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Abstract

This study addresses the challenge of fake news
detection in code-mixed and transliterated text,
focusing on a multilingual setting with signifi-
cant linguistic variability. A novel approach is
proposed, leveraging a fine-tuned multilingual
transformer model trained using Masked Lan-
guage Modeling on a dataset that includes orig-
inal, fully transliterated, and partially transliter-
ated text. The fine-tuned embeddings are inte-
grated into a custom transformer classifier de-
signed to capture complex dependencies in mul-
tilingual sequences. The system achieves state-
of-the-art performance, demonstrating the ef-
fectiveness of combining transliteration-aware
fine-tuning with robust transformer architec-
tures to handle code-mixed and resource-scarce
text, providing a scalable solution for multilin-
gual natural language processing tasks.

1 Introduction

The rise of social media platforms like Facebook,
X (formerly Twitter), and Instagram has revolu-
tionized global connectivity, enabling instant in-
formation sharing. However, it has also fueled
the spread of fake news—intentionally misleading
content—causing societal issues such as eroded
media trust, polarized opinions, and real-world con-
sequences. Addressing fake news detection is now
a critical research area (Subramanian et al., 2023,
2024b).

This study focuses on Task 1 of the shared chal-
lenge, Fake News Detection in Dravidian Lan-
guages - DravidianLangTech@NAACL 2025 (Sub-
ramanian et al., 2025), which classifies social me-
dia posts as original or fake. Unlike traditional
news, social media content is user-generated, in-
formal, and diverse in style, making fake news
detection particularly complex. The goal is to de-
velop a robust classification system using advanced
computational techniques and machine learning
models.

To tackle multilingual challenges, we introduce
the TransformerXLMRoberta Classifier, a hybrid
model that utilizes fine-tuned XLM-RoBERTa with
Masked Language Modeling (MLM) on original,
fully, and partially transliterated datasets. This
enables handling of native scripts, Romanized text,
and mixed-script data. Additionally, fine-tuned
XLM-RoBERTa embeddings are enhanced through
a hybrid architecture with a custom transformer
design, projected to match transformer dimensions,
and refined via Encoder-Decoder layers to capture
complex contextual relationships. Regularization
techniques such as dropout and gradient clipping
ensure stable training.

This approach achieves state-of-the-art perfor-
mance in multilingual text classification, highlight-
ing the role of transliteration strategies and hybrid
architectures in addressing the challenges of mul-
tilingual and transliterated data. By advancing
NLP for resource-scarce languages, this work con-
tributes to more inclusive and effective multilingual
applications.

2 Related Work

The rising prevalence of disinformation has driven
significant research into fake news detection. Raja
et al. (2023) explored detecting fake news in Dra-
vidian languages using transfer learning with adap-
tive fine-tuning, while Keya et al. (2022) utilized
a pretrained BERT model with data augmentation,
comparing results across multiple models. Sim-
ilarly, Goldani et al. (2021) investigated capsule
networks for n-gram-based feature extraction.

Beyond English, Gereme, Fantahun and Zhu,
William and Ayall, Tewodros and Alemu, Dagmawi
(2021) and Saghayan et al. (2021) examined fake
news detection in Amharic and Persian. Chu et al.
(2021) demonstrated the cross-lingual effectiveness
of BERT, while Faustini and Covões (2020) em-
phasized resource-poor languages, including Dra-
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vidian languages. Vijjali et al. (2020) proposed a
two-stage pipeline using BERT and ALBERT for
verifying COVID-19 fake news.

The Fake News Detection in Malayalam - Dra-
vidianLangTech@EACL 2023 (S et al., 2023) and
2024 (Subramanian et al., 2024a) shared tasks fo-
cused on classifying fake news in low-resource set-
tings, addressing transliteration and mixed-script
challenges. The top-performing teams in the 2024
challenge utilized pre-trained Malayalam BERT
(Rahman et al., 2024; Tabassum et al., 2024), and
XLM-RoBERTa Base (Osama et al., 2024) models,
while in 2023, they relied on XLM-RoBERTa (Luo
and Wang, 2023), and MuRIL (Bala and Krishna-
murthy, 2023) models. These tasks highlighted
the effectiveness of multilingual models like XLM-
RoBERTa, MuRIL and BERT in improving fake
news detection across diverse linguistic contexts.

3 Dataset

The dataset for Task 1 of the shared task "Fake
News Detection in Dravidian Languages - Dravidi-
anLangTech@NAACL 2025" (Devika et al., 2024)
consists of social media posts from platforms such
as Twitter, Facebook, and YouTube. These posts
are categorized as either fake or original. The
dataset is divided into three splits: training, de-
velopment, and testing, ensuring a balanced distri-
bution for robust evaluation.

The data distribution across the splits is summa-
rized in Table 1.

Dataset Split Fake Original Total
Train 1,599 1,658 3,257
Development(Dev) 406 409 815
Test 507 512 1,019

Table 1: Data distribution for Fake News Detection in
Dravidian Languages Task 1

The dataset reflects real-world challenges in fake
news detection by including posts with informal
language, transliterated text, and mixed-script con-
tent. Participants are tasked with designing systems
to classify each post or comment as either fake or
original, providing a benchmark for robust and
multilingual fake news detection systems.

4 Methodology

This section introduces our proposed architecture,
which integrates fine-tuned XLM-RoBERTa em-
beddings with a robust Transformer-based classifier.

Figure 1: Architecture of the Custom Transformer XLM-
Roberta Classifier Model.

The fine-tuned embeddings, trained using Masked
Language Modeling (MLM), enhance contextual
understanding, while the classifier captures com-
plex sequential dependencies in multilingual and
transliterated text. The following subsections detail
the data preprocessing, MLM training, and classi-
fier design.

4.1 XLM-RoBERTa Base Fine-Tuned with
MLM

XLM-RoBERTa, a multilingual transformer model
trained on a large-scale corpus of 94 languages
(Conneau et al., 2019), was fine-tuned using
Masked Language Modeling (MLM) for this study.
MLM involves masking a subset of input tokens
and training the model to predict them, allowing it
to learn enriched contextual embeddings tailored
to the bilingual challenges of Malayalam-English
datasets.

The MLM training dataset included monolingual
text from Malayalam social media sources, fully
transliterated versions of this text in Roman script,
and partially transliterated data where 20–70% of
words in each sentence were transliterated. This
strategy enabled the model to handle native scripts,
Romanized text, and mixed-script text commonly
found in social media communication. The fine-
tuned XLM-RoBERTa model 1 serves as the em-
bedding backbone for downstream classification
tasks, effectively addressing linguistic and ortho-
graphic variability in multilingual datasets.

1https://huggingface.co/bytesizedllm/
MalayalamXLM_Roberta
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Precision Recall F1-Score Support
original 0.89 0.90 0.90 512
Fake 0.90 0.89 0.90 507
Macro Avg 0.90 0.90 0.90 1019
Weighted Avg 0.90 0.90 0.90 1019
Accuracy - - 0.90 1019

Table 2: Classification Report on the Test Set

4.2 Custom Transformer XLMRoberta
Classifier

The proposed custom transformer architec-
ture called TransformerXLMRobertaClassifier, in-
tegrates XLM-RoBERTa embeddings with a
transformer-based encoder-decoder design to ef-
fectively handle multilingual and code-mixed text,
drawing on the foundational Transformer architec-
ture (Vaswani et al., 2023) and inspired by our
prior research on architecture design (Manukonda
and Kodali, 2025; Kodali et al., 2025; Kodali
and Manukonda, 2024; Manukonda and Kodali,
2024a,b). The model begins by processing input to-
ken IDs and attention masks through the fine-tuned
XLM-RoBERTa model to generate contextual em-
beddings. These embeddings are then projected
into the transformer’s input dimension and passed
through encoder and decoder layers, utilizing atten-
tion mechanisms and masking to capture complex
dependencies across sequences.

The decoder outputs are aggregated into a fixed-
dimensional representation and refined with resid-
ual layers, normalization, and dropout for enhanced
generalization. The final output is passed through
a classification layer to produce logits, with cross-
entropy loss computed during supervised training.

By combining XLM-RoBERTa embeddings
with transformer-based attention mechanisms, the
TransformerXLMRobertaClassifier effectively ad-
dresses the challenges of multilingual and translit-
erated text, ensuring robust and efficient perfor-
mance. As illustrated in Figure 1, the architecture
leverages regularization techniques such as dropout
and masking to maintain stability and prevent over-
fitting.

5 Experiment Setup

The experiment setup involved transliteration-
aware fine-tuning for fake news detection in
Malayalam-English code-mixed datasets, compris-
ing XLM-RoBERTa fine-tuning with Masked Lan-
guage Modeling (MLM) and embedding integra-

tion into a custom transformer-based classifier.

5.1 Fine-Tuning the XLM-RoBERTa Model

XLM-RoBERTa was fine-tuned using masked lan-
guage modeling (MLM) with a transliteration-
aware strategy on a 340MB Malayalam-English
code-mixed dataset from AI4Bharath (Kunchukut-
tan et al., 2020), prepared using IndicTrans (Bhat
et al., 2015). The dataset included three text vari-
ants: Malayalam script, fully transliterated Roman
script, and partially transliterated text, exposing the
model to diverse transliteration patterns in social
media communication.

The data was split 9:1 for training and valida-
tion. Fine-tuning used a 15% masking probabil-
ity, batch size 16, and a 5 × 10−5 learning rate
for up to 10 epochs on GPUs, with early stopping
based on validation perplexity to prevent overfitting.
The fine-tuned embeddings optimized handling of
transliterated and mixed-script text.

5.2 Integration into Custom Transformer
Classifier

The fine-tuned ‘MalayalamXLM_Roberta‘ model
demonstrated effectiveness in capturing translit-
eration patterns. These embeddings were inte-
grated into ‘TransformerXLMRobertaClassifier‘,
a custom transformer classifier with three encoder-
decoder layers, hidden dimension 768, 8 attention
heads, and a 2048 feedforward dimension. Atten-
tion mechanisms captured multilingual dependen-
cies effectively.

Dropout (0.3) and normalization were applied in
residual layers to enhance generalization. AdamW
optimizer with a 1× 10−5 learning rate was used,
with early stopping based on validation loss and
macro F1-score.

This two-stage approach—transliteration-aware
MLM fine-tuning followed by transformer-based
classification—effectively addressed Malayalam-
English code-mixed and transliterated text chal-
lenges.
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Model F1 Macro
XLM-RoBERTa Base 0.8675
MalayalamXLM_Roberta (Fine-Tuned MLM) 0.8900
Attention-BiLSTM MalayalamXLM_Roberta 0.8969
TransformerXLMRobertaClassifier (Proposed) 0.8979

Table 3: Macro F1 scores for various models on Malayalam-English code-mixed fake news detection.

5.3 Evaluation

The models were evaluated using macro F1-score,
accuracy, and perplexity. Macro F1-score ad-
dressed class imbalance, accuracy measured overall
correctness, and perplexity assessed the model’s
ability to predict masked tokens, with lower values
indicating better adaptation.

6 Results and Discussion

The fine-tuned MalayalamXLM_Roberta model
achieved a perplexity score of 4.1, showcasing its
effectiveness in capturing transliteration patterns.

Table 3 summarizes the performance of var-
ious models on the Malayalam-English fake
news detection task. The base XLM-RoBERTa
achieved a macro F1-score of 0.8675. Fine-
tuning with MLM improved this to 0.8900
with MalayalamXLM_Roberta. Adding atten-
tion mechanisms in the Attention-BiLSTM Malay-
alamXLM_Roberta model raised the score to
0.8969. The proposed TransformerXLMRober-
taClassifier2 achieved the highest macro F1-
score of 0.8979, highlighting the effectiveness of
transliteration-aware fine-tuning and the custom
architecture.

The success of this approach was further demon-
strated in the shared task results, where our team,
bytesizedllm, achieved the highest macro F1-score
of 0.8979 (0.898). A detailed analysis of the test
set results is provided in Table 2, and our team
secured the top position among all participating
teams. Table 4 highlights the rankings and compar-
ative scores of the top-performing teams.

Team Name mF1 Rank
bytesizedllm 0.898 1
CUET_NLP_MP_MD 0.893 2
One_by_zero 0.892 3

Table 4: Macro F1 (mF1) scores and ranks of top3
teams.

2https://github.com/mdp0999/
Fake-News-Detection/blob/main/task1_m.ipynb

The results underscore the importance of
transliteration-aware fine-tuning in addressing the
complexities of code-mixed and multilingual text.
By incorporating fully and partially transliterated
datasets, the models demonstrated robust gener-
alization across native scripts, Romanized text,
and mixed-script patterns. The ‘TransformerXLM-
RobertaClassifier‘ further amplified these gains by
capturing dependencies effectively through its cus-
tom architecture.

7 Limitations and Future Work

The model’s performance was limited by the
dataset size, which was restricted to a small of
code-mixed text due to computational constraints.
Additionally, inaccuracies in the transliteration pro-
cess may have impacted the quality of embeddings.

Future work will address these limitations by
training on larger datasets, refining transliteration,
and exploring advanced architectures to enhance
fake news detection in multilingual and code-mixed
contexts.

8 Conclusion

This study proposes a transliteration-aware fine-
tuning approach for fake news detection in
Malayalam-English code-mixed text. By fine-
tuning XLM-RoBERTa on fully and partially
transliterated datasets and integrating the resulting
embeddings into a custom transformer classifier,
the method demonstrated state-of-the-art perfor-
mance.

The custom transformer model, Transformer
XLMRoberta Classifier, consistently outperformed
baseline models, highlighting the effectiveness of
combining transliteration-aware pretraining with
advanced architectures. These findings contribute
significantly to the advancement of multilingual
NLP, providing a robust framework for tackling the
complexities of code-mixed and resource-scarce
languages like Malayalam.
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