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Abstract

Zero-shot event-relational reasoning is an im-
portant task in natural language processing, and
existing methods jointly learn a variety of event-
relational prefixes and inference-form prefixes
to achieve such tasks. However, training pre-
fixes consumes large computational resources
and lacks interpretability. Additionally, learn-
ing various relational and inferential knowl-
edge inefficiently exploits the connections be-
tween tasks. Therefore, we first propose a
method for Reasoning-Oriented Locating and
Editing (ROLE)1, which locates and edits the
key modules of the language model for rea-
soning about event relations, enhancing inter-
pretability and also resource-efficiently opti-
mizing the reasoning ability. Subsequently, we
propose a method for Analogy-Based Locat-
ing and Editing (ABLE)1, which efficiently ex-
ploits the similarities and differences between
tasks to optimize the zero-shot reasoning capa-
bility. Experimental results show that ROLE
improves interpretability and reasoning perfor-
mance with reduced computational cost. ABLE
achieves SOTA results in zero-shot reasoning.

1 Introduction

In the information extraction domain, reasoning
about relations (e.g., causal, temporal, sub-events)
between events (Man et al., 2024a; Niu et al.,
2024; Wang et al., 2022; Lai et al., 2022) is cru-
cial. These relationships have been used to con-
struct event graphs (Frisoni et al., 2022; Chen et al.,
2022), event prediction (Shi et al., 2024), common-
sense reasoning (Lv et al., 2024), dialog generation
(Wang et al., 2024), and question answering (Ma-
jumdar et al., 2024).

Due to the limitations of manual labeling, we
turn our attention to zero-shot event-relational rea-
soning. Existing approaches (Tao et al., 2023) use
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Figure 1: Comparison of knowledge transfer between
existing methods and ABLE in various event-relational
reasoning tasks. Top: Existing methods rely on many
tasks to learn relational and reasoning knowledge, inef-
ficiently exploiting the connections between tasks. Bot-
tom: ABLE efficiently learns similarities and differ-
ences between tasks to enhance knowledge transfer.

a multi-task framework to jointly learn the vari-
ous relational and inferential prefixes, and then use
the corresponding prefixes to achieve zero-shot re-
lational reasoning. However, fine-tuning prefixes
requires high computational cost and lacks inter-
pretability. In addition, learning multiple relational
and inferential knowledge inefficiently utilizes con-
nections between tasks (see Figure 1).

Therefore, we propose a method for Reasoning-
Oriented Locating and Editing (ROLE), which lo-
cates the key modules of the language model in
event-relational reasoning, and explores the reason-
ing mechanism, thus enhancing the interpretability.
Meanwhile, ROLE edits the key modules, resource-
efficiently optimizing the reasoning ability of the
language model. Moreover, we propose a method
for Analogy-Based Locating and Editing (ABLE),
which learns the similarities and differences among
various tasks, and efficiently migrates knowledge,
thereby enhancing zero-shot reasoning (see Fig-
ure 1).

We locate key modules on 6 event-relational rea-
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soning tasks and evaluate the performance of rea-
soning about event relations on 10 datasets. The ex-
perimental results show that ROLE improves inter-
pretability and reasoning performance with reduced
computational cost; ABLE achieves State-Of-The-
Art (SOTA) results of zero-shot event-relational
reasoning on most datasets. Our main contribu-
tions are as follows:

(1) We propose ROLE, which locates and edits
key modules for reasoning about event relations in
language models, and explores reasoning mecha-
nisms, further improving interpretability and rea-
soning performance with reduced computational
cost.

(2) We propose ABLE, which exploits simi-
larities and differences in analogies among tasks,
thereby achieving SOTA results for zero-shot rea-
soning. Additionally, we analyze the analogicality
of locating and editing to further validate the effec-
tiveness of ABLE.

2 Related Work

2.1 Zero-shot event-relational reasoning

As Large Language Models (LLMs) rapidly evolve,
the reasoning ability of LLMs have drawn attention.
Tao et al. (Tao et al., 2023) proposed UniEvent,
which prefix-tune T5 to optimize zero-shot event-
relational reasoning. Moreover, Yuan et al. (Yuan
et al., 2023) investigated the performance of GPT-
3.5 in zero-shot temporal-relational extraction, and
Gao et al. (Gao et al., 2023) evaluated the ability
of various LLMs in causal reasoning tasks. Sub-
sequently, Tao et al. (Tao et al., 2024) provided
zero-shot results for event-relational reasoning us-
ing different LLMs.

These studies suggest that LLMs are competi-
tive in relational reasoning tasks. However, the
underlying reasoning mechanisms in LLMs remain
underexplored. Therefore, our approach aims to ex-
plore the key modules and reasoning mechanisms
of language models from an interpretable perspec-
tive.

2.2 Knowledge editing

Existing methods can be divided into two cate-
gories (Yao et al., 2023): preserving the parameters
of the model, and modifying them directly. The
first type of methods (Huang et al., 2023; Dong
et al., 2022) adds additional parameters to update
the knowledge without changing the original pa-
rameters. The second type of methods (Mitchell

et al., 2021; Meng et al., 2022a,b) directly updates
the internal parameters of the model. For exam-
ple, MEMIT (Meng et al., 2022b) achieves precise
modification of knowledge by locating key mod-
ules and editing them, and are effective in reducing
computational cost.

These approaches aim to insert or update knowl-
edge by adjusting the parameters of specific mod-
ules without re-training the model. This motivated
us to consider whether there are critical modules
that can be edited to improve the reasoning ability.

3 Method

Recently, researchers have started to utilize genera-
tive models (e.g., T5) for event-relational reasoning
(Man et al., 2022, 2024b; Chen et al., 2024; Yang
et al., 2024), as such models utilize prompts more
efficiently. Therefore, in this section, we propose
ROLE and ABLE using Flan-t5-large as the back-
bone model, and their overall framework is shown
in Figure 2.

3.1 Reasoning-oriented locating and editing
We propose reasoning-oriented locating and edit-
ing, inspired by knowledge editing (Meng et al.,
2022b). First, reasoning-oriented locating identi-
fies the key modules H⟨T,L⟩ of the language model
in the reasoning task. Second, reasoning-oriented
editing computes the change magnitude ∆WH⟨T,L⟩
of the key module to optimize the reasoning perfor-
mance.

3.1.1 Reasoning-oriented locating
This subsection aims to identify key modules. We
iterate over each module h⟨t,l⟩ of the language
model and compute the effect of these modules on
the reasoning task using the average indirect effect
(Pearl, 2022). For positive samples, the formula for
calculating the effect is:

Effect
(
h⟨t,l⟩

)
=

∑
xpos

[
P
(
Y es

∣∣x∗pos, h⟨t,l⟩)− P
(
Y es

∣∣∣x∗pos, h∗⟨t,l⟩)] , (1)

For negative samples, the effect is given by:

Effect
(
h⟨t,l⟩

)
=

∑
xneg

[
P
(
No

∣∣∣x∗neg, h∗⟨t,l⟩)− P
(
No

∣∣x∗neg, h⟨t,l⟩)] , (2)

where, h denotes the module type in the language
model, t and l denote the token and the layer num-
ber, respectively, so that h⟨t,l⟩ denotes the module h
in the l-th layer associated with token t. In addition,
x is the prompt, x∗ is the prompt with noise, and
h∗ denotes the noise-affected module. The reverse
order of the subtraction of conditional probabilities
in Eq. (2) and Eq. (1) is to ensure that the value
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Figure 2: Overview of ROLE and ABLE. The left side shows the application of ROLE and ABLE in the Flan-
T5-large encoder, and the right side shows their application in the decoder. First, ROLE is used to determine the
position and editing information of tasks A, B and C (corresponding to the three vertices of the parallelogram).
Then, ABLE migrates this information to task D (the fourth vertex) by analogy.

of the Effect is positive. Because, for negative
samples, noise disrupts the key information in the
prompts, making it difficult for the model to ac-
curately capture the relation type, i.e., the model
prefers to output "No" under the condition of h∗.

Thus, we first select the key module type H
based on the overall Effect. Then identify the posi-
tion ⟨T, L⟩ with the largest Effect to determine the
key module H⟨T,L⟩:

⟨T,L⟩ = argmax
⟨t,l⟩

Effect
(
H⟨t,l⟩

)
. (3)

Specifically, we study 4 module types, includ-
ing Transformer, MLP, Self-Attention, and Cross-
Attention (available only for Decoder) modules.
Meanwhile, we focus on 6 types of reasoning tasks,
including classification and extraction tasks for
temporal, causal and sub-event relations. The de-
sign of the prompt and verbalizers, the setup of
positive and negative samples, and other prepro-
cessing specifics are detailed in Appendix A as
well as in Table 10.

Figure 3 and Figure 4 show that the MLP mod-
ule in the encoder and the Cross-Attention module
in the decoder have the greatest overall impact on
all reasoning tasks, as their impact graphs are most
similar to those of the corresponding Transformer.
Further, Table 1 shows the locations where these
two types of modules have the greatest impact on
different tasks, leading to key modules H⟨T,L⟩ be-
ing identified. Finally, we analyze the location of
key modules and propose the following hypothesis
for the reasoning mechanism:

Hypothesis (Reasoning Mechanism for Event-
Relational Reasoning Task in Flan-t5-large): In

Encoder’s MLP Decoder’s cross-attention
Positive Negative Positive Negative

Temporal relation classification <”temporal”, 17> <”Is”, 16> <”</s>”, 14> <”</s>”, 15>
Temporal relation extraction <”relation”, 17> <”Is”, 18> <”</s>”, 17> <”</s>”, 13>
Causal relation classification <”causal”, 18> <”Is”, 17> <”</s>”, 16> <”</s>”, 14>
Causal relation extraction <”relation”, 18> <”Is”, 17> <”</s>”, 16> <”</s>”, 17>
Sub-event relation classification <”relation”, 19> <”Is”, 17> <”</s>”, 17> <”</s>”, 17>
Sub-event relation extraction <”relation”, 18> <”Is”, 17> <”</s>”, 17> <”</s>”, 17>

Table 1: Locations (both tokens and layers) of the en-
coder’s MLP module and the decoder’s cross-attention
module that most significantly affect performance
across tasks. “Positive” denotes positive samples and
“Negative” denotes negative samples. Refer to Table 10
and Table 11 in Appendix B for detailed layer ordering.

the encoder, the MLP module encodes relational
information in the prompts, including relation-
type words (e.g., “causal” and “relatio”) and ques-
tion words (e.g., “Is”). In the decoder, the cross-
attention module integrates the relational informa-
tion provided by the encoder with the start token
(e.g., “</s>”) to infer event relations, as shown in
Figure 5.

3.1.2 Reasoning-oriented editing

This subsection aims to compute the magnitude of
editing ∆WH⟨T,L⟩ in the parameters of the local-
ized module H⟨T,L⟩. We edit the weights Wout and
WO of the last linear layer in the MLP module and
the cross-attention module, respectively (see Fig-
ure 2), because they directly affect the output of the
modules and modifying them can most effectively
influence the model’s decisions.

Moreover, we find that the T5 model tends to an-
swer “Yes” when inferring event relations (recall is
much higher than precision as observed in Table 3
and Table 5). This tendency aligns with existing
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Figure 3: Heatmaps of the effect of Transformer, MLP, and Self-Attention modules on each token for each layer
in the encoder, with positive samples on the left and negative samples on the right. The horizontal axis indicates
the number of layers, the vertical axis indicates the tokens, and the color depth indicates the intensity of the effect.
tokens are presented in 7 groups (see Appendix C for details).

research, which, for example, shows that LLMs
are inclined to identify events as causally related
(Gao et al., 2023). This inclination arises from the
“memory hallucination” (Mckenna et al., 2023), as
the pre-training corpus contains a large number of
causally related samples, and thus the model may
tend to judge the test samples as causally related
as well. To mitigate this tendency, we construct
an objective function for the output of the module
H⟨T,L⟩:

M1 = argmin
m

−
∑
xneg

logPH⟨T,L⟩=m (No|xneg)

+
∑
xpos

DKL

[
PH⟨T,L⟩=m (Yes|xpos)

∣∣∣∣∣∣P (Yes|xpos)
] ,

H ∈ {EncMLP , DecCrossAtt} ,

(4)

where, xneg and xpos denote negative and posi-
tive samples, respectively. PH⟨T,L⟩=m(·) denotes
the output probability of the model after updating
the output of the module H⟨T,L⟩ to m. M1 the up-
dated output of H⟨T,L⟩. DKL[·] computes the KL
divergence. This objective function aims to let the
false negative samples answer “No” after editing,
while keeping the positive samples still answering
“Yes”. Thus, according to the theory proposed by
Meng et al. (Meng et al., 2022b), using the updated
output M1, we can obtain the editing magnitude
∆WH⟨T,L⟩ of the module H⟨T,L⟩:

∆WH⟨T,L⟩ = RKT
1

(
C0 +K1K

T
1

)−1
, (5)

where, R ≜ M1 −W0K1,C0 = λ ·Ek

[
kkT

]
. K1

denotes the input of the module H⟨T,L⟩ , which can
be computed by forward propagation. W0 denotes

the original parameters of the module H⟨T,L⟩. We
used the corpus Colossal Clean Crawled Corpus
(C4) (Raffel et al., 2020) from pre-training T5 to
compute k and C0. λ is a hyperparameter.

3.2 Analogy-based locating and editing
approach

This subsection aims to fully utilize the similarities
and differences between tasks to enhance zero-shot
reasoning. We set four analogizable tasks A, B, C
and D, i.e., the relationship between task A and
task B can be analogized to the relationship be-
tween task C and task D. We first utilize ROLE to
obtain the locating and editing information of tasks
A, B and C:

⟨T, L⟩Task = argmax
⟨T,L⟩

[
P

(
No

∣∣∣x∗
, H

∗
T,L

)
− P

(
No

∣∣x∗
, HT,L

)]
,

H ∈ {EncMLP , DecCrossAtt} , Task ∈ {A,B,C} ,

(6)

∆W Task = RKT
1

(
C0 +K1K

T
1

)−1
, Task ∈ {A,B,C} , (7)

where, ∆W h⟨T1L1⟩
simplifies to ∆W . These infor-

mations are then migrated analogously to task D
(see Figure 2):

⟨T, L⟩D = ⟨T, L⟩C − (⟨T, L⟩A − ⟨T, L⟩B) , (8)

∆WD = ∆WC − α · (∆WA −∆WB) , (9)

where, α is a hyperparameter that regulates the
degree of being analogized. Finally, we optimize
zero-shot learning using the locating and editing
information of task D.
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Figure 5: Reasoning mechanism for Flan-T5-large in-
ferring event relations.

4 Experiment

4.1 Datasets

We perform zero-shot event-relational reasoning
tasks on 10 datasets, covering three types of tasks:
causal relation extraction, causal relation classifica-
tion, and sub-event relation extraction.

Causal relation extraction: following Gao
et al. (Gao et al., 2023), we evaluate intra-
sentence pairs of causal events in EventStory-
Line v0.9 (ESC-intra) (Caselli and Vossen, 2017),
Causal-TimeBank (CTB-intra) (Mirza et al., 2014)
and MAVEN-ERE (MAVEN-intra-causal) (Wang
et al., 2022). Furthermore, following the work of
Tao et al. (Tao et al., 2023) for UniEvent, we eval-
uate SCITE (SCI-uni), EventStoryLine (ESL-uni)
and Causal-TimeBank (CTB-uni).

Causal relation classification: we evaluate
Causal News Corpus (CNC) (Tan et al., 2022) and
AltLex (ALT-uni) (Hidey and McKeown, 2016)
(Tao et al., 2023).

Sub-event relation extraction: we evaluate
HiEve (Glavaš et al., 2014) and MAVEN-ERE
(MAVEN-intra-subevent) (Wang et al., 2022).

In addition, temporal relation extraction is a
multi-classification task (our method only supports
binary classification), and also, there are no pub-
lished studies on temporal relation classification
and sub-event relation classification, so we did not
evaluate these tasks in the main experiment. Fi-
nally, binary-F1 score is used as the main evalua-
tion metric in all tasks.

4.2 Baselines

T5 and T5-large (Raffel et al., 2020): is a pre-
trained language model based on the Transformer
architecture, containing encoders and decoders, for
a variety of natural language processing tasks.

T0-3B (Sanh et al., 2022): a language model
optimized for zero-shot learning scenarios based
on the T5 architecture.

UniEvent (Tao et al., 2023): based on the T5
architecture, utilizes prefix-tuning and multi-task
learning to achieve zero-shot event-relational rea-
soning.

GPT series models (Gao et al., 2023): including
text-davinci-002, text-davinci-003, GPT-3.5, and
GPT-4, which are progressively optimized based
on OpenAI’s GPT-3 model, improving the ability to
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Model SCI-uni ESL-uni CTB-uni ESC-intra CTB-intra MAVEN-intra-causal CNC ALT-uni MAVEN-intra-subevent HiEve
T5 49.89* 31.40* 3.49* 30.19 8.37 30.36 51.01 67.90* 6.58 12.12
T5-large 51.03 32.61 4.46 30.05 6.09 30.05 66.37 66.41 6.57 11.18
T0-3B 49.87* 72.21* 4.39* 28.38 6.59 29.12 67.74 68.03* 6.70 10.22
UniEvent 82.78* 70.64* 8.95* – – – – 62.50* – –
text-davinci-002 – – – 36.00* 9.30* 32.40* – – – –
text-davinci-003 – – – 45.90* 15.00* 37.50* – – – –
Claude-3.5 62.60 63.60 4.91 – – – 52.70 68.18 9.59 15.83
GPT-3.5 40.99 48.56 4.71 41.00* 12.80* 32.30* 63.10 63.57 7.85 9.90
GPT-4 41.58 54.57 2.49 42.20* 11.50* 36.20* 61.90 67.57 10.33 9.84
ABLE 83.48 72.42 13.64 38.48 21.63 37.43 69.90 68.42 12.59 17.69

Table 2: Results on zero-shot inter-event causal relation extraction, causal relation classification, and sub-event
relation extraction. The best results for each dataset are bolded, * indicates that the original paper results are cited,
and the others are the results we reproduced.

Model SCI-uni ESL-uni CTB-uni ESC-intra CTB-intra MAVEN-intra

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
ABLE1

Enc 67.05 79.05 72.56 83.33 64.04 72.42 3.12 21.05 5.44 27.95 61.75 38.48 6.85 36.58 11.53 27.15 60.23 37.43
ABLE2

Enc 66.94 82.09 73.75 71.04 64.04 67.36 2.67 31.58 4.92 29.74 54.52 38.48 6.40 27.52 10.39 25.50 65.25 36.67
ABLE1

Dec 78.39 82.09 80.20 74.68 56.65 64.43 6.06 10.53 7.69 30.82 49.89 38.10 13.22 26.17 17.57 22.21 74.34 34.20
ABLE2

Dec 86.02 81.08 83.48 64.47 48.28 55.21 12.00 15.79 13.64 25.40 68.53 37.07 16.19 32.55 21.63 24.57 71.60 36.58
ROLEEnc 85.15 68.18 75.73 71.60 60.10 65.35 2.37 84.21 4.62 26.52 65.71 37.78 5.71 27.85 9.48 28.11 48.59 35.62
ROLEDec 81.11 76.57 78.78 59.31 62.69 60.96 0.78 55.56 1.54 23.82 78.79 36.58 11.99 20.81 15.21 27.01 51.53 35.44
w/oAll 34.66 100.00 51.03 21.26 69.95 32.61 2.28 94.74 4.46 17.79 96.55 30.05 3.15 93.96 6.09 17.73 98.41 30.05

Table 3: Ablation experiments on causal relation extraction. The highest F1 scores under each dataset are bolded.

handle complex tasks. For datasets with no readily
available results, we conduct experiments using
the API2 provided by OpenAI and our designed
prompts (see Table 10 in Appendix A).

Claude-3.5 Sonnet: a language model devel-
oped by Anthropic that performs well in zero-shot
learning scenarios. We conduct experiments using
the APIs3 provided by Anthropic.

4.3 Zero-Shot Results
Table 2 shows the performance of ABLE and the
baseline models on the zero-shot causal relation
extraction, causal relation classification, and sub-
event relation extraction tasks. For causal rela-
tion extraction, ABLE achieves SOTA on the SCI-
uni, ESL-uni, CTB-uni, and CTB-intra datasets,
and shows competitive performance comparable to
LLMs on the ESC-intra and MAVEN-intra datasets.
For causal relation classification and sub-event re-
lation extraction, ABLE achieves SOTA on all
datasets. These results show that ABLE efficiently
learns and transfers reasoning knowledge, which
improves the performance of various types of zero-
shot event-relational reasoning tasks.

4.4 Ablation study
To verify the effectiveness of ROLE and ABLE,
we conduct ablation experiments. We construct
four forms of ABLE, including ABLE1

Enc,
ABLE2

Enc, ABLE1
Dec, and ABLE2

Dec (see
2https://platform.openai.com
3https://docs.anthropic.com

Table 6 for the specific forms); two forms of
ROLE, including ROLEEnc and ROLEDec;
and w/oAll (Flan-T5-large without applying
ROLE and ABLE). The subscripts Enc and Dec
indicate that our method is applied to the encoder
and decoder.

Table 3, Table 4 and Table 5 show the results,
which are evaluated by Precision (P), Recall (R)
and F1 score (F1). From Table 3 and Table 5, it is
observed that ROLEEnc and ROLEDec improve
the precision and F1 score of causal and sub-event
relation extraction task, which achieves the goal of
ROLE and validates its effectiveness. ABLE1

Enc,
ABLE2

Enc, ABLE1
Dec, and ABLE2

Dec improve
the F1 score of all tasks , which validates its effec-
tiveness.

Table 4 shows that ROLE performs poorly be-
cause the key positions of the positive and negative
samples partially overlap in this task, and ROLE
strengthens the positive sample to predict “No”,
which leads to a decrease in the recall. ABLE
improves the F1 score, demonstrating its strong
knowledge transfer capability.

In addition, based on the best results of ABLE
in each table, we observe that strong analogies
are shown between causal and temporal relations,
and between causal and sub-event relations, but the
analogies between temporal and sub-event relations
are relatively weak (see the results of ABLE2

Enc

and ABLE2
Dec in Table 5).

https://platform.openai.com
https://docs.anthropic.com
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Model ALT CNC

P R F1 P R F1
ABLE1

Enc 54.64 86.03 66.83 56.96 82.09 67.26
ABLE2

Enc 53.38 92.70 67.75 55.60 90.88 68.99
ABLE1

Dec 52.28 98.10 68.21 53.90 98.62 69.70
ABLE2

Dec 52.26 99.05 68.42 53.99 99.12 69.90
ROLEEnc 55.36 82.95 66.40 57.31 78.21 66.15
ROLEDec 55.73 81.31 66.13 57.71 72.98 64.46
w/oAll 55.22 83.28 66.41 57.11 79.22 66.37

Table 4: Ablation experiments on causal relation classi-
fication. The highest F1 scores under each dataset are
bolded.

Model MAVEN-intra HiEve

P R F1 P R F1
ABLE1

Enc 8.10 28.33 12.59 10.58 43.20 16.99
ABLE2

Enc 3.41 98.18 6.59 59.00 98.82 11.14
ABLE1

Dec 5.26 40.15 9.30 11.54 37.80 17.69
ABLE2

Dec 4.01 58.94 7.51 9.70 35.69 15.25
ROLEEnc 7.35 20.46 10.82 10.72 38.79 16.79
ROLEDec 5.75 42.00 10.11 11.33 28.34 16.19
w/oAll 3.40 97.88 6.57 5.92 98.82 11.18

Table 5: Ablation experiments on sub-event relation
extraction. The highest F1 scores under each dataset are
bolded.

4.5 Analysis of the analogicality of location
This subsection analyzes the analogicality of the
location of key modules. First, Table 6 shows the
layers of editing for ROLE and ABLE under dif-
ferent tasks. ROLEEnc selects the top 3 module
layers in terms of average indirect effects (see Equa-
tion 2) in negative samples. ROLEDec selects the
1st ranked module layer (the sub-event relation ex-
traction task selects the 3rd ranked layer because
the 1st and 2nd ranked positions overlap for the
positive and negative samples). ABLE determines
the module layer analogously (see Equation 8). Ta-
ble 6 shows that ABLE obtains positions that are
close to the top ranked positions obtained by ROLE
(see Table 11 in Appendix B), which validates the
analogicality of the location to some extent.

Second, as seen from Figure 6, the difference
line plots of temporal, causal, and sub-event re-
lations show similar trends for either positive or
negative samples for most tokens, which further
validates the analogous nature of location.

Additionally, for the positive samples, in the
decoder’s “</s>” token (first 3 rows of the last col-
umn), the line plots of the causal and temporal re-
lations are similar, while the plots of the sub-event
relations are different. For the negative samples,
in the encoder’s “causal/temporal/sub-event” token
(the last 3 rows of the 3rd column), the line plots
of causal and subevent relations are similar, while
the plots of temporal relations are different. These

Model Causal relation extrac-
tion

Causal relation classifica-
tion

Sub-event relation ex-
traction

ROLEEnc [15,16,17] [15,16,17] [16,17,18]
ROLEDec [17] [14] [15]

ABLE1
Enc

Sub-event cla: [17]
Sub-event ext: [17]
Causal cla: [17]
→ Causal ext: [17]

Sub-event ext: [17]
Sub-event cla: [17]
Causal ext: [17]
→ Causal cla: [17]

Causal cla: [17]
Causal ext: [17]
Sub-event cla: [17]
→ Sub-event ext: [17]

ABLE2
Enc

Temporal cla: [15,16,17]
Temporal ext: [16,17,18]
Causal cla: [15,16,17]
→ Causal ext: [16,17,18]

Temporal ext: [16,17,18]
Temporal cla: [15,16,17]
Causal ext: [15,16,17]
→ Causal cla: [14,15,16]

Temporal cla: [16]
Temporal ext: [18]
Sub-event cla: [17]
→ Sub-event ext: [19]

ABLE1
Dec

Sub-event cla: [17]
Sub-event ext: [15]
Causal cla: [14]
→ Causal ext: [12]

Sub-event ext: [15]
Sub-event cla: [17]
Causal ext: [12]
→ Causal cla: [14]

Causal cla: [14]
Causal ext: [12]
Sub-event cla: [17]
→ Sub-event ext: [15]

ABLE2
Dec

Temporal cla: [15]
Temporal ext: [13]
Causal cla: [14]
→ Causal ext: [12]

Temporal ext: [11,12,13]
Temporal cla: [14,15,16]
Causal ext: [11,12,13]
→ Causal cla: [14,15,16]

Temporal cla: [14,15,16]
Temporal ext: [11,12,13]
Sub-event cla: [14,15,16]
→ Sub-event ext: [11,12,13]

Table 6: The layers of editing for different models un-
der each task, and the analogous forms of ABLE1

Enc,
ABLE2

Enc, ABLE1
Dec, and ABLE2

Dec. The sub-
scripts Enc and Dec indicate that our method is applied
to encoder and decoder respectively.

results indicate a strong analogical nature between
the causal and temporal relations, as well as be-
tween the causal and sub-event relations, and a
weaker analogous nature between the temporal and
sub-event relations. This also explains the limited
effect of ABLE2

Enc and ABLE2
Dec in Table 5.

4.6 Analysis of the analogicality of editing
magnitude

This subsection analyzes the analogicality of edit-
ing magnitude. Let A, B, C, D, E, F denote
the classification and extraction tasks of tempo-
ral, causal, and sub-event relations, respectively.
Let ∆WX denote the editing magnitude for a
module parameter of task X , and let ∆WXY =
∆WX −∆W Y , where X ∈ {A,C,E} and Y ∈
{B,D,F}.

Table 7 shows the similarity between different
∆WXY . We use the cosine of the main eigen-
vectors of the matrices to compute the similarity,
because it reflects the degree of similarity between
the main transformation directions of the matrices.
If the similarity is near 1, the directions are similar;
if it is near -1, the directions are opposite.

As seen in Table 7, similarities between ∆WXY

of analogous tasks are higher than those between
∆WXY of non-analogous tasks, which verifies the
analogicality of editing magnitude to some extent.

4.7 Analysis on computational resources and
time

We analyze the computational resources and time
required for ROLE, ABLE, the fine-tuning method
and UniEvent (prefix fine-tuning), respectively,
with respect to the amount of parameters (Params),
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Figure 6: Line plots of the effect difference between classification and extraction for temporal, causal, and subevent
relations. Horizontal coordinates indicate the layer of the module and vertical coordinates indicate the difference
in average indirect effects. The first three rows indicate positive samples and the last three rows indicate negative
samples. The first four columns show the four tokens of the encoder and the last column shows the “</s>” token of
the decoder.

Analogous tasks Non-analogous tasks Non-analogous tasks
sim (∆WAB,∆WCD) sim (∆WAB,∆WCF ) sim (∆WAB,∆WAD)

Sim 0.08 0.06 -0.05
sim (∆WCD,∆WEF ) sim (∆WCD,∆WEB) sim (∆WCD,∆WCF )

Sim 0.19 -0.04 -0.20
sim (∆WEF ,∆WAB) sim (∆WEF ,∆WAD) sim (∆WEF ,∆WEB)

Sim 0.05 0.04 -0.03

Table 7: Similarity between different ∆WXY . “Sim”
denotes the cosine similarity of the main eigenvectors
of the matrix.

Params (M) GPU memory (MB) Training time (s)
ROLEEnc/ROLEDec 2.88 / 1.05 3969 / 3789 12.60 / 8.60
ABLEEnc/ABLEDec 11.53 / 4.19 3761 / 3729 0.09 / 0.03
UniEvent 50.95 6735 24.53
Fine-tuning 783.15 13951 23.23

Table 8: Computational resources and time required for
ROLE, ABLE, fine-tuning methods and UniEvent on
the CTB-uni dataset, respectively.

GPU memory consumption and time for model
training, as shown in Table 8. We show the re-
sults of ROLE and ABLE for encoder (Enc) and
decoder (Dec). To facilitate the implementation of
UniEvent, we add prefixes to the decoder and set
the length to 5. All models use 10 training samples
with a training epoch of 10 and a batch size of 1.

Table 8 shows that ROLEDec and ABLEDec

consume less computational cost than ROLEEnc

and ABLEEnc since fewer parameters are edited
in the decoder. Moreover, our method is sig-
nificantly lower than the fine-tuning method and
UniEvent in all the metrics, which verifies the effi-
ciency of our method.

5 Conclusion

We first propose ROLE to locate and edit key
modules of language models in reasoning about
event relations. The results show that ROLE im-
proves interpretability and reasoning performance
with reduced computational cost. Then, we pro-
pose ABLE to analogize the similarities and dif-
ferences between tasks. The results show that
ABLE achieves SOTA results for zero-shot event-
relational reasoning on most datasets.

Furthermore, our experiments provide insights
into the mechanisms of reasoning about event rela-
tions in language models and verify the feasibility
of model editing to optimize reasoning capabili-
ties. Future work could utilize ROLE and ABLE to
further explore the reasoning capabilities of large
language models.

6 Limitations

Our methods mainly address binary reasoning tasks.
Moreover, our study on the reasoning ability of lan-
guage models is not comprehensive enough. There-
fore, future work can be extended to more complex
reasoning scenarios, and also, more experiments
can be conducted to explore the reasoning mecha-
nism in depth.
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A Data Preprocessing in
Reasoning-Oriented Locating

We use the MAVEN dataset (Wang et al., 2022) for
reasoning-oriented locating, which contains tempo-
ral, causal, and sub-event relations, and its statisti-
cal information is shown in Table 9. To explore the
key modules of the language model in reasoning
about event relations, we design 6 tasks, includ-
ing classification and extraction tasks for temporal,
causal and sub-event relations. Extraction tasks
aim to identify event relations given context and
head and tail events, and classification tasks aim to
identify event relations given context only.

Subsequently, we designed prompt and verbal-
izer (see Table 10) for each task to stimulate the
reasoning ability of the language model. Mean-
while, for each task, we randomly selected 500
positive and 500 negative samples for analysis. To
make the key positions of each task centralized, we
pick only one class of relations as the positive class.
Specifically:

(1) For temporal relations, we only selected the
samples of “BEFORE” relations as positive sam-
ples, and the samples other than “BEFORE, OVER-
LAP, CONTAINS, SIMULTANEOUS, ENDS-ON,
BEGINS-ON” as negative samples.

(2) For causal relations, we selected the samples
of “CAUSE” relations as positive samples, and the
samples other than “CAUSE, PRECONDITION”
as negative samples.

(3) For sub-event relations, we directly selected
the samples of “SUBEVENT” relation as positive
samples, and the samples other than “SUBEVENT”
as negative samples.
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B Average Indirect Effects Ranking of
Layers for Specific Modules in Various
Tasks

Table 11 and Table 12 show the layer ordering (in
ascending order) of the average indirect effects for
the encoder’s MLP module and the decoder’s cross-
attention module. We focus on the top 3 ranked
layers of indirect effects in each task.

C Prompt Segmentation Algorithm Based
on Singular Value Decomposition

We propose an algorithm based on Singular Value
Decomposition (SVD) for segmenting the tokens
in the prompt as shown in Table 13. The algorithm
aims to utilize the linear independence between
the indirect effect vectors of neighboring tokens to
determine the division point.

Specifically, the initial state is set to 2 eigenval-
ues. As the new token is added, the number of
eigenvalues of the indirect effect matrix increases
gradually. When the number of eigenvalues in-
creases, it indicates that the relationship between
the new token and the existing tokens has changed
significantly, and then the token sequence is di-
vided. The steps above are repeated until all the
tokens are processed.

Figure 7 shows the segmentation results of the
algorithm on multiple samples. Each row of the
figure represents a sample, and each column cor-
responds to a token. Changes in color shades in-
dicate changes in the number of eigenvalues, and
also indicate where the segmentation needs to be
performed.

Based on the segmentation results of these sam-
ples, we divide the prompts into the following sec-
tions: “Answering the following yes\no question.”,

“Is”, “there a”, “temporal\causal\sub-event”, “re-
lation”, “(between <event1> and <event2>) in
sentence”, “‘<context>’ ?”. This division can
show the influence of each module on the final re-
sult more clearly, which effectively improves the
interpretability of the analysis.
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Relation The number of samples Specific relation types
Temporal relation 1216217 BEFORE, OVERLAP, CONTAINS, SIMUL-

TANEOUS, ENDS-ON, BEGINS-ON
Causal relation 57992 CAUSE, PRECONDITION
Sub-event relation 15841

Table 9: Statistical information on temporal, causal and sub-event relations in the MAVEN dataset.

Task Prompt Verbalizer
Temporal relation classification Answering the following yes/no ques-

tion. Is there a temporal relation in
<Sentence>?

TEMPORAL: Yes, NONE: No

Temporal relation extraction Answering the following yes/no ques-
tion. Is there a temporal relation be-
tween <event1> and <event2> in <Sen-
tence>?

TEMPORAL: Yes, NONE: No

Causal relation classification Answering the following yes/no ques-
tion. Is there a causal relation in <Sen-
tence>?

CAUSAL: Yes, NONE: No

Causal relation extraction Answering the following yes/no ques-
tion. Is there a causal relation between
<event1> and <event2> in <Sentence>?

CAUSAL: Yes, NONE: No

Sub-event relation classification Answering the following yes/no ques-
tion. Is there a sub-event relation in
<Sentence>?

SUB-EVENT: Yes, NONE: No

Sub-event relation extraction Answering the following yes/no ques-
tion. Is there a sub-event relation be-
tween <event1> and <event2> in <Sen-
tence>?

SUB-EVENT: Yes, NONE: No

Table 10: Prompts and verbalizers for classification and extraction tasks of temporal, causal and sub-event relations.
Extraction tasks aim to identify event relations given context and head and tail events, and classification tasks aim to
identify event relations given context only.

Task MLP module in encoder for “Is” token Cross-Attention module in decoder for
“<s>” token

Temporal relation classification 1, 0, 4, 3, 5, 2, 8, 6, 7, 19, 13, 11, 14, 12, 9, 10,
18, 15, 17, 16

5, 7, 0, 3, 1, 2, 4, 6, 8, 9, 18, 10, 11, 12, 13, 17,
16, 14, 15

Temporal relation extraction 0, 1, 4, 3, 5, 6, 2, 8, 7, 9, 13, 14, 12, 11, 10, 19,
15, 16, 17, 18

7, 3, 2, 1, 5, 0, 4, 8, 6, 9 ,18, 16, 10, 15, 17, 14,
11, 12, 13

Causal relation classification 0, 1, 8, 19, 2, 13, 14, 4. 5, 3, 7, 11, 10, 6, 12,
9, 18, 16, 15, 17

7, 3, 0, 2, 1, 4, 5, 6, 8, 9, 10, 18, 11, 12, 16, 13,
15, 17, 14

Causal relation extraction 0, 1, 2, 8, 4, 19, 3, 5, 6, 13 ,14, 7, 10, 11, 9, 12,
18, 16, 15, 17

7, 2, 0, 3, 1, 4, 5, 8, 6, 9, 16, 10, 18, 15, 14, 13,
12, 11, 17

Sub-event relation classification 1, 4, 3, 2, 0, 5, 8, 6, 7, 9, 11, 13, 19, 10, 14, 12,
15, 16, 18, 17

7, 5, 4, 3, 6, 0, 2, 1, 8, 9, 10, 18, 11, 12, 13, 16,
15, 14, 17

Sub-event relation extraction 1, 4, 0, 3, 5, 2, 8, 6, 7, 9, 10, 11, 13, 14, 12, 19,
15, 16, 18, 17

7, 2, 3, 1, 0, 5, 4, 6, 8, 9, 10, 18, 11, 16, 12, 13,
15, 14, 17

Table 11: Layer ordering of average indirect effects of specific modules on specific tokens for negative samples in
each task.
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Task MLP module in encoder for
“relation” token

MLP module in encoder for
“relation” token

Cross-Attention module in de-
coder for “<s>” token

Temporal relation classification 11, 12, 13, 10, 14, 15, 3, 1, 7, 6,
4, 9, 2, 8, 0, 5, 16, 19, 18, 17

15, 14, 13, 8, 16, 9, 12, 10, 0, 2,
11, 7, 4, 6, 1, 3, 17, 5, 18, 19

1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 18, 10,
11, 13, 12, 17, 16, 15, 14

Temporal relation extraction 12, 11, 13, 14, 10, 15, 9, 8, 0, 2,
7, 3, 1, 4, 6, 5, 16, 19, 18, 17

12, 2, 3, 15, 4, 11, 14, 0, 1, 10, 9,
13, 5, 8, 6, 16, 7, 19, 18, 17

2, 1, 0, 3, 4, 5, 7, 6, 8, 13, 12, 9,
11, 10, 14, 15, 18, 16, 17

Causal relation classification 7, 11, 8, 12, 13, 10, 14, 9, 0, 1,
15, 2, 3, 6, 5, 4, 16, 19, 17, 18

15, 12, 13, 5, 1, 4, 9, 14, 16, 6, 0,
7, 10, 3, 11, 8, 17, 2, 18, 19

0, 2, 1, 3, 4, 5, 7, 6, 8, 9, 13, 10,
12, 11, 18, 15, 14, 17, 16

Causal relation extraction 14, 15, 12, 13, 0, 11, 8, 9, 10, 1,
7, 2, 3, 4, 5, 16, 6, 17, 19, 18

12, 0, 4, 1, 5, 10, 2, 3, 9, 15, 11,
14, 8, 13, 6, 7, 16, 19, 17, 18

0, 2, 3, 1, 4, 6, 5, 7, 13, 12, 11, 8,
10, 9, 14, 15, 17, 18, 16

Sub-event relation classification 17, 2, 3, 1, 18, 4, 12, 19, 6, 16, 0,
11, 5, 9, 10, 8, 7, 15, 14, 13

6, 9, 10, 8, 13, 0, 11, 7, 12, 14, 5,
4, 2, 15, 1, 3, 16, 17, 18, 19

2, 1, 0, 3, 4, 7, 5, 6, 8, 9, 10, 13,
11, 12, 18, 15, 14, 16, 17

Sub-event relation extraction 17, 19, 18, 16, 12, 3, 11, 1, 2, 14,
10, 15, 9, 4, 0, 13, 8, 5, 7, 6

0, 1, 2, 4, 3, 5, 11, 6, 10, 12, 9,
15, 14, 8, 7, 16, 13, 19, 17, 18

0, 2, 1, 3, 4, 7, 5, 6, 8, 9, 11, 13,
12, 10, 18, 15, 14, 16, 17

Table 12: Layer ordering of average indirect effects of specific modules on specific tokens for positive samples in
each task.

Algorithm 1 SVD-Based Prompt Segmentation Algorithm
Input: Indirect effect matrix M of all tokens under each layer of the module, the length of the
token is N , and the initialized index i = 0.
for i in range(N ):
count [i] = SV D (M [: i]) # Calculate the number of eigenvalues of the current matrix
if count [i] > count [i− 1]:
print i, count [i]) # Show segmentation results

Table 13: SVD-Based Prompt Segmentation Algorithm

Figure 7: A graphical illustration of the segmentation results of the SVD-based prompt segmentation algorithm
on different samples. Each row represents a sample and each column corresponds to a token. The change in color
shade reflects the change in the number of eigenvalues and also indicates the location of segmentation. The blue
dotted line indicates the final division.
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