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Abstract

Decoder-only language models have the ability
to dynamically switch between various com-
putational tasks based on input prompts. De-
spite many successful applications of prompt-
ing, there is very limited understanding of the
internal mechanism behind such flexibility. In
this work, we investigate how different prompt-
ing methods affect the geometry of representa-
tions in these models. Employing a framework
grounded in statistical physics, we reveal that
various prompting techniques, while achieving
similar performance, operate through distinct
representational mechanisms for task adapta-
tion. Our analysis highlights the critical role
of input distribution samples and label seman-
tics in few-shot in-context learning. We also
demonstrate evidence of synergistic and inter-
fering interactions between different tasks on
the representational level. Our work contributes
to the theoretical understanding of large lan-
guage models and lays the groundwork for de-
veloping more effective, representation-aware
prompting strategies.

1 Introduction

A striking feature of modern language models
(LMs) is their computational flexibility. Unlike tra-
ditional neural networks trained for specific tasks,
LMs function as flexible computers that can be
programmed (prompted) with natural language to
perform a wide array of tasks.

This adaptability, often termed in-context learn-
ing (ICL), has revolutionized natural language pro-
cessing by enabling rapid task adaptation with-
out expensive fine-tuning. However, despite ICL’s
widespread success, its underlying mechanisms re-
main poorly understood.

While some research has linked ICL to gradient-
based learning (von Oswald et al., 2023; Akyürek
et al., 2023), recent evidence in naturalistic set-
tings suggests that ICL may not be pure "learning",

but rather a method of steering the model to se-
lect familiar tasks from its pretraining corpus (Pan
et al., 2023; Hendel et al., 2023). Recent studies
have also highlighted importance of prompt design
and demonstrated that the choice of examples and
output labels can significantly impact performance
(Zhao et al., 2021; Min et al., 2022). However,
these works have primarily focused on the input-
output behavior of LMs, leaving the internal dy-
namics of ICL largely unexplored.

In this work, we aim to illuminate ICL by in-
vestigating how different prompting methods mod-
ify internal representations in pre-trained language
models. When a model is prompted to perform
a classification task, we analyze the separability
and geometric properties of category manifolds
— point clouds in the model’s embedding space
corresponding to examples sharing a category la-
bel. We leverage the recently developed framework
of manifold capacity (Chung et al., 2018; Chou
et al., 2024), which analytically connects task per-
formance to the geometric properties of these rep-
resentations.

Our core contributions are:

1. A comprehensive analysis of how various
prompting methods affect internal representa-
tions in language models, revealing distinct
computational mechanisms despite similar
performance outcomes.

2. Novel insights into in-context learning dynam-
ics, including the role of label semantics, syn-
ergistic effects of demonstrations on unrelated
tasks, and representational trade-offs during
task adaptation.

2 Related work

2.1 Prompting as task-adaptation
The idea that a language model pretrained on next-
token prediction can adapt to various tasks with-
out parameter updates was popularized by (Brown
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et al., 2020). This phenomenon, known as in-
context learning (ICL), relates to the model’s abil-
ity to effectively "learn" a novel task by analogy
from a few demonstration examples provided in the
input sequence. To distinguish conventional few-
shot ICL from other recently proposed input-based
task-adaption methods, we refer to it as providing
demonstrations, highlighting the crucial role of
task examples.

While performance generally improves with
more examples (Brown et al., 2020; Bertsch et al.,
2024), ICL exhibits counter-intuitive features, with
performance being heavily dependent on the exact
choice of examples, their ordering, formatting, and
other factors (Zhao et al., 2021; Wang et al., 2024;
Liu et al., 2024). Additionally, the actual input-
output mapping matters less than expected (Min
et al., 2022), suggesting that few-shot ICL involves
a complex interplay of true task learning from ex-
amples and task recognition from the pre-training
corpus (Pan et al., 2023).

Language models also demonstrate zero-shot
learning abilities, performing tasks based on ab-
stract descriptions without explicit examples (Rad-
ford et al., 2019; Wei et al., 2022). We refer to
such task-adapting prompts without examples as in-
structions1. While often considered together under
the umbrella of ICL, our results reveal that despite
comparable performance, these two prompt types
affect internal representations differently, highlight-
ing the crucial role of input distribution examples.

Recently, prompt-tuning has emerged as an alter-
native approach to task adaptation (Lester et al.,
2021; Liu et al., 2022). This method involves
learning a small set of continuous vectors (soft
prompts) that are concatenated to the input embed-
dings, while keeping the model parameters frozen.
Prompt-tuning offers a middle ground between
full model fine-tuning and static prompting, allow-
ing for task-specific adaptations with significantly
fewer trainable parameters.

2.2 Internal representations

Language computations rely on mapping individual
words or tokens to vectors in a continuous embed-
ding space, which possesses rich structure learned
through model pretraining. The emerging linear
representation hypothesis (Park et al., 2024) sug-
gests that this embedding space contains "feature

1We use "instruction" referring only to the format of the
prompt for zero-shot learning and do all experiments on base
models that were not instruction fine-tuned

directions" encoding human-interpretable concepts,
allowing the model to perform vector operations
with meaningful semantics (Mikolov et al., 2013;
Pennington et al., 2014; Bowman et al., 2016).

The concept of feature superposition (Elhage
et al., 2022; Arora et al., 2018) provides insight into
how a model can operate on more features than it
has orthogonal directions in the embedding space.
This is achieved by utilizing almost-orthogonal vec-
tors for feature encoding with minimal interference,
potentially circumvented by non-linear activation
functions.

A popular method for uncovering encoded fea-
tures involves training linear probes (Belinkov,
2021) to "read out" information linearly from the
embedding space. Probing methods have revealed
the encoding of part-of-speech tags (Belinkov et al.,
2017), parse-tree geometry (Hewitt and Manning,
2019), and higher-level semantic features such as
spatial location of landmarks (Gurnee and Tegmark,
2024) and color (Abdou et al., 2021). However,
while these studies are usually performed on and
averaged over a very diverse input corpus of text,
there is a lack of understanding how the context pre-
ceding a given input (particularly, task adaptation)
affects feature representation.

2.3 Representational geometry
The notion that underlying representations in the
embedding space shape task performance has
gained traction in both machine learning and com-
putational neuroscience (Chung and Abbott, 2021;
Flesch et al., 2022; Ansuini et al., 2019; Fawzi
et al., 2018). Intuitively, for a classification task,
this implies that collective representations of in-
puts sharing a target category (a category mani-
fold) must be well-separated from other categories.
This concept of "manifold untangling" has been a
prominent perspective on computational objectives
in neuroscience (DiCarlo and Cox, 2007).

The recently developed framework of manifold
capacity (Chung et al., 2018; Wakhloo et al., 2023;
Chou et al., 2024) proposes a formal link be-
tween representational geometry and separability.
Manifold capacity quantifies how efficiently task-
relevant features are encoded from the perspective
of a linear downstream decoder. Essentially, it
measures the separability of target classes in the
embedding space, capturing the effectiveness of
task-relevant feature encoding.

This framework has been successfully applied
to investigate representational geometry in vision
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networks (Stephenson et al., 2019; Cohen et al.,
2020; Stephenson et al., 2021) and language mod-
els (Mamou et al., 2020). By examining how dif-
ferent prompting methods affect manifold capacity,
we can gain insights into the internal dynamics of
ICL and the efficiency of various task adaptation
strategies.

3 Methods

3.1 Dataset details

To investigate effects of various prompting methods
on representations in different task-specific con-
texts, we required a dataset with control over mul-
tiple categorical dimensions of text. We could not
find an existing text classification dataset with a
sufficient number of samples and a comprehensive
multilabel scheme suitable for tractable manifold
analysis. Therefore, we leveraged a separate lan-
guage model (Claude 3.5 Sonnet) to generate a syn-
thetic dataset tailored to our research requirements.
This synthetic dataset consists of diverse sentences,
each simultaneously labeled with three types of
categories: Sentiment, Topic, and Intent, with five
categories for each type. Such multidimensional
labeling allowed us to investigate representational
effects in a multitasking setting (see sections 4.2
and 4.3).

For consistency, all experiments, including those
focused on single-task performance (section 4.1),
utilized this dataset, with the sentiment classifica-
tion task serving as our primary focus. To validate
our findings, we also replicated key single-task
experiments using established open datasets as a
control.

Full details on the datasets, including genera-
tion process, category distributions, and example
sentences, are provided in the appendix A.1.

3.2 Task setup

Our work focuses on text classification tasks with
a fixed set of categories, as such tasks have an
analytically-grounded link between the geometry
of underlying representation and separability of
categories in the embedding space, ultimately de-
termining the end performance.

In contrast to traditional encoder-based models,
where separate linear classifiers are trained to pre-
dict target category directly from the embedding
vectors, we investigate decoder-only language mod-
els. These models can prompted to generate class
labels directly in the vocabulary space.

This approach introduces two key factors affect-
ing performance:

1. Representation Quality: The underlying rep-
resentation in the embedding space must sup-
port the separation of class manifolds.

2. Readout Alignment: The alignment between
the model’s unembed layer and the ideal de-
coder directions impacts the final output qual-
ity.

Manifold capacity theory allows us to disentan-
gle these components by quantifying the represen-
tation quality at each layer, independently of the
specific unembed module being used for vocabu-
lary readout. This idea is schematically illustrated
in fig. 1.

Figure 1: Two components of the model’s performance.
Low accuracy can be caused by either suboptimal and
tangled representation in the embedding space (left), as
well as misalignment between the representation and
model’s readout layer (right). Manifold capacity, which
relates the performance of an ideal decoder to the under-
lying geometry can differentiate between the 2 cases.

3.3 Prompting strategies

Throughout the work we compared two main
types of natural-language prompting. Instruction
prompt consisted of the following text (using senti-
ment as an example):

This is a text classification task. Possible cate-
gories are Joy, Sadness, Fear, Anger, Surprise.
Text: [Test Sentence]
Category:

where [Test Sentence] stands for the sentence
text from the dataset that is being evaluated.
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Demonstration prompt consisted of a variable
number of examples following a similar format:

Text: [Demo sentence 1]
Category: Joy
Text: [Demo sentence N]
Category: Fear
Text: Test Sentence
Category:

As a baseline control for the representation anal-
ysis, we also extracted embedding using the raw
sentence input of the following format:

Text: [Test Sentence]
Category:

3.4 Embedding Extraction
Analyzing representational geometry in decoder-
only models presents unique challenges due to
masked self-attention, distributed sentence-level
features, and last token dependency. To address
these challenges and investigate the effects of
prompting on representations, we consider two
types of embeddings:

1. Sentence Embeddings: We extract and resid-
ual stream activations for tokens correspond-
ing only to the input sentence, excluding the
task prompt, and average their embedding vec-
tors along sequence dimension. This provides
insight into the model’s intermediate process-
ing stage.

2. Last-token Embeddings: We extract resid-
ual stream activations of the last token in the
sequence at each layer. This allows us to track
how sentence-level features are aggregated
into the final representation used for output
generation.

These embedding types and possible effects of
prompting are illustrated in fig. 2.

3.5 Analysis of representations
To analyse representational geometry we first con-
struct category manifolds (point clouds) by accu-
mulating the embedding vectors of all sentences
sharing a class label. So for a classification task
with P categories, the resulting representation can
be thought of as P distinct collections of vectors
in the embedding space. We then compute the
following properties of the resulting collective rep-
resentation.

Figure 2: Possible effect sites of prompting. Task-
specific prefix might affect extraction of relevant fea-
tures at the sentence-level, reorganizing intermediate
representations (top). High performance would also
imply more efficient repackaging of extracted features
into the embedding of the last token, as well readout
alignment (bottom).

Manifold capacity Capacity is a positive scalar
measure, that measures how separable the under-
lying category manifolds are, with higher capacity
values corresponding to higher degree of separabil-
ity. Intuitively, it can be thought of as the "num-
ber of linearly decodable classes per dimension",
quantifying how efficiently manifolds are packed in
the embedding space (Gardner and Derrida, 1988;
Chung et al., 2018). We provide a more mathemat-
ically detailed explanation of one interpretation of
capacity in appendix A.3.2, and for full rigorous
treatment, refer the reader to (Chou et al., 2024).

Geometry of individual manifolds In this work
we make a few simplifications, compared to the
original formulation (Chou et al., 2024). Mani-
fold capacity is analytically expressed as a func-
tion of so called effective radius and dimension of
manifolds, that are determined by the spatial ar-
rangement of manifolds’ anchor points, that can be
thought of as support vectors for the classification
problem. In the presence of correlated structure,
these measures might have complicated form, not
necessary corresponding to intuitive notions of ra-
dius and dimension. To bring our results into a
more direct interpretation, we measure geometry
in the following way instead:

1. Dimension of each manifold was measured
as participation ratio of principal components,
which roughly corresponds the number of di-
mensions needed to explain around 80–90%
of total variance (Gao et al., 2017).
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2. Radius of each manifold was taken to be the
maximum distance between any pair of points
on the manifold.

Both metrics were averaged across manifolds,
each resulting in a single scalar value. We refer
to these measures as geometric properties of indi-
vidual manifolds, since they do not depend on the
relative positions and orientations of manifolds in
the embedding space.

Correlation structure Manifold capacity also
depends on the spatial arrangement of individual
manifolds relative to each other and to the global
origin. We measure correlation coefficients be-
tween axes of variation of individual manifolds
(Axes-alignment) and correlations between each
manifold’s axes and its centroid (Center-axes
alignment). For an extended discussion of how
these correlation measures affect manifold capacity
in different regimes, see (Chou et al., 2024). In this
work, we consider these measures collectively as
correlation structure to explain capacity changes
driven by the relative arrangements of manifolds
in the embedding space, rather than by changes in
individual manifold properties.

4 Results

Our analysis reveals complex dynamics in how
prompting affects the internal representations of
language models, with distinct patterns emerging at
different processing stages and for various prompt-
ing methods.

4.1 Representational changes during
text-classification task

We first investigated performance and representa-
tional effects of prompting during a conventional
ICL setting, comparing demonstrations and instruc-
tion prompts.

Task performance Instruction alone achieved
good accuracy, outperforming demonstration
prompts with few examples (≤ 5). Larger exam-
ple sets (> 5) surpassed explicit instruction, with
performance quickly plateauing (fig. 3). Replac-
ing meaningful category words (gold labels) with
abstract letters required more demonstration exam-
ples to infer category nature. When category labels
were consistently shuffled (e.g. "Joy" → "Anger"),
the model failed to generalize beyond pretrained
associations, achieving low accuracy for both tar-
get (shuffled) and original labels. This suggests

that the model is not purely learning a novel task
from scratch, but rather (at least partially) relies on
existing associations encoded in label semantics.
(Pan et al., 2023).

Figure 3: Performance of demonstrations and instruc-
tion prompting on sentiment analysis task.

Sentence-level effects Analysis of sentence-level
embeddings (fig. 4) revealed that demonstration ex-
amples, but not abstract instruction, significantly re-
organized intermediate representations at early-mid
layers. This reorganization increased the separabil-
ity of sentiment manifolds by reducing manifold
dimension and improving correlation structure (see
fig. 15). Surprisingly, there was little difference in
resulting geometry between demonstrations across
three labeling strategies, indicating that sentence
representation is primarily influenced by input dis-
tribution examples, rather than input-output map-
ping.

Last-token effects At the last-token level, in-
struction prompts significantly increased manifold
capacity relative to raw sentences, with effects
emerging as early as layer 8 and persisting to fi-
nal layers (fig. 5). Geometrically, the increased
separability was driven mostly by the reduction in
dimension along with correlation structure (supple-
mentary fig. 19). Demonstrations further increased
manifold capacity compared to instruction, despite
lower task performance for cases with few exam-
ples. This suggests that while instruction alone
achieves better accuracy due to high alignment
between the model’s readout and category man-
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Figure 4: Manifold capacity of sentence-level embed-
dings during demonstrations prompting compared to
instruction and raw sentence control

ifolds, demonstrations improve both readout align-
ment and representation structure. Even just for
a couple of demonstrations, the underlying rep-
resentation is already more optimal compared to
instruction-prompted case, but this separability is
not utilized properly by the unembed layer. No-
tably, last-token capacity during letter code label-
ing was much lower compared to category words,
explaining lower performance when output labels
lack meaningful semantics. For shuffled labels
capacity values were similar to the gold label set-
ting, suggesting that model’s inability to overwrite
existing associations is explained by the readout
misalignment, while the underlying representation
is intact.

Figure 5: Manifold capacity of last token embeddings
during demonstrations prompting compared to instruc-
tion and raw sentence control.

Sensitivity to the choice of demonstrations Per-
formance of few-shot ICL has been previously re-
ported to depend heavily on the choice of particular
examples and their ordering, even for a fixed num-
ber of demonstrations provided (Zhao et al., 2021).

To investigate whether such failure modes of cer-
tain training sets stem from changes in the underly-
ing geometry, we analyzed the relationship between
last-token manifold capacity and end performance
across multiple random samplings of demonstra-
tions, while keeping the number of examples fixed.
In accordance with prior work, we observed large
variance in performance (fig. 6 left), particularly in
settings with fewer examples. For instance, with
five demonstrations, accuracy varied dramatically
from below 0.1 to approximately 0.6. Despite this
substantial performance variability, the changes in
manifold capacity of the last token embedding at
the final layer were minimal. Even in "failure"
runs with lowest accuracy, manifold capacity was
significantly higher than in the instruction setting,
and the layer-wise profile of capacity in the worst
runs was nearly identical to the best runs (fig. 6
right). These results provide further evidence that
the instability of few-shot ICL and its sensitivity
to particular examples is driven primarily by poor
readout alignment rather than differences in repre-
sentational geometry

Figure 6: Left: Manifold capacity at the final layer ver-
sus accuracy for individual ICL runs with different num-
bers of demonstrations compared to instruction. Right:
Layer-wise capacity profiles for the five best- and worst-
performing 5-demonstration runs compared to instruc-
tion (accuracies shown in brackets)

4.2 Cross-Task Interactions in Multi-Task
Prompting

Multi-task setup We then investigated whether
prompting a model to perform one task would af-
fect the quality of representation for another unre-
lated task. To this end, we constructed an artificial
sentence-classification dataset containing three in-
dependent sets of labels, each with five categories.
This design allowed each sentence to be classified
by its sentiment, topic, or intent (see appendix A.1
for details).

We created instruction and demonstration
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prompts for each of the three tasks. We then com-
puted representational metrics for each of the three
possible sets of manifolds, resulting in nine possi-
ble pairs between a prompt and a representation.
We termed the three cases where the manifold-
inducing labels coincided with the classification
objective (e.g., performing sentiment analysis and
computing separability of sentiment manifolds) as
coherent. The remaining six cases, where mani-
fold capacity was evaluated for a different set of
labels, were termed incoherent.

This setup allowed us to explore how prompting
for one task affects the model’s internal representa-
tions not just for that task, but also for other poten-
tial tasks on the same input. All experiments used
gold category labels, and manifold metrics for each
configuration were normalized by the correspond-
ing value in the raw sentence case.

Synergistic Effects at the Sentence Level In-
creasing the number of demonstrations robustly
led to increased manifold capacity at intermediate
layers for coherent configurations, while instruc-
tion had a much weaker effect (fig. 7). Surpris-
ingly, demonstrations for an incoherent task also
increased capacity with a similar layerwise profile,
albeit to a lesser extent. This highlights the role of
input distribution: providing example sentences en-
hances representation capacity for supporting other
tasks on the same input distribution, even in the
context of a different task. While the trend of in-
creased capacity with growing number of examples
was similar for both coherent and incoherent sce-
narios, the amplitude of such increase was larger
when the task was coherent with the manifold la-
bels. Notably, while the overall trend is captured
by the decrease in manifold dimension, the differ-
ence between coherent and incoherent settings is
not fully explained by the geometry of individual
manifolds (supplementary fig. 21). Instead, it likely
arises due to changes in the correlation structure
and relative positions of manifolds in the embed-
ding space.

Task Interference in Last Token Representa-
tions Analysis of last token embeddings revealed
an interesting dichotomy of layerwise dynamics
(fig. 8). At earlier layers, additional demonstra-
tions of incoherent tasks increased manifold ca-
pacity, but at later layers, this trend reversed, with
additional examples decreasing capacity. Coher-
ent demonstrations significantly increased capacity
starting with layer 12 and persisting to the final

Figure 7: Effect of prompting in a multitask setting at
sentence-level

layer. The increase in capacity driven by coher-
ent prompts at intermediate layers was much more
prominent, compared to incoherent prompts, indi-
cating a larger role of task-specific input-output
pairings. Decrease in capacity at final layers with
growing number of demonstrations suggests an in-
triguing idea of representational tradeoff: as the
model prepares the output, features for irrelevant
tasks, that were emphasized at intermediate pro-
cessing stages are compromised in favor of better
separability of task-relevant features. Interestingly,
this effect could not be explained by the geome-
try of individual manifolds — we observed a re-
duction in dimension with increased number of
examples for both coherent and incoherent tasks.
Instead, we observed that center-axes correlations
behaved differently for coherent and incoherent
cases, capturing the trend in capacity (see supple-
mentary fig. 22).

Figure 8: Effect of prompting in a multitask setting at
last-token level

4.3 Distinct representational mechanisms of
prompt-tuning

Performance and Setup of Soft Prompts Fi-
nally, we extended our investigation to prompt-
tuning, an alternative method of task adaptation
(Lester et al., 2021) that optimizes a task-specific
prompt directly in the embedding space (hence
"soft"), which is prepended to the test input (fig. 9
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Figure 9: Schematic of the prompt-tuning setup (A) and performance at various tasks for different lengths of the soft
prompt (B). Right: Manifold capacity changes during training across layers for sentence-level (C) and last token (D)
representations

A). This approach allowed us to examine whether
gradient-based methods for task adaptation af-
fect internal representations similarly to traditional
prompting methods.

To validate performance, we trained separate soft
prompts of varying lengths for all three tasks, com-
puting test accuracy across intermediate training
iterations (fig. 9, B). Notably, soft prompts consis-
tently outperformed demonstrations ((see A), and
we found no significant correlation between final
performance and prompt length, consistent with
prior work (Lester et al., 2021). Given the simi-
larity in performance and representational effects
across different prompt lengths, we present rep-
resentative plots for a 5-token soft prompt in the
following analysis.

Minimal Impact on Intermediate Representa-
tions Analysis of sentence-level representations
during soft prompt training revealed a striking
mechanistic difference compared to hard natural-
language prompts (fig. 9 C). The optimization-
based solution did not alter intermediate representa-
tions in earlier layers, as illustrated by the absence
of the characteristic peak around layer 12 observed
with other prompting methods. Instead, effects
were concentrated in later layers, where we ob-
served a similar representational trade-off even at
the sentence level: prompts for incoherent tasks led
to decreased capacity. Importantly, this capacity
difference could not be explained by the geometry
of individual manifolds, suggesting the critical role
of relative manifold arrangement (see fig. 25).

Enhanced Trade-off in Last Token Represen-
tations At the last token level, prompt-tuning
also exhibited distinct effects. For coherent
prompts, manifold capacity increased substantially
in later layers as training progressed, surpassing
instruction-prompted capacity but remaining below
that induced by demonstrations. Notably, this effect
emerged at later layers compared to both instruc-
tion and demonstration methods. In the incoherent
case, soft prompts dramatically reduced the capac-
ity of representations for unrelated tasks. This sug-
gests that gradient-based input optimization com-
promises the representation of task-irrelevant fea-
tures even more than natural-language demonstra-
tions. As with demonstrations, the capacity dif-
ference between coherent and incoherent settings
was primarily attributable to the relative alignment
of manifolds in the embedding space, rather than
geometry of individual manifolds ( fig. 26).

Taken together, our results on prompt-tuning in-
dicate that soft-prompts, often proposed to be alter-
native to demonstration-based ICL, operate through
fundamentally different internal mechanisms com-
pared to demonstrations and zero-shot instruction.

5 Discussion

Our study illuminates the mechanisms of how lan-
guage models adapt to various tasks by analyzing
the geometry of internal representations under dif-
ferent prompting methods. We found that zero-shot
instruction, few-shot demonstrations, and tunable
soft-prompts, while achieving comparable perfor-
mance, operate through distinctly different repre-
sentational mechanisms.
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Zero-shot instructions, while effective, primar-
ily influence the final stages of processing, affect-
ing how features are "packaged" in the last token
embedding without significantly altering interme-
diate representations. In contrast, demonstration
examples have a more profound impact, reshap-
ing intermediate representations to optimize them
for the classification objective. In a multitask set-
ting, demonstrations optimize early-layer represen-
tations to support multiple potential tasks, regard-
less of the specific task being demonstrated. This
suggests a form of general feature enhancement
triggered by exposure to diverse input examples.
Soft-prompts, despite being trained on the same
input distribution examples, operate differently,
mainly affecting later layers responsible for output
preparation, distinguishing them from the broader
impact of natural language demonstrations.

A key insight emerging from our analysis is the
distinction between representational geometry and
readout alignment in determining model perfor-
mance. Manifold capacity measures the inherent
separability of category representations and their
potential for supporting robust classification across
all possible linear readouts. However, actual model
performance also depends on a specific readout –
the model’s unembed layer — which may fail to
optimally utilize well-structured representations.
This effect manifests itself in two notable "failure
modes" of few-shot ICL — dramatic sensitivity to
the choice and ordering of specific examples and
the inability to generalize beyond label associations
in the pretraining corpus. In both cases, the internal
representations remain well-organized for classifi-
cation, but the unembed layer fails to effectively
leverage this structure, resulting in poor accuracy.
High separability, as measured by manifold capac-
ity, suggests that one could train a simple linear
readout module on top of existing representations
to overcome this, leveraging the feature-extraction
power of decoder-only LLMs for efficiently adapt-
ing their representations to specific tasks. The suc-
cess of prompt-tuning further supports this view:
its effectiveness appears to stem primarily from
improving the alignment between representations
and the vocabulary readout layer, rather than fun-
damentally altering the geometric organization of
the embedding space.

These findings suggest two promising directions
for future research. First, given that internal repre-
sentations often maintain high manifold capacity
even when ICL performance is poor, there is sig-

nificant potential in better understanding and op-
timizing readout alignment. Quantifying decoder
alignment by comparing the performance of in-
dependently trained classifiers with the model’s
unembed layer could provide deeper insights into
this bottleneck and suggest ways to overcome it.
Second, our observation that demonstrations can
drastically change representational geometry sug-
gests opportunities for more direct geometric op-
timization. Recent work has shown promising re-
sults in related fields: optimizing vision network
parameters to directly maximize manifold separa-
bility has achieved SoTA performance (Yerxa et al.,
2023), while regularizing learned embeddings to
respect structural characteristics has improved per-
formance in causal inference tasks (Balashankar
and Subramanian, 2021). We anticipate that similar
insights into LM representational geometry could
drive innovations in language model prompting,
enhancing performance and stability across a wide
range of objectives.

Limitations

Our study provides insights into the representa-
tional geometry of language models under different
prompting methods, but it has limitations. First, we
used synthetic datasets generated by Claude 3.5
Sonnet, which allowed precise control over task
parameters. However, this approach may not fully
capture the complexity and variability of real-world
language structure. To enhance the generalizability
of our findings, future research should expand test-
ing to include a broader range of natural datasets.

Second, the metrics used to quantify represen-
tational geometry in our study, such as manifold
capacity and individual manifold geometry, though
informative, simplify the more complex tasks that
occur in language models, by focusing on a classi-
fication task with given target labels. Future work
should examine how other tasks, such as those re-
quiring multi-token outputs (e.g., chain-of-thought
prompting), affect representational geometry. Ad-
ditionally, more advanced measures that link geom-
etry to complex computations could provide further
insights into the fine-grained changes during task
adaptation.
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A Appendix

A.1 Dataset details

A.1.1 Multi-task dataset
Description The synthetic dataset used in this
study was generated using Claude 3.5 Sonnet, a
large language model developed by Anthropic. The
dataset consists of sentences crafted to represent
various combinations of emotions, topics, and prag-
matic intents. The generation process was designed
to create a diverse and balanced dataset suitable
for studying representation changes in a multi-task
setup. Example sentences covering all five category
labels for each of the three subtasks can be found
in table 1.

Generation procedure The dataset was gen-
erated through an iterative process, by cycling
through three possible generation types:

• Emotion-focused: The model’s goal was to
generate 10 sentences (2 for each emotion),
given a specific topic and intent.

• Topic-focused: The model’s goal was to gen-
erate 10 sentences (2 for each topic), given a
specific emotion and intent.

• Intent-focused: The model’s goal was to gen-
erate 10 sentences (2 for each intent), given a
specific emotion and topic.

Example of a full prompt an for emotion-focused
iteration can be found in fig. 10. Prompts for other
two types were phrased analogously.

To ensure diversity of resulting sentences, each
prompt included a specific constraint for the sen-
tence to be of a certain perspective (first, second
or third person) and tense (present, past, future or
mixed), chosen at random.

Additionally, the model was instructed to make
at least one generated sentence follow a special
requirement, that was sampled randomly from a
pool of 18 possible requirements (table 2) during
prompt construction.

The generated sentences were parsed and stored
with their corresponding labels.

Post processing After generation, the dataset un-
derwent several post-processing steps:

• Duplicate sentences were removed to ensure
uniqueness

• Category labels were capitalized and ordered
consistently.

• Letter codes and shuffled labels were as-
signed to each sentence for alternative label-
ing schemes

• Dataset was subsampled to 1000 sentences
(500 for train and 500 for test splits) in a way
to ensure uniform coverage of each of three
subtasks (in each split: 100 sentences per cat-
egory)

To introduce further variations, the following
transformations were applied to both train and test
sets:

• 10% of sentences were converted to lowercase

• 10% of sentences were converted to uppercase

These transformations were applied randomly and
independently to each set.

A.1.2 Open datasets
To ensure our findings were not solely a result of
using a synthetic dataset generated by another lan-
guage model, we replicated our single-task experi-
ments using two open datasets, often used for text
classification: AG News (Zhang et al., 2015)and
TREC (coarse) (Li and Roth, 2002; Hovy et al.,
2001). For the TREC dataset we removed the
“Abbreviation” category, which had an insufficient
number of samples for manifold analysis. Addi-
tionally, we created a balanced test partition with
uniform representation across all categories. Re-
sulting dataset sizes can be found in table 3.
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You are a helpful assistant tasked with generating a dataset of sentences. Generate 2 sentences for each
of the following categories of emotion:
1. Joy
2. Sadness
3. Anger
4. Fear
5. Surprise

Please make sure all sentences are related to the topic “technology” and have humorous intent (Each
sentence is intended to be funny or amusing, often through clever use of language, unexpected
connections, or playful exaggeration.).

There are a few requirements for the sentences:
Use first-person perspective.
Use future tense.

Additionally, include at least one sentence that:
- Sounds like a tweet

Very important instructions:
1. Convey the emotion through the situation, word choice, and tone. Do not directly state the emotion
or use immediate synonyms.
2. Imply the topic through context and content, but do not explicitly mention the topic name.
3. Express the intent naturally without explicitly stating the type of intent being used.

Format your response as follows:
Joy:
1. [Sentence 1]
2. [Sentence 2]

Sadness:
1. [Sentence 1]
2. [Sentence 2]

Anger:
1. [Sentence 1]
2. [Sentence 2]

Fear:
1. [Sentence 1]
2. [Sentence 2]

Surprise:
1. [Sentence 1]
2. [Sentence 2]

Ensure each sentence is on a new line and numbered within its category.
Do not include any additional text or explanations outside of this format.
Very important: Remember to vary the syntax and structure of the sentences to make the dataset diverse
and interesting! Do not use the same structure for all sentences.

Figure 10: Example prompt configuration used in generating the synthetic dataset (emotion-focused type). Text
highlighted in bold represents parts of the prompt that were varied on each iteration to increase diversity of resulting
sentences.
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Sentence Sentiment Topic Intent
This concert has me over the moon - I’m

having the time of my life!
Joy Entertainment Idiomatic

You’ll watch as the winds of change blow away
the last remnants of your faith in the system!

Sadness Politics Metaphorical

Tomorrow’s blood test results might reveal
something I’m not prepared to handle.

Fear Health Literal

My favorite team’s strategy of constantly
fumbling the ball was clearly the path to

victory.

Anger Sports Sarcastic

I nearly fell out of my chair when my ancient
printer suddenly sprang to life and started

spewing out pages of binary code!

Surprise Technology Humorous

Table 1: Example sentences from the synthetic multi-task dataset

Sounds like a tweet
Describes a hypothetical scenario
Uses simple vocabulary as if spoken by a child
Has a rhythmic or lyrical quality
Sounds like a memorable quote
Includes a question
Includes a command or instruction
Incorporates a well-known saying or proverb
Structured like a headline
Includes a number or statistic
Imitates casual online comment style
Uses formal language
Starts with a gerund (-ing word)
Includes a rhetorical question
Uses the passive voice
Includes a list or enumeration
Employs repetition for emphasis
Starts with a conditional (If...)

Table 2: Possible special requirements during dataset generation

Dataset Samples per category Category labels
TREC coarse 65 Description, Entity, Human, Location, Numeric

AG news 63 Business, World, Sports, Sci/Tech

Table 3: Parameters of open dataset subsampling sizes used in experiments
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A.2 Models
All experiments presented in the main text were
performed on Llama3.1 8b base model (Llama
Team, AI @ Meta, 2024) (32 layers, 4096 embed-
ding dimension). We also repeated the results with
Gemma2 (2b base model) (Gemma Team, 2024)
(26 layers, 2304 embedding dimension). Results
are presented in the appendix A.5.

A.3 Methods
A.3.1 Embedding Extraction Methodology
Challenges in Decoder-Only Models

1. Masked Self-Attention: In decoder-only
models, each token’s embedding is limited
to information from itself and preceding to-
kens. This requires the model to progressively
accumulate and propagate relevant contextual
information along the sequence, influencing
how global features are represented across dif-
ferent token positions.

2. Distributed Sentence-Level Features: Un-
like models with dedicated [CLS] tokens,
global sentence-level features (such as senti-
ment) might be distributed across embedding
vectors of intermediate tokens.

3. Last Token Dependency: The model’s out-
put is a function of the last token’s embed-
ding vector only, implying that task-relevant
features must be aggregated and represented
in this final embedding for good task perfor-
mance.

Sentence Embeddings To examine how task-
specific prompts influence feature extraction and
computation on intermediate tokens, we construct
sentence embeddings as follows:

1. We extract residual stream activations at each
layer for tokens corresponding only to the in-
put sentence, excluding the task prompt itself.
This ensures that the resulting embeddings for
each sentence are of the same length across
different prompting conditions.

2. We perform mean-pooling across these em-
bedding vectors to obtain a fixed-size embed-
ding for each sentence.

While this method differs from using dedicated
sentence-level embeddings, it provides insight into
the model’s intermediate processing stage. Based

on the idea of feature superposition, we hypoth-
esize that directions in the embedding space cor-
responding to task-irrelevant token-level features
will be averaged out, while task-relevant global
features (which might be distributed among vari-
ous tokens in the sentence) will be preserved or
enhanced through mean-pooling.

Last-token Embeddings While mean-pooled
embeddings allow us to capture an intermediate
processing stage, the underlying sentence tokens
are not immediately utilized for the task. To under-
stand the model’s final representation before output
generation, we also extracted residual stream acti-
vation of the last token in the sequence at each layer.
The last token is special because, for the model to
perform the task, all relevant sentence-level fea-
tures must get "packaged" into the embedding vec-
tor of the last token via self-attention. By analyzing
last token embeddings across layers, we can track
at what point such feature repackaging takes place
to collect information about the sentence.

A.3.2 Manifold Capacity
This section provides additional background on
the idea of manifold capacity. Consider a set
of N points in Demb-dimensional space: x⃗i ∈
RDemb . Each point has a corresponding class la-
bel li ∈ {1, . . . P }. Capacity measures how well
a particular representation supports linear separa-
bility of a random one-vs-rest label dichotomy that
doesn’t break category boundaries. Namely, for P
classes there are P possible dichotomies: {yµi },
where i ∈ {1, . . . N } – index of a data point,
µ ∈ {1, . . . P } – index of a dichotomy, and:

{
yµi = 1 if (li = µ)

yµi = −1 otherwise

Consider performing a random projection of data
into a Dproj- dimensional space, where Dproj ≤
Demb. We can compute a probability that a ran-
domly chosen dichotomy will be linearly separable,
when the data is projected randomly to Dproj di-
mensions, formalized as follows:

F (Dproj) = Pr
S∼N (Dproj,Demb)

µ∼Unif.({1...P})

[∃w⃗ : yµi w⃗Sx⃗i ≥ 0 ∀i]

Where w⃗ ∈ Dproj. In a thermodynamic limit
of N,P → ∞, F (Dproj) undergoes a sharp phase
transition from 0 to 1 as Dproj interpolates between

1870



0 and Demb. In the finite data case, the transition
is smooth, but we can still detect an approximate
critical dimension D∗, that corresponds to the in-
flection point of F (Dproj). Then, manifold capacity
α is defined to be

α =
P

D∗

Intuitively it captures decoding efficiency, quan-
tifying how many dimensions are sufficient for a
downstream readout to perform classification. α
depends on the geometry of individual manifolds
(such as radius and dimension), as well as relative
positioning and alignment of different class mani-
folds in the embedding space.

A.3.3 Manifold dimension
We use the participation ratio (PR) as a proxy for
manifold dimensionality, as described in (Gao et al.,
2017). For a manifold X ∈ R(N,D) consisting of
N points in a D-dimensional space (N ≤ D), the
participation ratio is defined as:

PR =

(∑N
i λi

)2

∑N
i λ2

i

where λi is the ith eigenvalue of the manifold co-
variance matrix XXT . Intuitively, PR measures
how evenly the total variance is distributed among
individual principal components. Lower values
of PR indicate a more rapid decay of covariance
eigenvalues, signifying lower effective dimension-
ality. We compute the PR for each manifold and
then average these values to obtain a single measure
of dimensionality for the entire representation.

A.3.4 In-context learning
Demonstration Prompts We constructed
demonstration prompts by randomly sampling
sentences from the training split. The number of
examples varied from 1 to 40, ensuring as uniform
a label coverage as possible. For instance, in a
4-category classification task with 10 demonstra-
tion examples, 8 examples were guaranteed to
cover all categories equally (2 per category), with
the remaining 2 examples randomly chosen. We
computed the forward pass of the model with 3
random seeds for each number of demonstrations
and reported averaged measures across these runs.

Accuracy Measurement We measured accuracy
as the proportion of test sentences for which the
token with the highest logit value corresponded

to the first token of the target output (for cases
where the target label was tokenized into multiple
tokens). Importantly, we considered logits for the
entire vocabulary, not restricting the scope to target
outputs. If the highest probability output was a
token not corresponding to any class label, the run
was treated as incorrect, irrespective of relative
logit values of other tokens.

A.3.5 Prompt-tuning
Description We replicated our main experimen-
tal setup, replacing natural language task instruc-
tions and demonstrations with tunable prompts of
varying lengths. A tunable prompt X (also referred
to as a soft prompt) of length l is a matrix in the
model’s embedding space Rl×Demb , where Demb
is the dimensionality of the model’s token embed-
dings.

Unlike discrete text prompts, these tunable
prompts are continuous vectors that can be opti-
mized directly through gradient descent. They pro-
vide a more flexible way to convey task-specific
information to the model, unconstrained by the to-
ken embedding matrix. This allows them to occupy
highly specific regions of the embedding space
that are inaccessible through natural language input
alone.

Soft-prompt methodology

1. Initialization: Each tunable prompt X was
initialized using the embedding vector of the
word “Category”. For soft prompts with l > 1,
this embedding vector was repeated l times
along the sequence length dimension, provid-
ing a starting point for optimization.

2. Prepending: For each input sequence s (after
token embedding), we prepended the tunable
prompt X to create an augmented input:

saugmented = [X; s]

where [; ] denotes concatenation along the se-
quence length dimension.

3. Optimization: During training, while keep-
ing the pretrained language model parameters
fixed, we optimized the elements of X to min-
imize the task-specific loss function:

X∗ =X L(Model([X; s]),y)
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where L is the Cross Entropy loss function,
Model(·) represents the frozen pretrained lan-
guage model, and y is the ground truth label.

4. Length Variation: We trained soft prompts
of various lengths l ∈ {1, 2, 5, 10, 20} to in-
vestigate the impact of prompt size on perfor-
mance. Longer prompts can theoretically cap-
ture more details about general task structure,
the nature of categories, and meta-information
about specific training examples (although in
practice, we did not observe significant perfor-
mance differences across different lengths).

Training procedure and checkpoints Soft
prompts were optimized on the training subset of
each dataset (see appendix A.1). We trained each
soft prompt for 30 epochs with a batch size of 16
using the Adam optimizer (Kingma and Ba, 2017).
The initial learning rate was set to 3× 10−4 with
an exponential decay of γ = 0.9 after each epoch.
To analyze how representations evolved during the
training of soft prompts, we selected 50 intermedi-
ate points, logarithmically spaced across training
iterations.

A.4 Computational resources
All experiments were performed on a high-
performance computing cluster, using Nvidia H100
GPUs, resulting in total of 1000 GPU hours.

A.5 Supplementary plots
To maintain a reasonable number of figures in the
paper, we present a curated subset in this appendix,
highlighting key points with representative plots.
The complete set of figures, detailing geometric
measures for all combinations of models, datasets,
and tasks, along with the source code, will be avail-
able on GitHub. The repository will be made public
upon publication.
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Figure 11: Llama3.1-8b performance of demonstrations and instruction prompts on open datasets (ag_news and
TREC coarse) and on all three subtasks of the synthetically generated multitask dataset (sentiment, topic and intent).
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Figure 12: Gemma2-2b performance of demonstrations and instruction prompts on open datasets (ag_news and
TREC coarse) and on all three subtasks of the synthetically generated multitask dataset (sentiment, topic and intent).
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Figure 13: Manifold capacity and geometric properties of sentence-level representations during demonstration
prompting compared to instruction and raw sentence across layers. Llama3.1-8b evaluated on ag_news. Gradient
color shows number of demonstrations (darker — more examples).
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Figure 14: Manifold capacity and geometric properties of sentence-level representations during demonstration
prompting compared to instruction and raw sentence across layers. Llama3.1-8b evaluated on TREC_coarse.
Gradient color shows number of demonstrations (darker — more examples).

1876



Figure 15: Manifold capacity and geometric properties of sentence-level representations during demonstration
prompting compared to instruction and raw sentence across layers. Llama3.1-8b evaluated on sentiment analysis
subtask of multitask synthetic dataset. Gradient color shows number of demonstrations (darker — more examples).
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Figure 16: Manifold capacity and geometric properties of sentence-level representations during demonstration
prompting compared to instruction and raw sentence across layers. Gemma2-2b evaluated on sentiment analysis
subtask of multitask synthetic dataset.Gradient color shows number of demonstrations (darker — more examples).
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Figure 17: Manifold capacity and geometric properties of last token representations during demonstration prompting
compared to instruction and raw sentence across layers. Llama3.1-8b evaluated on ag_news. Gradient color shows
number of demonstrations (darker — more examples).
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Figure 18: Manifold capacity and geometric properties of last token representations during demonstration prompting
compared to instruction and raw sentence across layers. Llama3.1-8b evaluated on TREC_coarse. Gradient color
shows number of demonstrations (darker — more examples).

1880



Figure 19: Manifold capacity and geometric properties of last token representations during demonstration prompting
compared to instruction and raw sentence across layers. Llama3.1-8b evaluated on sentiment analysis subtask of
multitask synthetic dataset. Gradient color shows number of demonstrations (darker — more examples).
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Figure 20: Manifold capacity and geometric properties of last token representations during demonstration prompting
compared to instruction and raw sentence across layers. Gemma2-2b evaluated on sentiment analysis subtask of
multitask synthetic dataset. Gradient color shows number of demonstrations (darker — more examples).
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Figure 21: Geometric measures of sentence-level representation during coherent and incoherent task-prompting of
Llama3.1-8b.Gradient color shows number of demonstration examples (darker — more examples). Dashed lines —
instruction prompt.
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Figure 22: Geometric measures of last-token representation during coherent and incoherent task-prompting of
Llama3.1-8b. Gradient color shows number of demonstration examples (darker — more examples). Dashed lines —
instruction prompt.
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Figure 23: Geometric measures of sentence-level representation during coherent and incoherent task-prompting of
Gemma2-2b. Gradient color shows number of demonstration examples (darker — more examples). Dashed lines —
instruction prompt
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Figure 24: Geometric measures of last-token representation during coherent and incoherent task-prompting of
Gemma2-2b. Gradient color shows number of demonstration examples (darker — more examples). Dashed lines —
instruction prompt.
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Figure 25: Manifold capacity and geometric measures of sentence-level embeddings during training soft-prompt
of length 5 (Llama3.1-8b). Gradient color shows training iterations (darker — later epochs). Dashed lines —
demonstrations prompt with 40 examples for reference. Dotted — instruction prompt.
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Figure 26: Manifold capacity and geometric measures of last token embeddings during training soft-prompt
of length 5 (Llama3.1-8b). Gradient color shows training iterations (darker — later epochs). Dashed lines —
demonstrations prompt with 40 examples for reference. Dotted — instruction prompt.

1888


