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Abstract

As social media has grown, so has online abuse,
with women often facing harmful online behav-
ior. This discourages their free participation
and expression online. This paper outlines the
approach adopted by our team for detecting
abusive comments in Tamil and Malayalam.
The task focuses on classifying whether a given
comment contains abusive language towards
women. We experimented with transformer-
based models by fine-tuning Tamil-BERT for
Tamil and Malayalam-BERT for Malayalam.
Additionally, we fine-tuned IndicBERT v2 on
both Tamil and Malayalam datasets. To eval-
uate the effect of pre-processing, we also con-
ducted experiments using non-preprocessed
text. Results demonstrate that IndicBERT
v2 outperformed the language-specific BERT
models in both languages. Pre-processing the
data showed mixed results, with a slight im-
provement in the Tamil dataset but no signif-
icant benefit for the Malayalam dataset. Our
approach secured first place in Tamil with a
macro F1-score of 0.7883 and second place in
Malayalam with a macro F1-score of 0.7234.
The implementation details of the task will be
found in the GitHub repository.1

1 Introduction

Over the past decade, the exponential growth of
user-generated content on social media has unfor-
tunately led to increased abusive behavior online.
This includes cyberbullying, hate speech, and of-
fensive language, often targeting various classes of
people including women. These actions can lead
to real-world violence and push women to the side-
lines, making them feel excluded and undervalued
both online and in everyday life (Kaur et al., 2021).
A study in 51 countries found that 38% of women
have faced online harassment. Only 25% of them

1https://github.com/tmdh/
DravidianLangTech-NAACL-2025-ATTW

reported it, and 90% reduced their online activity
(Hashmi et al., 2024).

Tamil is among the oldest languages in the world,
spoken by over 65 million people globally (Ra-
makrishnan et al., 2007). Malayalam, the official
language of Kerala, has more than 37 million speak-
ers worldwide (Rojan et al., 2020). Both Tamil and
Malayalam have many dialects, making it challeng-
ing to develop NLP systems for these languages.

Developing an intelligent abuse detection model
is challenging in resource-constrained languages
like Tamil and Malayalam. Therefore, a shared task
was organized to encourage the development of ef-
fective abuse detection models for these languages.

This shared task (Rajiakodi et al., 2025) aims
to detect abusive comments targeting women in
Tamil and Malayalam, sourced from YouTube com-
ments. The dataset contains text in both languages,
with each comment classified as either ’Abusive’
or ’Non-Abusive’. The task focuses on identifying
explicit abuse, implicit bias, stereotypes, and coded
language directed at women on social media.

We fine-tuned transformer-based models for text
classification. Specifically, we used Tamil-BERT
(Joshi, 2022) for Tamil comments and Malayalam-
BERT (Joshi, 2022) for Malayalam comments. Ad-
ditionally, we fine-tuned IndicBERT v2 (Doddapa-
neni et al., 2023) on both Tamil and Malayalam
datasets. We also experimented with training mod-
els on non-preprocessed text to analyze the impact
of preprocessing.

The rest of the paper is organized into 6 sec-
tions. Section 2 reviews related work in Natural
Language Processing, focusing on misogynistic
text detection in Tamil, Malayalam, and other lan-
guages. Section 3 describes the dataset provided
by the shared task organizers. Section 4 provides a
detailed explanation of the proposed methodology
and the models implemented. Section 5 presents
the results and key observations. Finally, Section 6
concludes the paper.
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2 Related Works

Recent advances in NLP have increased interest in
detecting different types of hate speech, leading to
many new and creative methods in this field. Offen-
sive language detection in Tamil and Malayalam
has been studied in previous research (Ponnusamy
et al., 2024), but to the best of our knowledge, this
is the first shared task that specifically focuses on
detecting abusive texts targeting women from Dra-
vidian texts. There have been previous shared tasks
on languages other than Dravidian for misogynistic
text detection, such as the Arabic Misogyny Iden-
tification (ArMI) task (Mulki and Ghanem, 2022)
and the GermEval2024 shared task, GerMS-Detect
(Gross et al., 2024). The ArMI task combined
two subtasks: a binary classification for detecting
misogynistic language and a multi-class classifica-
tion for identifying seven misogynistic behaviors
in 9,833 Arabic/dialectal tweets. GerMS-Detect
focused on detecting sexism and misogyny in Ger-
man language online news comment.

In terms of Dravidian languages, Chakravarthi
et al., 2023 proposed a fusion model of MPNet
(Song et al., 2020) and CNN for offensive language
identification in code-mixed Tamil, Malayalam,
and Kannada social media comments, achieving
superior results over classical ML and transformer-
based baselines.

Sreelakshmi et al., 2024 explored offensive
language detection in code-mixed Tamil-English,
Malayalam-English and Kannada-English using
multilingual transformer embeddings with Sup-
port Vector Machine classifiers, identifying MuRIL
(Khanuja et al., 2021) as the most effective model
across various datasets.

The study by Vasantharajan and Thayasivam,
2021 explores offensive language detection in
Tamil code-mixed YouTube comments, proposing
selective translation and transliteration techniques
to enhance transformer models like BERT (Devlin
et al., 2019) and XLM-RoBERTa (Conneau et al.,
2020). Their findings highlight ULMFiT (Howard
and Ruder, 2018) and mBERT-BiLSTM as the most
effective models for offensive language detection.

Prior work in abuse detection has primarily fo-
cused on English, lacking substantial datasets for
Indic languages. Gupta et al., 2022 proposed
MACD to address this gap by introducing a large-
scale multilingual abuse detection dataset and Abu-
seXLMR model for Indic languages.

Class Train Dev Test
Abusive 1366 278 305
Non-Abusive 1424 320 293
Total 2790 598 598

Table 1: Class-wise distribution of Tamil Dataset

Class Train Dev Test
Abusive 1531 303 323
Non-Abusive 1402 326 306
Total 2933 629 629

Table 2: Class-wise distribution of Malayalam Dataset

3 Dataset Description

The organizers of the Abusive Text Targeting
Women Detection shared task provided two
datasets (Priyadharshini et al., 2023, Priyadharshini
et al., 2022) where one consists of Tamil texts while
the other consists of Malayalam texts. Each of the
texts is annotated with one of the the classes: Abu-
sive and Non-Abusive. Table 1 displays the class-
wise data distribution for the Tamil dataset, while
Table 2 shows the same for the Malayalam dataset.

To provide better insights, we conducted a more
in-depth analysis of the training set. Table 3
presents the detailed statistics of the training data.

4 Methodology

This work employed two transformer-based models
on each language’s dataset, both preprocessed and
non-preprocessed. Firstly, we removed unwanted
characters (i.e., numbers, extra spaces, and URLs)
from the texts in both the Tamil and Malayalam
datasets to create two preprocessed datasets.

4.1 Transformer Models

Recent advancements in NLP have shown that
transformer-based models perform better than other
approaches for text classification across different
languages. In this work, we fine-tuned Tamil-

Statistics Abusive Non-Abusive
Total words 21166 19091
Unique words 9541 8672
Max. length (words) 48 48
Avg. words (per text) 15.5 13.4

Table 3: Detailed statistics of each class in the training
set
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Approach Selected Epoch Accuracy Precision Recall F1-score
Tamil-BERT (Non-preprocessed) 4 0.7793 0.7800 0.7786 0.7788
Tamil-BERT (Preprocessed) 2 0.7843 0.7861 0.7850 0.7842
IndicBERT v2 (Non-preprocessed) 3 0.7876 0.7945 0.7860 0.7857
IndicBERT v2 (Preprocessed) 2 0.7893 0.7923 0.7882 0.7883

Table 4: Performance comparison of various models on the test set of Tamil dataset

Approach Selected Epoch Accuracy Precision Recall F1-score
Malayalam-BERT (Non-preprocessed) 2 0.6630 0.7136 0.6692 0.6467
Malayalam-BERT (Preprocessed) 5 0.6439 0.6440 0.6426 0.6424
IndicBERT v2 (Non-preprocessed) 2 0.7234 0.7238 0.7239 0.7234
IndicBERT v2 (Preprocessed) 4 0.7122 0.7133 0.7130 0.7122

Table 5: Performance comparison of various models on the test set of Malayalam dataset

BERT2 and Malayalam-BERT3 on Tamil and
Malayalam texts, respectively, using both prepro-
cessed and non-preprocessed datasets. We also
used IndicBERT v24, a multilingual model, to han-
dle both languages.

Our classifier is based on a transformer model
with a linear classification head. The architecture
consists of a pre-trained BERT model followed by a
fully connected layer that maps the hidden state of
the [CLS] token to a two-class output. The model
was trained using PyTorch Lightning (Falcon and
team, 2024), which simplified the training and eval-
uation process. We optimized the models using the
AdamW (Loshchilov and Hutter, 2019) optimizer
with a learning rate of 5e− 5. The training process
ran for up to five epochs, and we selected the best-
performing epoch based on the highest F1-score
on the validation set.

For training, we used a batch size of 32 and
applied cross-entropy loss. The training process
logged F1-score on the validation set at each epoch.
Model checkpoints were saved after each epoch,
and the model with the highest F1 was used for
evaluation.

Table 6 summarizes the hyperparameters used
across all models. The selected epochs for each
approach are shown in Table 4 and Table 5 for
Tamil and Malayalam, respectively.

2https://huggingface.co/l3cube-pune/
tamil-bert

3https://huggingface.co/l3cube-pune/
malayalam-bert

4https://huggingface.co/ai4bharat/
IndicBERTv2-MLM-only

Hyperparameters Values
Learning Rate 5e− 5
Batch Size 32
Max Epochs 5
Weight Decay 0.01

Table 6: Hyperparameters used across models

4.1.1 Tamil-BERT and Malayalam-BERT
Tamil-BERT and Malayalam-BERT are monolin-
gual BERT models fine-tuned from the multilin-
gual MuRIL model for the Tamil and Malayalam
languages, respectively. They are trained on large
monolingual corpora. These models aim to en-
hance performance on downstream NLP tasks for
these low-resource Indian languages. (Joshi, 2022)

4.2 IndicBERT v2

IndicBERT v2 is a state-of-the-art multilingual lan-
guage model designed specifically for Indic lan-
guages. It supports all 24 languages covered in the
IndicCorp v2 dataset. The dataset includes 20.9
billion tokens from 24 languages, including Indian
English. This model is a significant step forward in
building robust NLU capabilities for diverse Indic
languages. (Doddapaneni et al., 2023)

5 Results

Table 4 and 5 reports the performance comparison
of the different approaches on the Tamil dataset and
Malayalam dataset, respectively. The effectiveness
of the models is determined based on the macro
F1-score.

For the Tamil dataset, IndicBERT v2 fine-tuned
on the preprocessed dataset achieved the high-
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est F1-score of 0.7883, followed by IndicBERT
v2 on the non-preprocessed dataset with an F1-
score of 0.7857. For the Malayalam dataset, In-
dicBERT v2 employed on the non-preprocessed
dataset achieved the best performance with an F1-
score of 0.7234, while IndicBERT v2 on the pre-
processed dataset also performed well with an F1-
score of 0.7122. It is indicating that pre-processing
did not improve the performance on the Malayalam
dataset. For both Tamil and Malayalam, Tamil-
BERT and Malayalam-BERT did not perform well
on the task, while IndicBERT v2 achieved strong
performance in both languages.

6 Conclusion

This paper investigated two language specific trans-
former models and one multilingual language
model to detect abuse targeted towards women
from preprocessed and non-preprocessed Tamil
and Malayalam texts. Among all approaches, the
highest macro F1-score 0.7883 for Tamil texts is
obtained by IndicBERT v2 fine-tuned with prepro-
cessed Tamil texts. For Malayalam texts, the high-
est macro F1-score 0.7234 is gained by finetuning
IndicBERT v2 with non-preprocessed Malayalam
texts. Looking ahead, we plan to explore ensem-
ble methods and other advanced transformer-based
models including MuRIL and XLM-R.

Limitations

While our model demonstrated strong performance
in identifying abusive text directed at women in
Tamil and Malayalam, it is important to recog-
nize several limitations. These include the limited
availability of diverse and high-quality annotated
datasets for Dravidian languages, which restricts
the model’s ability to generalize across various di-
alects. Furthermore, the linguistic intricacies of
Tamil and Malayalam can affect the model’s effec-
tiveness, especially in detecting implicit or subtly
coded abusive language. Another challenge is the
scalability of transformer-based models when han-
dling longer texts, as they are mainly designed and
optimized for shorter sequences. Moreover, fine-
tuning these models demands significant GPU re-
sources, which could restrict access for researchers
with limited computational capabilities. Addition-
ally, we did not perform an extensive hyperparame-
ter search for critical parameters like learning rate
and weight decay, which might otherwise enhance
the model’s performance.
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