved this method by incor-
porating optimization techniques like variational
auto-encoders and generative adversarial networks,
significantly advancing text-to-speech technology.
This innovation has propelled VITS to become
one of the most popular text-to-speech generation
tools on major video platforms today. However,
these methods, after converting text into phonemes,
essentially discard the semantic information con-
tained in the text. Therefore, they cannot be used
for speech-text dialogue pre-training tasks that em-
phasize understanding.

This paper proposes a novel speech-text dialogue
pre-training method based on dynamic program-
ming, which fully utilizes parallel corpora without
word-level alignment annotations and significantly
reduces the costs of annotation and training com-
pared to previous studies. This method, termed
“Unsupervised Speech-text word-level alignment
with Dynamic Programming” (USDP), structures
each iteration of its training in three phases inspired
by the EM algorithm (Moon, 1996), though not
strictly following its traditional framework:

• Estimation: We use a pre-trained model and
a temporal prediction head to estimate the du-
ration of each word.

• Alignment: Based on these estimates, we re-
construct the text using corresponding seg-
ments of speech. Then, dynamic pro-
gramming is applied to the prediction ma-
trix—derived from embedding both speech
and text into the same hidden space—to deter-
mine the optimal alignment path.

• Optimization: Finally, we update the model
parameters using the predicted alignments and
the results of dynamic programming.

Our contributions are summarized as follows:

• We propose a method for word-level align-
ment pre-training of speech-text using large-
scale parallel corpora. This method enhances

the effectiveness of speech-text dialogue pre-
training models for spoken dialogue under-
standing, especially in scenarios lacking word-
level alignment annotations.

• We address the challenge of word-level align-
ment in speech-text using dynamic program-
ming, incorporating EM principles for itera-
tive refinement. This approach has yielded
positive results in alignment training.

2 Method

In this section, we introduce the data preparation,
task of pre-training and the structure of USDP
model.

2.1 The Backbone Architecture
We choose SPECTRA (Yu et al., 2023) as our back-
bone model. It contains three main components:
a text-only encoder, a speech-only encoder, and a
modality fusion layer, as detailed in Figure 1. Dur-
ing training and application, text is fed into the text
encoder and speech into the speech encoder. Then
we get the feature vectors of text and speech. The
feature vectors are then concatenated and input into
the modality fusion layer for cross-modal informa-
tion fusion. The output from the modality fusion
layer, a mixed modality feature vector, is used for
pre-training tasks in dialogue understanding or for
downstream predictive tasks.

2.1.1 Data Preparation
Before introducing our model and algorithm, we
first prepare input text and speech sequence for our
model.

We use D = {T1, T2, . . . , Tn} to represent a
conversation with n dialog turns, Where Ti consists
of a slice of raw speech waveform si and it’s cor-
responding text ti = {wi1,wi2, . . . ,wimi}. Here,
wij denotes the j-th word of sentence ti. and mi

denotes the length of sentence ti. We use sij/eij to
represent the start/end time of wij . each word wij

can be decomposed into a sub-word sequence rep-
resented as {x1

ij ,x
2
ij , . . . ,x

q
ij}(q means the length

of sub-word sequence).
For each dialog turn Ti, where i > 1, we use

k + 1 (k ≥ 1) textual dialog turns and 2 speech
dialog turns to construct the input Xi, which can
be denoted as {ti−k, . . . , ti−1, ti, si−1, si}. For
efficiency reasons in the pre-training process, we
limit the number of speech turns to two, as the
length of speech representations typically exceeds
that of their corresponding text representations.
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Figure 1: The overview of USDP. The left part shows the overall structure of the pre-trained model. The right part
shows the illustration of the process of dynamic programming and modal Reconstruction task.

2.1.2 Model Architecture
Text Encoder Drawing on the exceptional
achievements of single-modality pre-trained mod-
els in diverse downstream applications, we utilize
RoBERTa (Liu et al., 2019) for text encoding. As
illustrated in Figure 2 of Appendix B, we use spe-
cial tokens to delineate sequences and segment di-
alogues. The <s> token marks the start of a se-
quence, while </s> signifies the end of each round.

To differentiate dialogs, we introduce learnable
segment embeddings eA and eB. eB is added to eit
and e</s>, which is the text embedding of ti and
last token </s>. The sum of text embedding, ab-
solute embedding and segment embedding is then
fed into the text encoder, resulting in Ht

i, where
Ht

i ∈ Rnt×dh denotes the output hidden states of
RoBERTa, nt is the length of textual inputs, and
dh is the dimension of hidden state.

Speech Encoder The speech encoder adopts an
architecture similar to that utilized by SPECTRA,
which itself is based on the WavLM structure (Chen
et al., 2022). As shown by Figure 3 of Appendix C,
We add an additional convolutional layer, resulting
in each output token of speech features represents
approximately 200ms of speech with a stride of
100ms. The parameter of all 8 convolutional layer
is shown in Table 4 of Appendix A.

We use the [CLS] and [SEP] tokens to mark the

beginning and end of the first speech sequence em-
bedding. The output of the projection layer is then
concatenated with the embeddings of the [CLS]
and [SEP] tokens. Finally, analogous to the text
encoder, segment embeddings (eA, eB) are added
to the concatenated output. The sum of these em-
beddings is then fed into the self attention layers,
resulting in Hs

i , where Hs
i ∈ Rns×dh denotes the

output hidden states of last self attention layer, ns

is the length of speech embedding.

Modality Fusion Module We utilize self-
transformer attention layers to effectively integrate
the two modalities. To differentiate the information
from text and speech, we add the corresponding
text and speech embeddings (denoted as et and
es) to the outputs of the text and speech encoders
(Ht

i and Hs
i ) respectively. Subsequently, the re-

sulting embeddings are concatenated before being
processed by a self-attention layer, yielding the
final output Hi ∈ R(ns+nt)×dh .

2.2 Temporal Position Prediction

The model initially takes unmasked text and speech
as inputs, and generates temporal predictions using
a temporal prediction head. To simplify the issue
discussed in this chapter, it is assumed that the
first word of the speech starts at 0.0 seconds and
continues until the last word ends, with each word
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closely connected to the next without overlaps or
gaps, and with each word lasting a minimum of 0.1
seconds. To ensure the model’s temporal alignment
predictions remain monotonic, a fully connected
layer Wo is employed to predict the duration of
each word.

oi = Softmax(H(t)
i Wo) (1)

where oi ∈ Rmi×1 denotes the proportion of each
word to the total length of the speech, H

(t)
i ∈

Rmi×h is A matrix composed of the textual hid-
den representations of the first sub-word of each
word.

The length of each word, li, can be obtained by
multiplying the vector oi by Li, where Li denotes
the duration of the speech for that sentence Ti. The
begin time sij and end time eij of word wij can
then be calculated using Equation (2).

(sij , eij) = (

j−1∑

k=1

lik,

j∑

k=1

lik) (2)

2.3 Pre-training Task

As illustrated in Figure 1, we propose three inno-
vative pre-training objectives for the USDP model,
which allow it to effectively train on data devoid of
word-level annotations.

2.3.1 Speech to Text Prediction

The purpose of this step is to effectively align and
predict the initial sub-word of the textual content
that corresponds to the given speech input. This
process is crucial for bridging the gap between
speech and text representations within the model.

Initially, all text input is masked with [MASK]
tokens, ensuring that the model relies solely on the
speech input to reconstruct the text. Speech fea-
tures Hs

i are processed through a fully connected
layer Wst, the results Ui predicts the first sub-
word of the corresponding text for each speech
feature vector: Ui = WstH

s
i (Wst ∈ RV×dh ,

Hs
i ∈ Rdh×Li , where V represents the vocabulary

size and dh the hidden size). The model divides Ui

into different segments according to the temporal
predictions (sij , eij) and aligns these predictions
more closely with the corresponding words. We
utilize cross-entropy loss LRE to perform a single
backward gradient update on Wst while freezing
the other parameters of the model.

Algorithm 1 Dynamic programming algorithm for
the best alignment under current reconstruction
matrix
Require: The association matrix U∗

i of word and
speech feature vectors.

Ensure: The length of each word
yi1, yi2, . . . , yimi is such that the recon-
struction loss LRE is minimized.

1: Define F [1 : Li, 1 : mi] as the maximum prob-
ability of the first x speech feature vectors in
Hs

i corresponding to the first y text word in ti.

2: F [1, :] = −∞;
3: F [:, 1] = U∗

i [:, 1];
4: for j = 2 to Li do
5: for k = 2 to mi do
6: F [j, k] = max(F [j − 1, k − 1], F [j −

1, k]) +U∗
i [j, k];

7: end for
8: end for
9: curr = mi, last = Li;

10: for j = Li − 1; j >= 1; j −− do
11: if F [j, curr] ≤ F [j, curr − 1] then
12: yi,curr = (last− j)/Li;
13: curr = curr − 1;
14: last = j;
15: end if
16: end for
17: yi1 = last/Li;

2.3.2 Optimizing Temporal Alignment
Prediction Based on Reconstructed
Parameters

After the backward update, the revised matrix
Ui is obtained. From Ui, we extract rows corre-
sponding to the sub-word list {x1i1, x1i2, . . . , x1imi

}.
The elements of the list represent the first sub-word
of words in sentence ti. We apply softmax to the
extracted matrix, resulting in U∗

i ∈ Rmi×Li , which
represents the probability that each audio feature
vector in Hs

i corresponds to each textual word’s
initial sub-word.

A dynamic programming algorithm is utilized to
determine the alignment path that maximizes the
total probability, thereby minimizing the loss from
speech to text reconstruction. Let F (x, y) repre-
sent the highest probability that the first x audio
feature vectors in Hs

i correspond to the first y tex-
tual words in ti. Assuming coherence in speech
word sequences, once the word corresponding to
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F (x, y) =





U∗
i (x, y) y = 1,

−∞ x = 1, y ̸= 1,

max{F (x− 1, y), F (x− 1, y − 1)}+U∗
i (x, y) otherwise.

(3)

the current audio feature vector is identified, the
next audio feature vector must correspond to either
the same or the subsequent word. F (x, y) is de-
fined by the dynamic programming state transition
equation as shown in Equation (3).

After obtaining F (Li,mi) through the state tran-
sition equations described earlier, we can trace back
the alignment path and identify the selection for
each node, thus deriving the feature vector inter-
vals for each word. By measuring the lengths of
these intervals, we establish the lengths of each
word as yi1, yi2, . . . , yimi . A schematic of this pro-
cess is depicted in Figure 1, and the corresponding
pseudo-code is outlined in Algorithm 1.

In our experiments, we normalize yi by dividing
by the speech length Li, and compute the loss by
calculating the KL divergence between yi and oi
as shown in Equation (4):

LTAP = DKL(
yi

Li
||oi) =

mi∑

j=1

yij
Li

log
yij
Lioij

(4)

2.3.3 Dialogue Consistency Loss
In the experimental data, if ti is neither the first
nor the last sentence, it is used for temporal pre-
dictions in two contexts: {ti−k, . . . , ti−1, ti} and
{ti−k+1, . . . , ti, ti+1}. Enhancing the consistency
of temporal outputs across these contexts further
constrains the model to produce correct alignments.
The consistency loss is computed by calculating
the KL divergence between the outputs oi from the
two predictions:

LCON = DKL(o
(1)
i ||o(2)i ) =

mi∑

j=1

o
(1)
ij log

o
(1)
ij

o
(2)
ij

(5)

where o
(1)
i is temporal prediction result for ti in

the sequence {ti−k, . . . , ti−1, ti}, and o
(2)
i is tem-

poral prediction result for {ti−k+1, . . . , ti, ti+1}.

2.3.4 Joint Prediction loss
In practical pre-training, while optimizing for
temporal prediction, the model is also opti-
mized for cross-modal masked language modeling

(CMLM), cross-modal masked acoustic modeling
(CMAM) (Li et al., 2021), and Cross-modal Re-
sponse Selection (CRS) (Yu et al., 2023). The de-
tails of CRS task is described in Appendix D These
tasks ensure that the model possesses sufficient
unimodal understanding capabilities and conversa-
tional comprehension skills.

We combine the six pre-training objectives to
form a pre-training objective for speech-text pre-
training:

L =LRE + LTAP + LCON+

LCRS + LCMLM + LCMAM
(6)

3 Experiments

3.1 Pre-training Data
The USDP utilizes pre-training data from the Spo-
tify 100K English podcast dataset (Clifton et al.,
2020). The Spotify dataset, drawn from 2020, com-
prises complete recordings and corresponding text
transcriptions of 105,360 audio podcasts, totaling
60,000 hours. Compared to previous works on
speech-text pre-training, the dataset used in this
paper is more aligned with real-world multi-turn
dialogues, making it more suitable for downstream
tasks and practical business applications. To facil-
itate a rigorous comparison with existing speech-
text pre-training efforts, we conducts training with
a matched dataset size of 960 hours of parallel cor-
pora. Additionally, we limit each audio segment to
a maximum of 10 seconds to reduce the impact of
prolonged silence, noise, and background music.

3.2 Experimental Setup
Baselines We compare our model with the previ-
ous state-of-the-art models (see in Table 1) which
are specifically tailored for MSA, ERC, SLU and
DST. Additionally, we conduct comparisons with
three distinct types of pre-trained models: the text-
based RoBERTa (Liu et al., 2019), the speech-
oriented WavLM (Chen et al., 2022), and the text-
speech multimodal CTAL (Li et al., 2021). Further-
more, our evaluations include comparisons with
speech-text multimodal models SPECTRA, which
also underwent word-level alignment pre-training
but utilized annotated data for training.
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Task MSA ERC SLU DST

Dataset MOSI MOSEI MELD IEMOCAP MIntRec SpokenWoz

Metrics Acc7 Acc2 Acc7 Acc2 Acc Acc Acc20 Acc2 JGA

RoBERTa-base 43.75 85.67 51.80 85.88 64.96 64.53 71.24 89.45 20.76
RoBERTa-large 47.81 87.19 54.20 87.23 66.98 66.51 73.71 92.10 21.59

WavLM-base-plus 24.78 65.85 48.92 77.90 32.60 46.90 16.63 55.06 N/D
WavLM-large 33.67 76.52 52.54 81.40 57.77 57.80 57.50 83.10 N/D
CTAL-base 31.34 72.87 50.35 80.36 49.96 53.14 52.80 82.20 13.24
CTAL-large 32.51 72.56 52.60 80.77 52.50 55.12 53.26 81.57 15.79

SPECTRA-base 49.85 87.50 55.33 87.34 68.77 67.94 73.48 91.24 22.05
SPECTRA-large 52.11 88.92 57.29 89.40 69.65 69.16 76.17 93.21 23.44

SOTA model MIB BBFN M2FNET M2FNET MAG-BERT SPACE

Score 45.70 84.40 51.70 86.10 67.80 66.52 72.13 88.83 20.90

USDP-base 51.01 88.41 56.02 87.97 68.64 67.85 73.93 91.69 22.25
USDP-large 52.73 89.36 57.65 89.66 69.52 69.29 76.40 93.35 23.03

Table 1: Comparisons of USDP and other baselines on all downstream tasks. (For better comparison, SPECTRA is
not listed in the SOTA model)

Experimental Settings during Pre-training
During pre-training, due to the high VRAM con-
sumption of encoding long audio compared to text,
each audio segment is limited to a maximum length
of 10 seconds. Each segment of audio, along with
its corresponding text, is treated as a dialog turn.
Additionally, the range of k is set from 1 to 7, mean-
ing that each sample consists of 2 to 8 turns of text
and 2 turns of speech.

We conduct two different size models. For
USDP, they are called USDP-base and USDP-large.
Both text and speech encoder of USDP-base have
12 Transformer layers with a hidden size dh of
768. Meanwhile, USDP-large has a larger hid-
den size of 1024, and its text and speech encoder
have 24 Transformer layers, respectively. Simi-
larly, for SPECTRA, we have SPECTRA-base and
SPECTRA-large. The details of model parameters
are shown in Table 4 of Appendix A.

We initialize the text and speech encoders
of USDP-base with pre-trained RoBERTa-base
and WavLM-base-plus models, respectively. For
USDP-large, we use RoBERTa-large and WavLM-
large to initialize the text and speech encoders. As
our speech encoder includes an additional convo-
lution layer compared to WavLM, only the first
seven convolution layers are initialized with pre-
trained parameters, and the final layer is initialized
randomly.

The USDP model is pre-trained over 100 epochs
on eight Nvidia A100 80G GPUs with a batch size
of 24 per GPU. Optimization is performed using
AdamW (Loshchilov et al., 2017) with a peak learn-
ing rate of 1× 10−4 and a linear warm-up during

the initial 1% of updates.

3.3 Model Comparison on Downstream Tasks

Our experimental results highlight the USDP
model’s significant performance advantages across
all four downstream tasks on six datasets, con-
sistently outperforming previous state-of-the-art
(SOTA) methods.

3.3.1 Comparison with Previous SOTA model
Fine-tuning on MSA MSA (Hu et al., 2022)
aims to predict sentiment labels from multiple
modalities. Here , We conduct experiments on two
multimodal datasets MOSI (Zadeh et al., 2016) and
MOSEI (Zadeh et al., 2018) to evaluate the effec-
tiveness of our model for the MSA task. We adopt
the accuracy over positive/negative sentiments clas-
sification (denoted as Acc2) and seven-class clas-
sification task (denoted as Acc7) as the evaluation
metric for our model and baselines. The experi-
mental results are reported in Table 1.

Specifically, the USDP-large model achieved a
Acc7 improvement of 7.03 percentage points on
the MOSI dataset over the state-of-the-art (SOTA)
MIB method (Mai et al., 2022). It also surpassed
the SOTA method BBFN (Han et al., 2021) on the
MOSEI dataset by 5.95 percentage points.

Fine-tuning on ERC We also conduct experi-
ments on the ERC task, which requires the model to
predict the emotion category of an utterance given
a speech clip with its transcripts and dialog his-
tory. In this task, USDP-large model outperformed
the SOTA method M2FNET (Chudasama et al.,
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Settings TAP CON CRS PTD
MSA ERC SLU DST

MOSI MOSEI MELD IEMOCAP MIntRec SpokenWoz
Acc2 Acc2 Acc Acc Acc20 JGA

USDP-base ✓ ✓ ✓ 960h 88.41 87.97 68.64 67.85 73.93 22.25
(a) ✓ ✓ 960h 85.52 86.19 67.05 66.15 71.69 20.87
(b) ✓ ✓ 960h 88.11 87.55 68.22 67.57 73.48 21.79
(c) ✓ ✓ 960h 87.96 87.47 67.10 66.28 73.26 20.83

Table 2: Ablation studies of USDP-base. Here, setting (a) (b) (c) means w/o TAP task, w/o CON task and w/o CRS
task, respectively.

2022) by 1.72 and 2.77 percentage points on the
MELD (Poria et al., 2018) and IEMOCAP (Busso
et al., 2008) datasets, respectively, demonstrating a
clear enhancement in accuracy.

Fine-tuning on SLU SLU task aims to predict
the user intent (Lin and Xu, 2019) given a spoken
utterance with the textual transcript. We employ the
MIntRec (Zhang et al., 2022) dataset as our experi-
mental dataset for SLU, utilizing 20-class and bi-
nary classification accuracy (denoted as Acc20 and
Acc2) as evaluation metrics. From Table 1, it is evi-
dent that our USDP-large model achieves improve-
ments of 4.27 and 4.52 percentage points in the
20-class results over the previous SOTA method,
MAG-BERT (Rahman et al., 2020), respectively.

Fine-tuning on DST In the dialogue state track-
ing task, we utilize the SpokenWoZ dataset (Si
et al., 2023) to evaluate USDP model. The re-
sults indicate that our model USDP-large sur-
passes the performance of previous SOTA method
SPACE+WavLM+TripPy (Heck et al., 2020) with
an increase of 2.13 percentage points in Joint Goal
Accuracy (JGA).

3.3.2 Comparison with Speech/Text model
Compared to models pre-trained on a single modal-
ity like RoBERTa and WavLM, USDP demon-
strates superior performance in text-related down-
stream tasks and significant advancements in
speech tasks, indicating successful integration of
speech and text modalities. The cross-modal align-
ment training in the pre-training phase is efficient
and highly effective. USDP outperforms the pre-
vious best speech-text pre-trained model, CTAL,
showcasing enhanced performance by precisely
aligning cross-modal data and effectively utiliz-
ing historical context information. Notably, USDP
achieves comparable performance with the SPEC-
TRA model, which utilize word-level alignment
annotations. This highlights USDP’s efficiency in

conducting speech-text word-level alignment train-
ing without relying on word-level annotations.

Overall, our method significantly outperforms
all comparison models in performance evalua-
tion across six datasets, surpassing even the best
prior studies on these datasets. These achieve-
ments demonstrate unprecedented effectiveness
in key speech-text cross-modal alignment tech-
niques, thanks to our proposed word-level align-
ment pre-training strategy. The comparison with
unimodal pre-training models (such as RoBERTa
and WavLM) further confirms the significant bene-
fits of training with both speech and text modalities
for enhancing multimodal dialogue understanding.
Comparisons with CTAL show that our method can
model cross-modal alignment information more ef-
fectively. The superior performance on various
datasets attests that word-level alignment during
pre-training not only achieves higher accuracy but
also enhances the model’s generalization capability
across different speech-text dialogue understand-
ing tasks. The comparison with the SPECTRA
models demonstrates that USDP can effectively
utilize speech-text parallel corpora without word-
level alignment annotations for efficient word-level
alignment pre-training.

4 Analysis

4.1 Ablation study

In order to better understand the effectiveness of
USDP pre-training method, we investigate the in-
fluence of pre-training component on the overall
performance of USDP. We report the ablation test
results in Table 2.

Impact of TAP Setting (a) "w/o TAP", when
compared with the complete USDP-base model, ex-
hibits a significant decline in performance, which
further underscores the importance of each com-
ponent of our model. Specifically, the comparison
between setting (a) and the full USDP-base model
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sample right answer USDP answer w/o DP answer text

#1 complaint ✓ complaint ✗ criticism oh, she is the devil.

#2 notification ✓ notification ✗ suggestion Please gather in the break room.

Table 3: Intent prediction results on test samples from the MIntRec dataset.

highlights the critical role of word-level annotation
pre-training on standard parallel corpora. Appropri-
ate word-level pre-training not only enhances the
model’s ability to integrate speech and text infor-
mation but also improves its understanding of the
finer-grained connections between the two modal-
ities, which is crucial for boosting overall model
performance.

Impact of CON Although the performance of
setting (b) does not decline significantly compared
to the complete USDP-base model, there still is a
noticeable decrease, which indicates that dialogue
consistency control plays a positive role in our ex-
perimental framework. This is particularly true for
tasks that are related to the dialogue context.

Impact of CRS As demonstrated by setting (c),
the comparison with the complete USDP-base
model further underscores the crucial role of di-
alogue context pre-training in handling dialogue-
related downstream tasks. In setting (c), especially
in tasks under multi-turn dialogue scenarios such
as ERC and DST, the performance is significantly
impacted. Without training with CRS task, the
model’s ability to utilize dialogue context is no-
tably weakened, thereby affecting task accuracy.

4.2 Case Study

To gain a deeper understanding of the capabilities
of our proposed USDP model in learning cross-
modal interactions, we carefully select two exam-
ples for a detailed case analysis. Both examples
are drawn from the MIntRec dataset and are specif-
ically chosen to illustrate scenarios where textual
information could lead to confusion. In these cases,
integrating the corresponding audio information is
essential for a correct interpretation. Building on
this, we compare our model with another model
from which dynamic programming has been re-
moved (referred to as w/o DP) in ablation studies.
This comparison aims to investigate the role of
word-level alignment learning in enhancing cross-
modal information alignment.

As shown in Table 3, the w/o DP model relies
solely on the literal meaning of the text, leading to

incorrect predictions of user intent. In contrast, our
proposed USDP model, through meticulous word-
level alignment training, thoroughly considers the
deeper intentions embedded in the speech infor-
mation, thus enabling accurate prediction of the
correct user intentions. These results validate our
model’s ability to effectively capture and integrate
textual and auditory information, subsequently en-
abling precise prediction of users’ true intentions.

On the other hand, w/o DP model exhibits a ten-
dency to overlook or mismanage speech markers,
leading to confusion with incorrect labels. This
phenomenon reveals a significant flaw in the w/o
DP model: the neglect of unique and valuable in-
formation within speech data. Furthermore, this
underscores the importance of word-level align-
ment learning in our USDP model. It not only en-
hances the model’s capability to understand cross-
modal information but also significantly improves
performance in scenarios with ambiguous textual
information. This demonstrates the crucial role of
precise cross-modal alignment and dialogue under-
standing in achieving accurate model outcomes.

5 Conclusion

In this paper, we address the coarse granular-
ity of alignment and the inefficient use of con-
versational context in existing speech-text pre-
trained dialogue systems. We propose the USDP
method, a novel word-level alignment pre-training
approach based on dynamic programming and the
Expectation-Maximization (EM) algorithm. Ini-
tially, this method utilizes model-outputted tempo-
ral alignment predictions to identify corresponding
speech segments and uses a predictor to forecast
text words. Subsequently, it employs dynamic pro-
gramming based on the predictor’s parameters to
find the optimal alignment, thereby refining the
temporal alignment predictions of the model. This
approach not only resolves the issues of insuffi-
cient word-level alignment training and lack of
granularity mentioned in SPECTRA but also re-
duces the dependency on word-level annotations.
Experimental results demonstrate that models pre-
trained using this method not only surpass single-

2330



modality pre-trained models and the best existing
speech-text pre-trained models in terms of fine-
tuning efficiency on downstream tasks but also sig-
nificantly outperform the best existing results on
these datasets.

Limitation

We analyze the limitations of this work to provide
directions for future improvements of our model.
Based on our empirical observations, we identify
several limitations, which can be divided into two
primary categories:

• Cross-Modal Alignment: Our proposed
method, USDP, is a pre-training approach for
speech-text models. However, the field of
speech research has yet to develop a coun-
terpart to the image-text alignment achieved
by models like CLIP. This gap has hin-
dered progress. Further in-depth research on
cross-modal alignment of speech and text us-
ing more aligned data, or introducing train-
ing techniques from large language models
(LLMs) such as contextual learning, could
help achieve more effective cross-modal align-
ment.

• Dialogue History and Context Understand-
ing: Although our pre-training method be-
gins to consider dialogue history informa-
tion, there is still room for improvement in
modeling long dialogue histories, understand-
ing contextual nuances, and generating accu-
rate responses. Future research could explore
more sophisticated methods for dialogue his-
tory modeling and incorporate relevant back-
ground knowledge as needed to address the
key challenges faced by multimodal dialogue
systems.
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Model Type dh
Text Encoder Speech Encoder Fusion model

nattn layers nattn layers nconv layers stride kernel size nattn layers

Model-Base 768 12 12 8 [10,3,3,2,2,2,2,5] [5,2,2,2,2,2,2,5] 1
Model-Large 1024 24 24 8 [10,3,3,2,2,2,2,5] [5,2,2,2,2,2,2,5] 5

Table 4: Model parameters of two different size of model

A Model Parameters

The model parameters of different size USDP or
SPECTRA is shown in Table 4.

B Text Encoder

We split the text into tokens by a BPPE algo-
rithm (Radford et al., 2019) and convert each token
into its index according to the dictionary of our
tokenizer. Then, we use a pre-trained RoBERTa
embedding layer to generate text embedding of
each token. The input of text encoder is the sum
of segment embedding, absolute positional embed-
ding and the text embedding.

Text
Input < 𝑠 > 𝑡!"# </𝑠 > … 𝑡!"$ </𝑠 > 𝑡! </𝑠 >

Text
Embedding 𝑒%&' 𝑒(!"# …𝑒%/&' 𝑒(!"$ 𝑒%/&' 𝑒%/&'𝑒(!

Ab-Position
Embedding 𝑒* 𝑒$ …𝑒+ 𝑒, 𝑒- 𝑒.𝑒/

Segment
Embedding 𝑒0 𝑒0 …𝑒0 𝑒0 𝑒0 𝑒1𝑒1

𝑅𝑜𝐵𝐸𝑅𝑇𝑎

Figure 2: RoBERTa input representation. The subscript
of absolute position embedding is for illustrative pur-
poses only and does not correspond to actual values.

C The Details Of Speech Encoder

The speech encoder of USDP maintains a similar
architecture to the speech encoder of SPECTRA.
The encoder comprises of self attention layers, pro-
jection layer and several convolutional layers. As
detailed in Table 4, the final convolutional layer has
a stride of 5, a channel count of 512, and a kernel
size of 512, which effectively reduces the length of
the extracted speech features. The projection layer
consists of layer normalization followed by a fully
connected layer that adjusts the dimension of the
speech features from 512 to dh. The self attention
layer contains either 12 or 24 WavLM transformer
layers.

𝑆𝑒𝑙𝑓 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝑠!"#

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

1×𝐶𝑜𝑛𝑣

7×𝐶𝑜𝑛𝑣

𝑠!

[𝐶𝐿𝑆] 𝑒!"#$ 𝑒!"[𝑆𝐸𝑃]

𝑒$ 𝑒$ 𝑒% 𝑒%
Segment

Embedding

Speech
Embedding

Additional
Conv-Layer

Speech
Input

Figure 3: Structure of the speech encoder, modified
based on WavLM.

D Details of CRS

For each sample Xi, we randomly replace the text
input ti or the speech input si with utterances or
speech from other dialogues in the dataset. This
generates four types of samples for each Xi: (1)
only si is randomly substituted; (2) only ti is ran-
domly substituted; (3) both ti and si are randomly
substituted; (4) neither ti nor si is substituted. The
first three cases are labeled as negative, while the
fourth is labeled as positive.

The output of the first <s> token can be viewed
as the representation of the whole speech-text sam-
ple, so, we apply a softmax function after a fully
connected layer on its hidden state to classify the
sample into one of the four categories. The cross-
modal response selection (CRS) task is optimized
using cross-entropy loss, denoted as LCRS.

E Related Work

SPECTRA SPECTRA is a speech-dialog pre-
training model that leverages word-level annota-
tions. Its pre-training objective is defined as:

L = LTPP + LCRS + LCMLM + LCMAM (7)

where LTPP represents the temporal position predic-
tion loss. SPECTRA minimizes the squared error
between the predicted word boundaries sij/eij and

2333



their corresponding annotations s∗ij/e
∗
ij . Details of

LCRS are provided in Appendix D.
The pre-training objective of USDP partially

overlaps with that of SPECTRA, incorporating the
same tasks: CMLM, CMAM, and CRS. As in-
dicated by Equations 6 and 7, these tasks play a
crucial role in optimizing the model’s alignment
and contextual representation.
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