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Abstract

Sparse mixture of experts (SMoE) have
emerged as an effective approach for scaling
large language models while keeping a con-
stant computational cost. Regardless of sev-
eral notable successes of SMoE, effective train-
ing such architecture remains elusive due to
the representation collapse problem, which in
turn harms model performance and causes pa-
rameter redundancy. In this work, we present
Similarity-based Sparse Mixture of Experts
(SimSMoE), a novel similarity of neural net-
work algorithm, that guarantees a solution to ad-
dress the representation collapse issue between
experts given a fixed FLOPs budget. We con-
duct extensive empirical evaluations on three
large language models for both Pre-training and
Fine-tuning tasks to illustrate the efficacy, ro-
bustness, and scalability of our method. The re-
sults demonstrate that SimSMoE significantly
enhances existing routing policy and outper-
forms other SMoE routing methods in per-
formance for the tasks. Our implementation
is publicly available at https://github.com/
giangdip2410/SimSMoE.

1 Introduction

Large Language Models (LLMs) have achieved
significant breakthroughs across multiple fields, in-
cluding natural language processing (NLP) tasks
(Brown et al., 2020; Zhang et al., 2022; Touvron
et al., 2023) and visual representation learning (Jia
et al., 2021; Zhu et al., 2023). In the era of large lan-
guage models (LLMs), Sparse mixture of experts
(SMoE)(Shazeer et al., 2017; Zoph et al., 2022;
Xue et al., 2024; Jiang et al., 2024) offers a scal-
able way to enhance efficiency by activating only
a few specialized experts, reducing computation
while maintaining strong performance. Compared
to dense models, SMoE accelerates inference by
activating only a subset of experts instead of the
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entire pool at once (Artetxe et al., 2022; Krajewski
et al., 2024)

Despite the fact that SMoE has demonstrated its
capabilities across various tasks (Riquelme et al.,
2021; Mustafa et al., 2022; Gupta et al., 2022),
training efficiency remains a challenge due to the is-
sue of representation collapse, wherein either only
a few experts receive routed tokens or all experts
converge to learn similar representation. This issue
was initially identified and theoretically proven by
XMoE (Chi et al., 2022), followed by consequent
works by SMoE-Dropout (Chen et al., 2023a); Hy-
perRouter (Do et al., 2023). To address the limi-
tation, several publications have focused on router
policy improvement. Examples include proposals
for better routing policies, such as those by Zhou
et al.(Zhou et al., 2022a), StableMoE(Dai et al.,
2022), XMoE (Chi et al., 2022), as well as optimal
routing policies like the one suggested by Com-
peteSMoE (Pham et al., 2024). These solutions
employ indirect approaches that concentrate on to-
ken allocation, expecting that enhanced allocation
will resolve the collapse among experts. However,
the existing methods suffer from several limita-
tions. For example, while XMoE (Chi et al., 2022)
and StableMoE (Dai et al., 2022) show promising
results, they do not guarantee to solve the represen-
tation collapse issue. Additionally, CompeteSMoE
(Pham et al., 2024) faces inefficiency problems aris-
ing from the requirement to activate all experts.

This paper proposes a novel training framework,
named SimSMoE, which directly addresses the col-
lapse issue by emphasizing similar representations
among experts. More specifically, we introduce a
quantitative method to illustrate the collapse issue
between experts using the centered kernel align-
ment (CKA) metric (Kornblith et al., 2019a). Our
effective training strategy comprises three stages:
(1) Selecting potential collapsed experts; (2) Identi-
fying collapsed experts; (3) Solving the represen-
tation collapse issue. SimSMoE can be applied
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to any routing algorithms, as it directly improves
expert representations. Moreover, our method guar-
antees superior SMoE training strategies compared
to the existing methods by quantifying the similar-
ity between expert representations and minimizing
similarity among experts by the CKA (Kornblith
et al., 2019a) loss function. We then evaluate the
proposed method by conducting pre-training of
Large Language Models (LLMs) on several ad-
vanced SMoE architectures, such as GLaM (Du
et al., 2022), Brainformer (Zhou et al., 2024), or
Mistral (Jiang et al., 2024), followed by fine-tuning
on downstream tasks.

The main contributions of this paper are: (1)
demonstrating the representation collapse problem
in SMoEs using CKA, which has not been previ-
ously explored; (2) proposing the CKA loss function
to address this collapse; (3) conducting extensive
experiments on LLM pre-training and fine-tuning
on downstream tasks; and (4) providing an in-depth
analysis of common token feeding and the repre-
sentation collapse metric, showing that SimSMoE
improves performance over existing methods.

2 Background

2.1 Sparse Mixture of Experts
Inspired by conditional computation (Srivastava
et al., 2013; Bengio et al., 2013) that activates only
some relevant weights of a model on a per-token
basis, the Sparse Mixture of Experts (SMoE) model
(Shazeer et al., 2017), as an example of conditional
computation, with each layer consists N experts
and a trainable router which selects the most appro-
priate k experts to process each input sample. In
this paper, we apply SMoE for Transformer-based
architectures(Chi et al., 2022; Dai et al., 2022; Do
et al., 2023) by replacing the feed-forward neu-
ral network layer in Transformers(Vaswani et al.,
2023) with the Mixture-of-Experts layer, drawing
inspiration from (Du et al., 2022; Zhou et al., 2024;
Jiang et al., 2024). Each Mixture-of-Experts layer
consists of a set of multi-layer perceptrons (MLPs),
each with two layers and a ReLu non-linearity func-
tion(Agarap, 2019). Denoting the output of the
multi-head attentions (MHA) as x, the output of
SMoE with N experts is a weighted sum of each
expert’s computation Ei(x) by the router function
G(x):

fSMoE(x) =
N∑

i=1

G(x)i · Ei(x) (1)

Where G(x) is computed by TOPk function as
equation (2) that determines the contribution of
each expert to the SMoE output.

G(x) = TOPk(softmax(Wx+ b)) (2)

In this research, we primarily focus on top-2 rout-
ing (K = 2), as studies(Zhou et al., 2022b; Zoph
et al., 2022; Sukhbaatar et al., 2024; Pham et al.,
2024) have demonstrated its superior balance be-
tween training efficiency and testing performance.

2.2 Challenge of effective Sparse Mixture of
Experts Training

Recent studies (Chi et al., 2022; Do et al., 2023)
emphasize the challenge of representation collapse
during SMoE training, illustrating that the Jaco-
bian matrix of experts output with respect to input
x ∈ Rd is a linear combination of the expert em-
beddings (e ∈ RN ). Thus, the phenomenon arises
due to d >> N in practice.

As the existing solutions (Chi et al., 2022; Dai
et al., 2022; Do et al., 2023; Pham et al., 2024)
assume that the collapse problem is a result of inef-
fective router algorithms, their efforts are directed
towards proposing better router mechanisms. De-
spite these efforts, training SMoE remains unstable
and prone to redundant parameters. Thus, a reliable
strategy is needed to enhance expert representation
and prevent collapse. With this objective in mind,
we introduce SimSMoE, presenting two main con-
tributions: (i) Illustrating the collapse problem by a
quantitative approach; and (ii) Addressing the issue
among experts by CKA loss function (Kornblith
et al., 2019a).

3 Methodology

We present Similarity Sparse Mixture of Experts
(SimSMoE), which utilizes the strengths of exist-
ing routing algorithms (Dai et al., 2022; Chi et al.,
2022; Jiang et al., 2024), directly tackling the rep-
resentation collapse by minimizing the similarity
among expert representations.

3.1 SimSMoE
Similarity Reduction. In order to alleviate the rep-
resentation collapse issue mentioned in Section 2.2,
we introduce the Similarity Learning module in
Figure 2 that helps to minimize the Similarity of
Experts Representations. As shown in Figure 1b,
the Similarity Learning module uses the outputs of
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experts as input and employs the Similarity Loss
described in Section 3.2 to diversify the experts’
representations. The key innovation of Similarity
Learning consists of two main parts: (i) quantifying
the collapse issue; (ii) diversifying experts’ repre-
sentations using the Similarity Loss described in
Section 3.2. For more detail, the Similarity Learn-
ing is illustrated as Algorithm 1. Consequently, the
similarity-based SMoE training procedure can be
summarized in the following four steps: (1) Cal-
culate the number of shared tokens per expert pair
from router G(x), and update the total number of
input tokens per expert; (2) Calculate the similarity
of selective experts; (3) Update the total loss if the
similarity exceeds the similarity threshold; (4) Op-
timize the total loss in the same manner as training
SMoE.

An Effective and Reliable Algorithm. One of
the biggest challenges for minimizing the similar-
ity among experts is the vast number of possible
expert combinations. Given N experts, there are(
N
2

)
= N !

2!·(N−2)! =
(N−1)·N

2 expert pairs. To verify
the collapse issue of all expert pairs, it is necessary
to loop over each pair, calculating their hidden rep-
resentations and comparing them. This process
is equivalent to activating N experts. Due to its
contradiction with the conditional computation phi-
losophy of SMoE, proposing an effective algorithm
to implement the Similarity Learning is necessary.
Section 4.5 demonstrates that a higher frequency of
common tokens leads to the severity of the collapse.
Hence, the training algorithm of SimSMoE intro-
duces two hyperparameters: f∗, which represents
the frequency for checking the collapse issue in the
representation, and T ∗, a threshold for identifying
the collapse issue as Algorithm 1. Indeed, f∗ con-
trols computational resources, while T ∗ controls
the quality of the collapse identification method.
Given T as a similarity index between two experts,
if T ≥ T ∗, it solves the collapse problem. On the
other hand, if T < T ∗, the algorithm focuses on
optimizing the task loss during the SMoE training
process. Thus, if we denote p as the performance
of SimSMoE and p∗ as performance of SMoE, we
have p ≥ p∗. In addition, both f∗ and T ∗ are tuned
during the training processes.

The input for the Similarity Learning module
comes from a pair of experts. Thus, the most ef-
fective way to implement the module is by using
the expert outputs from the SMoE training process.
The module is workable for top-1 routing, however,

it requires activating one additional expert in each
iteration. The Similarity Learning module works
best for top-k routing (k ≥ 2), as it fully utilizes the
output from pairs of experts to minimize the sim-
ilarity among them. Additionally, SimSMoE can
be applied to any routing algorithm such as Stable-
MoE (Dai et al., 2022) or XMoE (Chi et al., 2022)
to enhance model performance by addressing the
representation collapse problem.

3.2 Similarity of Neural Network
Representations

Inspired by the Similarity Index (Kornblith et al.,
2019a), the Similarity Learning module addresses
the representation collapse problems from two per-
spectives. First, the module directly measures a
similarity score among experts and helps to iden-
tify which experts fail in diversity representation.
Then, the Similarity Learning reduces the collapse
issue by optimizing the Similarity Loss. Sec-
ond, the Similarity Learning focuses on solving
the collapse at the hidden representations of ex-
perts. This allows the method to leverage the
advantages of routing techniques such as SMoE
with the Balancing Loss (Fedus et al., 2022); X-
MoE(Chi et al., 2022) StableMoE (Dai et al., 2022).
We propose using similarity index based on cen-
tered kernel alignment (CKA) (Kornblith et al.,
2019a) reliably identifies correspondences between
representations in neural networks and an MLP
with one hidden layer as a projection head (Fig-
ure 2) that maps representations to the space where
the similarity loss is applied. Empirically, when
scaling the model to larger hidden dimensions,
we observe that the projection space can be in-
creased, but one of the good choices is around
N , with N is number of experts. Kornblith et al.
(2019) (Kornblith et al., 2019a) introduces two ver-
sions of CKA: Linear CKA (LCKA) which focuses
on linear kernel: Klin = (xi · xj)i,j ; and RBF
CKA (RCKA) which applies Gaussian RBF ker-

nel: KG(σ) =

(
e

−|xi−xj|2
2σ2

)

i,j

. LCKA and RCKA

give similar results in practice (Kornblith et al.,
2019a). For RCKA, selecting bandwidth σ deter-
mines the extent to which the similarity of small
distances is emphasized over large distances. When
training the Similarity Learning Layer as Figure 2,
we empirically observe that a larger σ performs
more stably, so we recommend choosing σ in the
range of [0.8, 0.9].
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(a) Sparse Mixture-of-Experts (SMoE) Architecture (b) SimSMoE Architecture (Ours)

Figure 1: Illustration of the proposed SimSMoE architecture and a SMoE architecture. (a) A SMoE architecture
selectively activates experts based on dot-product token-expert routing scores, directing the selected token to the
chosen experts. (b) A SimSMoE architecture mitigates the issue of representation collapse by reducing the similarity
among the selected experts.

Figure 2: A Similarity Learning Layer (ours) to mini-
mize the similarity among experts.

CKA(K,L) =
tr(KHLH)√

tr(KHKH) tr( L H L H )

(3)

where ∥∥F is the Frobenius norm and tr is the
trace function. For RBF CKA, K and L are kernel
matrices constructed by evaluating the RBF kernel,
and H is the centering matrix Hn = In − 1

n11
T.

3.3 Training Objective

The training objective is jointly minimizing the loss
of the target task, an auxiliary balancing loss (Fe-
dus et al., 2022; Chi et al., 2022) (Lbalancing ) and a
similarity loss (Lsimilarity ). Given Ki, Lj as the hid-
den representations of the i-th expert and the j-th

expert respectively, the similarity loss is calculated
based on the equation (3) as follows:

Lsimilarity = CKA(Ki, Lj)

The overall training objective is to minimize:

L = Ltask + α · Lbalancing + β · Lsimilarity

where α, β are coefficients for the balancing loss
and the similarity loss respectively. The term Ltask
is defined by the specific task that Large Language
Models (LLMs) are learning. For instance, we
employ the masked language modeling loss for
pre-training and fine-tuning on downstream tasks.

4 Experiment

We evaluate SimSMoE on both the mask language
modeling task and downstream tasks and compare
the performance of the algorithm to other state-of-
the-art routing methods for SMoE training. We
also present a detailed analysis of the impact of our
method in addressing the representation collapse.

4.1 Experimental Settings

NLP tasks. We investigate two common tasks
in pre-training and fine-tuning of LLMs. Firstly,
we perform character-level language modeling on
the enwik8 (Mahoney, 2011) or text8 datasets (Ma-
honey, 2011), which are commonly used to evalu-
ate a model’s pre-training capabilities. As is com-
mon practice, we follow the default training, vali-
dation, and testing splits. Secondly, we fine-tune
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Architecture Enwik8 (BPC) Text8 (BPC) WikiText-103 (PPL)

Brainformer

# Params 135M

SimSmoE 1.08 1.20 31.77
SMoE 1.11 1.21 32.75
XMoE 1.10 1.24 32.69
StableMoE 1.10 1.23 32.10

GLaM

# Params 28M

SimSmoE 1.13 1.24 37.30
SMoE 1.14 1.26 37.39
XMoE 1.16 1.27 37.62
StableMoE 1.16 1.25 37.67

Mistral

# Params 63M

SimSmoE 1.11 1.21 32.51
SMoE 1.12 1.23 33.23
XMoE 1.13 1.24 32.83
StableMoE 1.13 1.23 33.78

Table 1: Bits-per-character (BPC) on the enwik8 and
text8 test sets, and perplexity on the WikiText-103 test
set. Lower values are better, with the best results high-
lighted in bold.

the models on downstream applications to investi-
gate their capability to adapt to different domains.
For this purpose, we consider pre-trained large
models on enwik8 and text8; then fine-tuning the
method on downstream tasks. We select common
NLP tasks to evaluate pre-trained models, includ-
ing the SST-2 (Socher et al., 2013), SST-5 (Socher
et al., 2013), IMDB (Maas et al., 2011), and BANK-
ING77 (Casanueva et al., 2020) datasets.

Architecture. We contemplate three advanced
SMoE architectures: (i) the Brainformer (Zhou
et al., 2024); (ii) GLaM (Du et al., 2022); (iii)
and Mistral (Jiang et al., 2024), all of which are
decoder-only architectures. Training massive Large
Language Models (LLMs) is impractical without
substantial industrial resources due to limitations in
computational resources. Consequently, we study
four model configurations: (i) tiny: with two Brain-
former layers and 3.9M parameters; (ii) small: with
ten GLaM layers and 28M parameters; and (iii)
medium: with seven Mistral layers and 63M pa-
rameters; (iv) large: with ten Brainformer layers
and 135M parameters. Rather than striving for
state-of-the-art results, we assess the scalability
and effectiveness of our algorithm by evaluating
multi-scaled models across various datasets. After
that, we run vast investigations using the tiny model
to comprehend the behaviors of the algorithm and
its robustness to different design choices.

Baselines. In order to showcase the effective-
ness of our method, we establish baselines us-
ing the cutting-edge routing methods, including

SMoE with the balancing loss (Fedus et al., 2022),
StableMoE (Dai et al., 2022), XMoE (Chi et al.,
2022). Moreover, these baselines incorporate ad-
vanced SMoE architectures such as GLaM (Du
et al., 2022), Brainformer (Zhou et al., 2024), Mis-
tral (Jiang et al., 2024). GLaM(Du et al., 2022)
interleaves dense transformer blocks with sparse
ones, scaling the capacity of LLMs while signifi-
cantly reducing training costs compared to dense
variants. Brainformer (Zhou et al., 2024), an im-
proved version of GLaM, further enhances perfor-
mance by reducing the frequency of attention and
modifying layer widths and types, making LLMs
faster and more efficient than GLaM. Lastly, Mis-
tral (Jiang et al., 2024) has been successful to scale
up LLMs to 34B parameters that outperform the
previous state-of-the-art LLMs in reasoning, math-
ematics, and code generation tasks. SMoE uses
a trainable MLP routing mechanism with a bal-
ancing loss (Fedus et al., 2022), which encourages
a balanced load across experts. StableMoE (Dai
et al., 2022) introduces a two-phase training ap-
proach, initially focusing solely on training the
router and subsequently training the experts with
the router fixed, while XMoE (Chi et al., 2022) fea-
tures a deep router that includes a down-projection
and normalization layer along with a gating net-
work with learnable temperatures.

Pre-training and fine-tuning. SimSMoE fully
utilizes all the advantages of routing algorithms, so
most of its experimental settings are the same as the
baselines for a fair comparison. For the language
modeling experiments, we optimize the LLMs pre-
training for 50,000 steps using an Adam (Kingma
and Ba, 2017) optimizer with a linear learning rate
schedule. The checkpoint with the lowest valida-
tion loss is used to report the final performance on
the test set. For routing mechanisms, we apply the
default hyper-parameter configurations for both the
baselines and SimSMoE. On the top of that, there
are two main hyper-parameters only for SimSMoE:
the frequency for checking the collapse issue: f
and the threshold for identifying the collapse issue:
T . Next, we cross-validate f with respect to the
optimal T found. We use the pretrained checkpoint
of Mistral models on enwik8 for each fine-tuning
dataset, and exclude the last layer. Lastly, we em-
ploy a randomly initialized fully connected layer
as the classifier and fine-tune all methods for a few
epochs using the same learning rate.
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4.2 Language Modeling Evaluation

Pre-training Language Models. In contrast to
the baselines, SimSMoE incorporates the Similar-
ity Learning Layer to mitigate representation col-
lapse. As a result, SimSMoE includes an addi-
tional 0.08M to 0.16M parameters compared to
the baselines. Table 1 presents the evaluation met-
rics of SimSMoE versus state-of-the-art strategies.
Additionally, we also report the evolution of the
performance on the validation set of the SMoE
models with various routing policies in Figure 3.
We initially note that among all routing methods,
SimSMoE consistently outperforms the baselines
across all datasets for the three decoder-only archi-
tectures. Moreover, advanced strategies such as
XMoE (Chi et al., 2022) or StableMoE (Dai et al.,
2022)generally surpass the vanilla SMoE method.
Nevertheless, the enhancements achieved by these
strategies are often inconsistent or marginal. In
contrast, SimSMoE consistently outperforms other
competitors on all benchmarks (note that the BPC
metric is log-scaled), architectures, and offers a
faster convergent rate (Figure 3). This outcome
underscores SimSMoE’s proficiency for learning
an effective routing policy to facilitate the masked
language modeling task.

Large Scale Pre-training. To demonstrate the
effectiveness of our method for scaling up language
models, we conducted experiments on the Enwik8
dataset using larger variants of Brainformer with 64
experts and 1.031 B parameters. Each experiment
was repeated three times with different random
seeds, and we report the average results along with
the standard deviation in Table 2. SimSMoE con-
sistently outperforms other baselines on Enwik8
at a large scale in both average performance and
stability, demonstrating that our method is not only
effective for large-scale language models but also
more reliable compared to the baselines. Beside
that, we observe that the performance gap between
SimSMoE and the baseline grows as the model size
increases, particularly for K = 1, 2, 4. However,
for larger K (K > 4), this gap narrows because
our method primarily targets collapse problems,
which become less critical at higher K values. De-
spite this, using a K large is not practical, as it in-
troduces computational inefficiencies and reduces
the advantages of the Sparse Mixture of Experts
approach due to longer inference times. These find-
ings align with our analysis and confirm that our
method remains effective and efficient, even for

large-scale models with over 1 billion parameters.

Architecture Dataset # Params # Experts K SMoE StableMoE SimSMoE

Brainformer Enwik8 (BPC) 1.031 B 64

1 1.14±0.005 1.14±0.012 1.12±0.006

2 1.10±0.004 1.10±0.008 1.08±0.002

4 1.09±0.005 1.10±0.006 1.08±0.002

8 1.10±0.007 1.11±0.004 1.09±0.005

Table 2: Bits-per-character (BPC) results on the Enwik8
test set for pre-training the Brainformer model with over
one billion parameters. B represents billion (109).

4.3 Fine-tuning Evaluation

Method SST-2 SST-5 IMDB BANKING77

SimSMoE SimSMoE SimSMoE SimSMoE
Algorithm No Yes vs. No No Yes vs. No No Yes vs. No No Yes vs. No

SMoE 81.5 82.8 +1.3 36.9 37.8 +0.9 85.2 85.7 +0.5 74.6 79.4 +4.8
XMoE 82.2 82.5 +0.3 34.5 37.4 +2.9 84.3 84.6 +0.3 78.6 79.5 +0.9
StableMoE 81.0 82.1 +1.1 36.4 36.7 +0.3 85.0 85.3 +0.3 74.1 77.0 +2.9

Table 3: Accuracy of the model after fine-tuned on
various datasets. Higher is better, best and comparing
results are in bold.

Fine-tuning from Pre-training weights. Ta-
ble 3 reports the accuracy of the models fine-tuned
on the test sets of various datasets. Overall, we
observe that SimSMoE demonstrates strong trans-
fer learning capabilities by achieving the highest
accuracy on all datasets. Notably, on the more chal-
lenging datasets of SST-5 and BANKING77, which
have fewer training samples or more classes, we
observe larger performance gains from SimSMoE
versus the remaining baselines (over 3% improve-
ments compared to the base methods). This result
shows that SimSMoE can boost model performance
through solving the collapse issue, which is not
only good for pre-training but also exhibits strong
transfer capabilities to various downstream tasks.

Fine-tuning for Classification Tasks. We also
evaluate our method using pretrained language
models to assess its effectiveness. Following the
experimental setup by MEO (He et al., 2023), we
fine-tune BERT-family models (Devlin et al., 2019)
using Sparse Mixture of Experts. The fine-tuning
results on the GLUE benchmarks (Wang et al.,
2018a) are recorded in Table 4. The results demon-
strate that our method outperforms both SMoE and
MEO on the GLUE benchmark, indicating that
SimSMoE is not only effective for pre-training
tasks but also performs well on existing pretrained
models, such as those in the BERT family.

Fine-tuning for Other NLP Tasks. SimSMoE
delivers strong performance across a range of NLP
tasks, including question answering, text summa-
rization, and language modeling. Detailed bench-
mark results are provided in Table 5.
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(a) SMoE Routing Policy
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(c) StableMoE Routing Policy

Figure 3: Bit-per-Character (BPC) on validation dataset during the training phase reported for Mistral (Jiang et al.,
2024) across the three routing mechanisms. (a) SMoE with the Balancing Loss. (b) XMoE. (c) StableMoE

Model BERT-Base-Cased

Dataset CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE .avg

SimSMoE 53.0 92.1 75.7 86.6 90.2 84.0 90.7 59.6 79.0
SMoE 47.1 92.2 74.5 86.6 90.2 83.5 90.1 58.5 77.8
MEO (He et al., 2023) 49.1 92.3 76.2 86.3 89.8 83.9 90.5 59.2 78.4

Table 4: Fine-tuning BERT model on the GLUE bench-
mark. Higher is better, best results are in bold.

Model Dataset Task SMoE MEO SimSMoE Metric

BART XSum Summarization 22.4 22.2 22.6 R2
T5 SQuAD Question Answering 82.1 82.0 82.8 EM
GPT2 Wikitext-2 Language Model 21.1 20.9 20.6 PPL

Table 5: Fine-tuning results across three different ar-
chitectures including BART, T5, and GPT-2. XSum,
SQuAD, and WikiText-2 are evaluated using ROUGE-2
(R2), Exact Match (EM), and Perplexity (PPL), respec-
tively. The best results are highlighted in bold.

We employ BART-Large (Lewis et al., 2019) on
XSum (Narayan et al., 2018), T5-Base (Raffel et al.,
2023) on SQuAD (Rajpurkar et al., 2016), and
GPT-2-Small (Radford et al., 2019) on WikiText-
2 (Merity et al., 2016) for evaluation. The re-
sults show that our approach outperforms baseline
models across multiple NLP tasks, highlighting
SimSMoE’s effectiveness in both pre-training and
fine-tuning the SMoE architecture.

4.4 Ablation Studies
We explore the robustness of SimSMoE under vari-
ous hyper-parameter settings, conducting all experi-
ments with the tiny Brainformer architecture (Zhou
et al., 2024).

SimSMoE Frequency. Since checking the col-
lapse issue for all expert pairs is very costly, as
discussed in Section 3.1, it is necessary to control
computational resources by f∗, which determines
the frequency of collapse issue identification. To
demonstrate the effectiveness of our algorithm, we
analyze the relationship between f∗ and SMoE
model performance as the checking frequency in-
creases. All experiments are pretrained under the
same settings and evaluated on the enwik8 dataset

for a fair comparison. The results reported in Ta-
ble 6a confirm that SimSMoE is effective, con-
sistent with the assumption, as the threshold f∗

increases.
Quality Control. In practice, T ∗ is a hyperpa-

rameter that controls the quality of SimSMoE by
determining the level of similarity that can be con-
sidered a collapse issue. The value of T ∗ ranges
from 0 to 1. A low T ∗ means more experts pairs
are considered collapsed, while a high T ∗ means
fewer experts are treated as collapsed. Empirically,
we find that setting T ∗ within the interval [0.3, 0.7]
is effective, with a good initial value being 0.5.
Table 6b shows the pretraining performances of
various threshold T ∗ on enwik8 dataset.

Coefficients of the Similarity Loss. Coeffi-
cient β determines the weight of the Similarity Loss
contribution to the total SMoE Loss. A high value
of β implies that the model focuses on addressing
the collapse, while a low value of β indicates the
model prioritizes the task loss. Table 6c presents
the results of the tiny Brainformer across various β
values.

4.5 Representation Collapse Analysis

Representation Collapse In a Sparse Mixture of
Experts (SMoE) architecture, all experts are typi-
cally designed with the same structure, usually as
MLPs. To assign tokens to experts, SMoE employs
the TopK operator(Shazeer et al., 2017), resulting
in certain experts sharing the same tokens. We hy-
pothesize that experts with a high degree of token
sharing are more likely to collapse together. To
validate our hypothesis, we analyze the correlation
between the number of shared tokens and the simi-
larity index among experts. Figure 4 demonstrates
a strong correlation between the number of shared
tokens and the similarity among experts, thereby
supporting our hypothesis.

The order of layers In Section 3.1, we dis-
cussed addressing the collapse issue for all pairs
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Figure 4: Analysis of the similarity index for the Sparse Mixture of Experts (SMoE). Figure (a) shows the correlation
between the number of shared tokens and the similarity index. Figure (b) illustrates the similarity index by layer
order.

of experts is costly. Moreover, since the total loss
function described in Section 3.3 is a sum of the
task loss, the balancing loss, and the similarity
loss, there is a trade-off between resolving the col-
lapse issue and optimizing NLP tasks from a lo-
cal optimal perspective. Therefore, understanding
the differences in collapse levels across layers in
SMoE is crucial for effectively allocating resources
to address this issue. We visualize the distribution
of the similarity index across layers in the Brain-
former model, as shown in Figure 4. The results
indicate that deeper layers exhibit a lower level of
collapse compared to earlier layers, suggesting that
prioritizing resources to address this issue based
on the order of layers in SMoE might improve our
method’s performance.

Similarity Learning Module Effective The
Similarity Learning Module is designed to address
the issue of representation collapse, which in turn
enhances the diversity of the experts’ hidden rep-
resentations. To demonstrate the module’s impact,
we subtract the hidden representations of two ex-
perts in two scenarios: (1) without SimSMoE, and
(2) with SimSMoE. Following the suggestions by
Samek et al. (2015) (Samek et al., 2015), we visu-
alize these differences using a heatmap. Without
SimSMoE, Figure 5 shows how the expert repre-
sentations become more similar, thus providing
support for our method.

5 Related Work

5.1 Sparse Mixture of Experts
Sparse Mixture of Experts (SMoE) Motivated by
Mixture of Experts (MoE) (Jacobs et al., 1991; Jor-
dan and Jacobs, 1994), Sparse Mixture of Experts
(SMoE), with the unifying idea that each example

is processed by a subset of the parameters, was
first introduced by Shazeer et al. (2017)(Shazeer
et al., 2017). SMoE gained further popularity when
combined with Transformer large language mod-
els (Zhou et al., 2022b; Li et al., 2022b; Shen et al.,
2023). After demonstrating promising success in
natural language processing, it has been proven
in a variety of domains including computer vi-
sion (Riquelme et al., 2021; Hwang et al., 2023;
Lin et al., 2024), speech recognition (Wang et al.,
2023b; Kwon and Chung, 2023), and multi-task
learning (Ye and Xu, 2023; Chen et al., 2023b).
However, training SMoE still suffers the represen-
tation collapse issue (Chi et al., 2022), where all
experts converge to similar representation. Chi et al.
(2022) (Chi et al., 2022) identified the issue and pro-
posed XMoE, which estimates the routing scores
between tokens and experts on a low-dimensional
hypersphere. In subsequent research on the col-
lapse issue, SMoE-dropout(Chen et al., 2023a) sug-
gested that using a randomly initialized and fixed
router network to activate experts, and gradually
increasing the number of activated experts, might
address the problem. Meanwhile, HyperRouter (Do
et al., 2023) proposed that employing HyperNet-
work (Ha et al., 2016) to generate router weights
is an effective approach for training SMoE. Sta-
bleMoE (Dai et al., 2022) also aims to effectively
train SMoE by developing a balanced and cohesive
routing strategy. This strategy is distilled into a
lightweight router, decoupled from the backbone
model, which is then used to determine token-to-
expert assignments that are frozen to ensure a stable
routing strategy. Those methods concentrate on en-
hancing routing algorithms, whereas our approach
is a straightforward solution that directly targets
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the hidden representation of experts, a topic that
remains under-explored.

5.2 Similarity Learning

The occurrence of presentation collapse is a com-
mon issue in self-supervised learning and has been
extensively investigated. (Jing et al., 2022; Hua
et al., 2021; Li et al., 2022a). A critical challenge
in identifying collapse lies in measuring the similar-
ity between neural network representations. Simi-
larity learning (Kornblith et al., 2019b; Csiszárik
et al., 2021) holds potential for addressing this prob-
lem. The current set of representational similar-
ity measures, classified based on their approach
to similarity measurement, includes Canonical
Correlation Analysis (Raghu et al., 2017), Align-
ment (Williams et al., 2022), Representational Sim-
ilarity Matrix (Shahbazi et al., 2021; Kriegeskorte
et al., 2008), Neighbors (Wang et al., 2023a), Topol-
ogy (Khrulkov and Oseledets, 2018), and Statis-
tic (Camastra and Staiano, 2016). Among the afore-
mentioned approaches, the Representational Sim-
ilarity Matrix is widely employed to explore the
similarity between the representations of neural
networks (Li et al., 2016; Raghu et al., 2017; Wang
et al., 2018b; Kornblith et al., 2019a). Kornblith
at el. (2019) emphasized that the canonical corre-
lation analysis (CCA) approach remains invariant
under invertible linear transformations only when
the retained subspace remains unchanged. They
subsequently introduced centered kernel alignment
(CKA), which can ascertain the correspondence be-
tween the hidden layers of neural networks trained
from varying random initializations and widths. In
this study, we also illustrate that CKA serves as an
appropriate similarity learning metric for address-
ing representation collapse among experts.

6 Conclusion

This study illustrates representation collapse lev-
els in sparse mixture-of-experts (SMoE) models
by employing a similarity learning metric. More-
over, we introduce a similarity learning module,
which is a direct approach to differentiate expert’s
hidden representations, designed to alleviate this
issue. We also extensively evaluate three advanced
SMoE architectures for both pre-training and fine-
tuning tasks to demonstrate SimSMoE strong ca-
pabilities, scalability, and superiority over state-of-
the-art routing strategies. Finally, we believe that
focusing on expert representation opens up new

research avenues for effectively training SMoE,
where cutting-edge techniques in Similarity Learn-
ing and Contrastive Learning can be harnessed to
enhance their performance.

Limitations

Our work focuses on the efficiency and efficacy of
training LLMs using SMoE. Despite the encourag-
ing results, our experiments are conducted only
on medium-scale datasets with a medium-scale
Transformer-family based models due to compu-
tation limitations. Thus, further empirical evalu-
ations are required to validate the scalability of
SimSMoE and other SMoE strategies on recent
LLMs and larger datasets.

Ethics Statement

Despite encouraging results, training large-scale
LLMs is inevitably costly and requires extensive
computational resources, which need to be properly
managed. Moreover, our work used data collected
on the web, which has been known to suffer from
gender and racial biases and requires additional
efforts to mitigate its negative impacts. Lastly, our
study is a promising step towards facilitating the
development of new LLMs, which still requires
careful regularization to avoid potential misuses in
harmful applications.
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A Example Appendix

Supplementary Material for
“SimSMoE: Solving

Representational Collapse via
Similarity Measure"

This document is structured as follows: Ap-
pendix B provides detail materials for SimSMoE
algorithm, ablation studies results, and representa-
tion collapse analysis. Appendix C offers a detailed
settings for our experiments in Section 4.

B Additional Materials

B.1 SimSMoE Algorithm details
The training procedure for similarity-based SMoE
can be succinctly outlined in four steps. First,
compute the shared tokens per expert pair through
router G(x), updating the total input tokens for
each expert accordingly to verify the frequency con-
dition. Next, assess the similarity among chosen

experts. If this similarity surpasses the predefined
threshold, proceed to update the total loss. Finally,
refine the overall loss using the same optimization
approach employed in traditional SMoE training.

Algorithm 1: Pseudo-code to train
SimSMoE.

1 Algorithm SimSMoE Training({t, yt}Ni=1)
Require: SMoE; LB (Balancing

Loss); LS (Similarity Loss);
tr (# tokens per expert);
Router R; Experti;
Expertj ; f∗; T ∗; λ; β

Result: L (Final Loss)
2 for i← 1 to N do
3 Receive a token t
4 ft ← tr(t)
5 if ft ≥ f∗ then
6 ŷi ← Experti(t)
7 ŷj ← Expertj(t)
8 Tt ← LS(ŷi, ŷj)
9 LB ← λLB(R)

10 if Tt ≥ T ∗ then
11 ŷ ← SMoE(t)
12 LS ← βTt

13 L ← Ltoken(ŷ, y)+LB+LS

14 else
15 ŷt ← SMoE(t)
16 L ← Ltoken(ŷ, y) + LB

B.2 Ablation Studies results
B.3 Representation Collapse Analysis

C Experiments implementation details

This section provides detailed parameters of our
experiments in Section 4.

C.1 General Settings
The experiments are based on the publicly avail-
able CompeteSMoE implementation(Pham et al.,
2024)1. However, the pre-training was conducted
on a single A100 GPU, so results might differ when
using parallel training on multiple GPUs.

C.2 Pre-training Experiments
Table 7 provides the detailed configurations for
pre-training Brainformer (Zhou et al., 2024),

1https://github.com/giangdip2410/CompeteSMoE
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(b) SimSMoE Layer.

Figure 5: Exploration of the impact of similarity learning on diversity model representation. Figure (a) shows the
heatmap of differences between the hidden representations of two experts for the SMoE layer. Figure (b) shows the
heatmap of differences between the hidden representations of two experts for the SimSMoE layer.

Table 6: Pretraining tiny Brainformer on enwik8 across
different hyperparameter settings

(a) Comparison of fre-
quency of the collapse issue
checking for SimSMoE.

f∗ BPC
1 1.56
4 1.58
8 1.55
16 1.54
SMoE 1.69

(b) Effects of Similarity
threshold during pretrain-
ing.

T ∗ BPC
0.1 1.54
0.3 1.55
0.3 1.54
0.7 1.55
0.9 1.55
SMoE 1.69

(c) Pretraining tiny Brain-
former on enwik8 across
different hyperparameter
settings.

β BPC
0.005 1.55
0.01 1.54
0.05 1.56
0.1 1.54
0.2 1.57
SMoE 1.69

GLaM (Du et al., 2022), and Mistral (Jiang et al.,
2024) on Enwik8, Text8 and Wikitext-103.

Dataset Input length Batch size Optimizer Lr # Training Step

Enwik8 512 48 Adam 4.5e-4 50k
Text8 512 48 Adam 4.5e-4 50k
Wikitext-103 512 22 Adam 4.5e-4 50k

Table 7: Hyperparameter settings for pre-training exper-
iments on Enwik8, Text8 and Wikitext-130.

C.3 fine-tuning Experiments
For fine-tuning experiments, we employ the iden-
tical model architecture as in pre-training. Table
8 presents the detailed configurations utilized for
fine-tuning experiments on SST-2, SST-5, IMDB,
and BANKING77 datasets.

Dataset Input length Batch size Optimizer Lr # Epochs

SST-2 512 16 Adam 1e-4 5
SST-5 512 16 Adam 1e-4 5
IMDB 512 4 Adam 1e-4 5
BANKING77 512 16 Adam 1e-4 50

Table 8: Detail settings for fine-tuning experiments on
the evaluation datasets.
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