
LLM ContextBridge: A Hybrid Approach for Intent and Dialogue
Understanding in IVSR

Changwoo Chun, Daniel Rim, Juhee Park
Hyundai Motor Company

Seoul, South Korea
{cwchun, drim, juheepark}@hyundai.com

Abstract

In-vehicle speech recognition (IVSR) systems
are crucial components of modern automotive
interfaces, enabling hands-free control and en-
hancing user safety. However, traditional IVSR
systems often struggle with interpreting user in-
tent accurately due to limitations in contextual
understanding and ambiguity resolution, lead-
ing to user frustration. This paper introduces
LLM ContextBridge, a novel hybrid architec-
ture that integrates Pretrained Language Model-
based intent classification with Large Language
Models to enhance both command recogni-
tion and dialogue management. LLM Con-
textBridge serves as a seamless bridge between
traditional natural language understanding tech-
niques and LLMs, combining the precise intent
recognition of conventional NLU with the con-
textual handling and ambiguity resolution ca-
pabilities of LLMs. This approach significantly
improves recognition accuracy and user expe-
rience, particularly in complex, multi-turn dia-
logues. Experimental results show notable im-
provements in task success rates and user satis-
faction, demonstrating that LLM ContextBridge
can make IVSR systems more intuitive, respon-
sive, and context-aware.

1 Introduction

In-Vehicle Speech Recognition (IVSR) systems
play a vital role in modern vehicles by enabling
hands-free control of the infotainment system, en-
hancing user safety. These systems are designed
to handle single-turn commands, and often strug-
gle with complex scenarios, such as multi-turn
conversations, ambiguous utterances, and context-
dependent inputs. As drivers need to concentrate
on driving, it is very common for users to leave
relevant details out in utterances.

Large Language Models (LLMs) offer a poten-
tial solution by improving dialogue management
and resolving contextual ambiguities. However,
fully integrating LLMs into IVSR systems can lead

to challenges such as increased latency, computa-
tional costs, and inconsistent task performances.
A full LLM-based approach is often inefficient in
handling both simple and complex commands in
production environments.

To address these challenges, we propose LLM
ContextBridge, a hybrid architecture that com-
bines the strength of a Pretrained Language Model
(PLM)-based intent classification with the LLMs’
contextual reasoning capabilities. LLM Con-
textBridge refines ambiguous or multi-turn utter-
ances and ensures accurate intent recognition with-
out requiring extensive retraining.

The key contributions of this work are:

• Utterance Refinement: LLM ContextBridge
resolves ambiguities in both commands and
conversations, enhancing intent classification
without altering the existing natural language
understanding (NLU) logic and dialogue man-
agement structure.

• Contextual Multi-Turn Dialogue Handling:
LLM ContextBridge enables the system to
manage complex dialogues while maintain-
ing user context and intent.

• Seamless Integration: LLM ContextBridge
incorporates LLMs into IVSR systems with-
out requiring extensive fine-tuning, maintain-
ing efficiency and performance.

2 Related Works

2.1 Existing Systems
IVSR systems are typically designed to handle
single-turn commands by processing user inputs
through intent classifiers and slot extractors (Lim
et al., 2022). While these systems are effective
for simple tasks, they struggle with multi-turn dia-
logues, where users’ commands may omit critical
information, or rely on context from previous inter-
actions (Ferreira Cruz et al., 2020). For example,

when a user asks, "What’s the weather in Gangnam
today?" followed by, "What about tomorrow?" the
system fails to capture key terms like "Gangnam"
and "weather" unless explicit mechanisms for re-
taining context are implemented (Hindle and Rooth,
1993).

In addition, IVSR systems face challenges in
handling ambiguous utterances, such as "It’s too
noisy," which could refer to multiple aspects of
in-car environment, including external noise or in-
vehicle sound systems. Current approaches often
rely on out-of-domain (OOD) detection (Jacobs
et al., 2021; Papadopoulos et al., 2021; Wang and
Mine, 2022; Shen et al., 2021) to identify unsup-
ported or misclassified commands, but these solu-
tions address only the detection aspect, rather than
resolving the underlying ambiguity or context loss
in multi-turn interactions.

2.2 LLM-based Approaches
Large Language Models (LLMs), trained on vast
datasets and fine-tuned for task-specific applica-
tions (Wei et al., 2021), have shown promising
results (He and Garner, 2023; Zhu et al., 2024) in
enhancing the contextual understanding and dia-
logue management capabilities of IVSR systems.
LLMs can handle more complex queries, and main-
tain context across multiple turns in a conversation,
generating more natural responses (Brown et al.,
2020; Zhao et al., 2023). The performance im-
provement is significant when given a few shots,
and even better when applying a CoT (Wei et al.,
2022) approach.

However, fully integrating LLMs into IVSR
systems presents several challenges, such as in-
creased latency and computational costs, making
them less suitable for real-time production environ-
ments (Ma et al., 2023; Parikh et al., 2023). More-
over, while LLMs excel in dialogue generation,
their performance in intent classification can be
inconsistent, especially when dealing with a large
number of intents. This makes LLMs less efficient
for production-level IVSR systems that need to be
fast and precise.

2.3 Hybrid Systems
To overcome the limitations of both traditional
IVSR systems and LLM-based approaches, hy-
brid systems that combine rule-based methods with
LLMs have been explored. Previous study (Rony
et al., 2023) uses a retrieval-augmented generation
model to answer user queries about vehicle fea-

tures. This system employs an arbitration module
that determines whether to use rule-based methods
for simpler commands or LLMs for more complex
questions. However, this approach can create a
disjointed user experience, as the system may fail
to handle transitions between complex and simple
commands smoothly.

The orchestration required to combine two dis-
parate systems introduces additional complexity.
Bridging the gap between recognizing intents from
utterances and carrying on a conversation is a major
challenge.

3 Proposed Method

3.1 Overview of LLM ContextBridge
We propose a hybrid architecture, LLM Con-
textBridge, which combines the generative capabili-
ties of LLMs with conventional NLU systems. This
leverages LLMs to handle ambiguous, multi-turn
dialogues that conventional NLU systems struggle
with, while maintaining the overall structure and ef-
ficiency of rule-based and machine-learning-based
NLU systems. Figure 5 illustrates the overall ar-
chitecture, demonstrating how LLM ContextBridge
integrates these systems to enhance intent classifi-
cation and dialogue continuity in IVSR scenarios.

S(U,C) =

{
NRules(U) if U is predefined
NPLM(L(U,C)) otherwise

(1)
• S(U,C): The IVSR system that processes user utter-

ance U and context C.

• NRules(U): Rule-NLU that handles predefined or pat-
terned utterances U .

• NPLM(U)): PLM-NLU that processes the free-form ut-
terances.

• L(U,C): The refined utterance generated by LLM Con-
textBridge using U and context C.

3.2 Conventional NLU Components
The conventional NLU system consists of two main
components: rule-based NLU (Rule-NLU) and
machine-learning-based NLU (PLM-NLU). Rule-
NLU is responsible for processing well-defined,
unambiguous commands such as “Navigate home”
or “Make a call”. These commands follow pre-
defined patterns that are straightforward to handle
with a set of deterministic rules.

In contrast, PLM-NLU handles more flexible,
free-form utterances that cannot be fully prede-
fined. PLM-NLU excels when it is trained on large

Figure 1: The Overall Architecture of LLM ContextBridge

datasets with well-defined intents and proper nouns,
such as points of interest (POIs) or song titles.
This allows the system to perform intent classifica-
tion and slot extraction tasks with a high precision.
However, when faced with utterances outside the
predefined domain (e.g., “the window is broken”
when only “open window” and “close window” are
recognized), the system encounters out-of-domain
issues, which can hinder intent recognition.

For further details on the baseline system’s archi-
tecture, please refer to Section A in the appendix.

3.3 The Role of LLM ContextBridge

LLM ContextBridge addresses the limitations of the
conventional NLU by introducing LLMs to handle
complex, multi-turn dialogues. It processes utter-
ances that are ambiguous, context-dependent, or
contain ellipses, refining them to ensure the user’s
intent is fully captured. This refinement occurs be-
fore the utterance is passed to the PLM-NLU for
final processing.

LLM ContextBridge uses both the user’s current
utterance U and the preceding dialogue context C
to refine U . By restoring the omitted context, modi-
fying utterances to align with predefined forms, and
clarifying ambiguous statements through follow-
up questions, LLM ContextBridge ensures that the
system can handle more complex dialogues with
greater accuracy.

The refined utterance is then passed to the PLM-
NLU for further processing, as represented by the
following equation:

L(U,C) → NPLM(L(U,C)) (2)

3.4 Multi-turn Dialogue Handling

LLM ContextBridge is specifically designed to han-
dle the challenges of multi-turn dialogues, where
the meaning of an utterance evolves based on prior
interactions. The following tasks are performed
through prompt strategies applied to the LLM. For

detailed prompt configurations, please refer to the
appendix C.

The multi-turn dialogue handling can be catego-
rized into four main cases:

Handling Specification Utterances For utter-
ances explicitly defined in the specification, LLM
ContextBridge passes them directly to the PLM-
NLU for processing. For similar but not identi-
cal utterances, LLM ContextBridge refines them to
match predefined forms. For instance, “Let’s go to
Lotte Tower” becomes “Navigate to Lotte Tower”
to ensure consistent classification.

Handling Ambiguous Utterances LLM Con-
textBridge clarifies ambiguous utterances with
follow-up questions. If the user says, “It’s too
noisy,” the system might ask, “Do you want to
lower the volume?” Once confirmed, the system
refines the utterance to “Turn down the volume.”

Restoring Omitted Information The system re-
stores omitted details based on context. For exam-
ple, “Let’s go there” could be refined to “Let’s go
to Starbucks,” and “Only the driver’s seat” to “Turn
on the air conditioning for only the driver’s seat.”

Handling External Knowledge For queries re-
quiring external knowledge (e.g., real-time traffic),
LLM ContextBridge identifies the appropriate API,
retrieves the needed data, and uses it to generate a
response.

3.5 Integration of LLM ContextBridge with
NLU

For seamless integration, LLM ContextBridge sits
between the Rule-NLU and PLM-NLU compo-
nents. Rule-NLU handles simple, well-defined
utterances, while LLM ContextBridge processes
more complex or ambiguous utterances based on
context. If the system determines that the utterance
cannot be handled by the conventional NLU, LLM
ContextBridge takes over, ensuring that user intent

is accurately interpreted, and the dialogue remains
natural.

By bridging the gap between conventional NLU
and LLMs, LLM ContextBridge creates a hybrid
system that retains the precision of traditional sys-
tems while adding the flexibility and conversational
capabilities of LLMs.

3.6 Advantages of LLM ContextBridge

The integration of LLM ContextBridge offers sev-
eral advantages:

• Seamless Refinement: Refines ambiguous
or incomplete utterances, ensuring accurate
intent capture.

• Contextual Awareness: Leverages dialogue
context to maintain coherence across multi-
turn dialogues.

• Hybrid Efficiency: Balances Rule-NLU pre-
cision with LLM flexibility, processing simple
utterances efficiently while handling complex
ones effectively.

• Out-of-Domain Handling: Transforms un-
supported utterances into processable forms
for PLM-NLU.

4 Experiments

4.1 Data & Models Specifications
To evaluate our proposed method, we used three
datasets based on real user logs and compared the
two systems. Both systems use the same Rule-NLU
and PLM-NLU (fine-tuned from ELECTRA (Clark
et al., 2019)). For the proposed method, LLM Con-
textBridge integrates GPT-4o1 as the LLM compo-
nent, chosen for its proven ability to handle Korean.
We also conducted comparative experiments using
the open LLM, LLaMA-3.12 (et. al., 2024), which
showed lower performance in handling Korean-
language tasks.

IVSR Evaluation dataset: Functions-Set The
Functions-set consists of 13,138 utterances, cover-
ing 282 intents across 12 domains. Each domain
has 10 to 30 intents, reflecting real-world variabil-
ity. Utterances were annotated based on user logs,
with the domain distribution shown in Figure 2.
Major domains include [Infotainment system con-
trol] for media and volume commands, and [Vehi-
cle Control] for tasks like windows, sunroof, and

1https://openai.com/gpt-4o-contributions/
2https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct

Figure 2: Domain distribution of the utterances in the
Functions-set

climate control. Meanwhile, the [Agent] domain
represents dialogue-driven requests like general
conversations.

Conversational Evaluation: Dialogue-Set To
assess the system’s performance on multi-turn dia-
logues, we curated a new dataset, derived from
actual user logs and extended through simula-
tion. The Dialogue-set consists of both single-turn
and multi-turn conversations. First, we gathered
a single-turn evaluation set containing function-
execution commands and question-answer pairs.
Multi-turn dialogues were then generated using
a simulated interaction between user and system
agents, both modeled by GPT-4o, as illustrated in
Figure 3. There were 5,501 single-turn conver-
sations and 1,697 multi-turn conversations, with
the average number of utterances in a multi-turn
conversation being 4.37.

Figure 3: Multi-turn dialogue generation process

4.2 Evaluation Methods and Criteria
The systems were evaluated based on:

• User Request Handling Accuracy: Accu-
racy of matching actions or responses to the
user’s utterance.

• Response Appropriateness: How correctly
the system make relevant responses in the
Dialogue-set.

https://openai.com/gpt-4o-contributions/
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

• Naturalness of Dialogue: How naturally the
system maintains context in dialogues.

Quantitative Eval Qualitative Eval
Method G-Eval Human evaluation

Criteria

1) User request
handling accuracy
2) Response
appropriateness
3) Naturalness
of dialogue

1) User request
handling accuracy
2) Response
appropriateness
3) Naturalness
of dialogue

Table 1: Evaluation methods and criteria

Quantitative evaluation was performed using the
GPT-4o model (Zheng et al. 2024), while quali-
tative evaluation involved three human evaluators
rating 60 dialogues based on the same criteria.

4.3 Performance Evaluation Results and
Analysis

Intent Classification Tasks We compared LLM
ContextBridge system with the conventional NLU
(Baseline) and LLM-only systems using the
Functions-set. Table 2 shows the intent classifi-
cation accuracy, and Figure 4 provides domain-
specific F1-scores.

Method LLM Used Acc.
Baseline N/A 0.896

Proposed
GPT-4o 0.917

LLaMA-3.1-8B-instruct 0.782

LLM-only
GPT-4o 0.636

LLaMA-3.1-8B-instruct 0.497

Table 2: Intent Classification Accuracy Across Different
Methods on the Functions-set

The baseline system, combining Rule-NLU and
PLM-NLU, achieved an accuracy of 0.896. De-
spite the complexity of the test set, which in-
cludes ambiguous or context-dependent utterances,
this demonstrates the robustness of the PLM-NLU
model trained on large-scale data.

In the proposed method, LLM ContextBridge
refines user utterances before PLM-NLU pro-
cesses them. Using GPT-4o, the proposed system
achieved 0.917 accuracy, a 2.1% improvement over
the baseline. This highlights the benefit of LLM’s
generative capabilities in refining complex utter-
ances. However, using LLaMA-3.1-instruct, accu-
racy dropped to 0.782, primarily due to its limited
proficiency in handling Korean-language tasks.

The LLM-only approach, without the conven-
tional NLU, performed significantly worse. GPT-

4o reached the accuracy of 0.636, and LLaMA-3.1-
instruct only achieved 0.514. These results illus-
trate the difficulty LLMs face with large amounts
of multi-class classification without conventional
NLU support.

Figure 4: Domain-specific F1-Scores

In terms of domain-specific performance (Fig-
ure 4), the proposed system (0.955) showed similar
performance to the baseline (0.960) in most do-
mains. In "Agent" domain, where conversational
performance is important, there was a slight im-
provement, where the F1 score increased from
0.939 of the baseline to 0.965. In contrast, the
LLM-only system underperformed in all domains,
particularly in complex tasks like "Web Portal
Search" and "IOT Control." For detailed perfor-
mance metrics across each domain for these sys-
tems, see Appendix 7, 8, and 9.

We explored the nuanced differences in system
responses to variations in window-related utter-
ances across three methodologies: Baseline, Pro-
posed, and LLM-only. The Baseline system, due
to a design bias towards prioritizing navigation
functions within vehicle infotainment systems, in-
terprets the simple utterance "window" as a prompt
for a point-of-interest search, assuming it to re-
fer to a location involving the word "window." In
contrast, the LLM-only method, unguided by spe-
cific biases that could be feasibly applied to mil-
lions of POIs, defaults to treating the command
as "open window," showing a misunderstanding

Command Baseline Proposed LLM-
only

Window Search
POI

Search
POI

Open
Window

Open window Open
Window

Open
Window

Open
Window

Can you open the
window

Open
Window

Open
Window

Chat

Does it work to
open the window

Open
Window

Open
Window

Chat

Should I open or
close the window

Open
Window

Chat Chat

A way to open a
window

How
Open

How
Open

Chat

Tell me how to
open a window

How
Open

How
Open

How
Open

Window opening
speed

Open
Window

Chat Chat

Prevent the win-
dow opening

Close
Window

Lock
Window

Close
Window

How to lock the
window

How
Lock

How
Lock

How
Lock

Table 3: Comparison of system responses to nuanced
variations in window-related commands across different
methods.

of context. Interestingly, while the Baseline ap-
proach misclassifies less explicit utterances like
"Should I open or close the window?" as a com-
mand to "open window". The systems employing
LLMs can navigate these ambiguities more adeptly,
categorizing them as "Chat" and prompting a con-
versational interaction that asks for clarification,
such as "Would you like me to open the window,
or should I keep it closed?" This distinction under-
scores the LLM-based methods’ superior ability
to engage in context-sensitive dialogue. Although
the LLM-based methods adeptly handle ambigu-
ous utterances by prompting conversational inter-
actions for clarification, they cannot be utilized
exclusively, due to critical limitations. The LLM-
only approaches often struggle with utterances that
mimic the system’s inherent functionalities, as they
lack the design biases specifically tailored to inter-
pret the system’s native commands. Consequently,
this can lead to a system either misinterpreting
metaphorical requests or providing inaccurate ex-
planations generated by the LLMs rather than pre-
cise, system-designed responses.

Overall, these results demonstrate that LLM Con-
textBridge successfully balances the strengths of
both conventional NLU and LLMs, improving per-
formance in handling complex dialogues and am-
biguous utterances across domains.

Conversation Tasks We compared the perfor-
mance of single-turn and multi-turn dialogues us-

ing the Dialogue-Set. Table 4 presents the eval-
uation results for both the baseline and proposed
systems.

Dialogue Dataset Baseline Proposed
Single-turn 0.773 0.892
Multi-turn 0.152 0.601

Table 4: Evaluation results based on the GPT-4o model.

The proposed method exhibited substantial im-
provements in both single-turn and multi-turn di-
alogues. For single-turn dialogues, the proposed
system achieved an accuracy of 0.892, reflecting a
12% improvement over the baseline (0.773). This
shows that our approach effectively improves the
interpretation of isolated commands, favoring a
more nuanced understanding than the baseline to
create appropriate responses to utterances.

The impact of LLM ContextBridge becomes even
more pronounced in multi-turn dialogues. The pro-
posed system reached an accuracy of 0.6005, a dra-
matic 45% improvement over the baseline’s 0.1520.
This highlights the system’s ability to manage com-
plex, context-dependent interactions, which were
difficult for the conventional systems.

To further validate these findings, a qualitative
evaluation was conducted through human assess-
ments, as shown in Table 5.

Evaluator Baseline Proposed
Evaluator 1 0.15 0.783
Evaluator 2 0.083 0.717
Evaluator 3 0.2 0.833

Table 5: Qualitative evaluation results on multi-turn
dialogue – Human evaluation.

The human evaluation results underscore the ef-
fectiveness of the proposed system in multi-turn
dialogue scenarios. Despite some variations among
the evaluators, the qualitative scores consistently
indicate a significant improvement in performance
with the proposed LLM ContextBridge system.

Overall, LLM ContextBridge not only improves
the handling of single-turn commands, but also sig-
nificantly enhances the performance of multi-turn
dialogues by incorporating LLM-based utterance
refinement. These results emphasize the contri-
butions of a hybrid approach, particularly in the
context of managing dialogues that require main-
taining of context, and resolving ambiguity over
multiple interactions.

4.4 Processing speed and Efficiency

While LLM ContextBridge demonstrated improved
dialogue performance, it exhibited different re-
sponse characteristics across test sets. As shown
in Table 6, for the functions-set, the proposed sys-
tem introduced an additional delay of up to 600ms,
with the baseline system is faster than the proposed
approach. This slower processing time is attributed
to the computational overhead of LLM-based utter-
ance refinement. However, in the dialogue-set, the
proposed system showed a clear advantage, with
faster response times by 300-500ms per turn in
both single-turn and multi-turn dialogues.

Despite the increased latency in the functions-
set, the response times for all scenarios remain
well within the 3-second production-level timeout
requirement for IVSR systems, ensuring that the
proposed system maintains acceptable responsive-
ness for real-world applications.

Evaluation data Baseline Proposed
Functions-set 0.272 0.851

Dialogue: Single-turn 1.354 1.052
Dialogue: Multi-turn 2.136 1.652

Table 6: Comparison of processing speed (unit: sec)

5 Conclusion

In this paper, we presented LLM ContextBridge, a
hybrid architecture that integrates Pretrained Lan-
guage Models (PLMs) with Large Language Mod-
els (LLMs) to enhance intent classification and
dialogue management in In-Vehicle Speech Recog-
nition (IVSR) systems. By bridging traditional
natural language understanding (NLU) with LLMs,
LLM ContextBridge effectively addresses key chal-
lenges in handling complex, multi-turn dialogues,
and resolving ambiguous commands.

Our experiments showed significant improve-
ments, with a 12% increase in single-turn accu-
racy and a 45% improvement in multi-turn dia-
logues compared to the baseline system. These
gains highlight ContextBridge’s ability to refine
ambiguous utterances and maintain dialogue con-
text, creating a more intuitive and responsive user
experience. The hybrid approach also integrates
seamlessly into existing IVSR systems without the
need for extensive retraining, making it suitable
for real-world applications. We believe LLM Con-
textBridge marks an important step forward for
IVSR systems, improving their ability to handle

context-dependent interactions and making them
more user-friendly. The integration of LLMs with
conventional NLU systems offers a path toward
more intelligent, adaptable, and accessible automo-
tive interfaces, enhancing both user satisfaction and
safety.

6 Limitations

While LLM ContextBridge offers considerable ad-
vancements in improving intent classification and
dialogue management within IVSR systems, sev-
eral limitations remain that highlight areas for fu-
ture improvement.

LLM Selection and Language Generalization:
The choice of LLM plays a critical role in sys-
tem performance. While GPT-4o demonstrated
strong capabilities in handling Korean-language
tasks, models like LLaMA-3.1-instruct showed
lower performance in this area. This suggests that
the effectiveness of LLM ContextBridge may vary
significantly depending on the LLM’s language
understanding and adaptability. Evaluating other
LLMs across different languages and further opti-
mizing their integration into the system remains an
important future direction.

Processing Speed and Efficiency: Incorporating
an LLM introduces additional processing layers,
which can impact real-time performance, partic-
ularly in time-sensitive in-vehicle environments.
The observed latency—up to 600ms in some
tasks—indicates a need for further optimization.
Although the hybrid system improves contextual
understanding, ensuring prompt responses for sim-
pler commands without unnecessary LLM interven-
tion is crucial for maintaining efficient processing.

Dependency on Predefined Utterances: LLM
ContextBridge relies on predefined utterances and
specification documents, particularly in handling
structured commands. This reliance can limit the
system’s ability to manage entirely novel or un-
structured utterances that deviate from established
patterns. Enhancing the system’s flexibility in ad-
dressing unforeseen commands is an ongoing chal-
lenge.

Human Evaluation and User Variability: Al-
though qualitative evaluations indicated improve-
ments in multi-turn dialogues, the inherent subjec-
tivity of human assessments can lead to inconsisten-
cies in results. The relatively small sample size in
our evaluations may also cause variability depend-
ing on which specific samples were used, making
it difficult to generalize the findings. As IVSR
systems continue to evolve, it will be essential to
address the diverse needs of both experienced and
first-time users. This will require continuous refine-
ment of system functionality and user interaction to

ensure that the system performs effectively across
a wide range of user experiences and expectations.

Baselines and Dataset: As our work is to demon-
strate feasibility of our approach on a production
level system, we limited our experiments to three
systems: our current in-production system, a LLM-
only system, and our proposed system. Further-
more, our work is focused on demonstrating the
improvements that can be made by seamless in-
corporation of LLMs. Our method is adaptable to
various systems, and can be utilized to improve
other existing production systems. Lastly, as most
of our experiments are performed on real user data,
we are unable to provide more details regarding the
dataset.

In conclusion, while LLM ContextBridge demon-
strates significant potential for enhancing IVSR
systems, addressing these limitations will be criti-
cal to ensuring its scalability and effectiveness in
broader contexts.

Acknowledgments

This project has filed a patent with the number KR-
1020240117134.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2019. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Abhimanyu Dubey et. al. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

André Ferreira Cruz, Gil Rocha, and Henrique
Lopes Cardoso. 2020. Coreference resolution: to-
ward end-to-end and cross-lingual systems. Informa-
tion, 11(2):74.

Mutian He and Philip N Garner. 2023. Can chatgpt
detect intent? evaluating large language models
for spoken language understanding. arXiv preprint
arXiv:2305.13512.

Donald Hindle and Mats Rooth. 1993. Structural ambi-
guity and lexical relations. Computational linguistics,
19(1):103–120.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Pieter Floris Jacobs, Gideon Maillette de Buy Wenniger,
Marco Wiering, and Lambert Schomaker. 2021. Ac-
tive learning for reducing labeling effort in text clas-
sification tasks. In Benelux Conference on Artificial
Intelligence, pages 3–29. Springer.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Jungwoo Lim, Suhyune Son, Songeun Lee, Changwoo
Chun, Sungsoo Park, Yuna Hur, and Heuiseok Lim.
2022. Intent classification and slot filling model
for in-vehicle services in korean. Applied Sciences,
12(23):12438.

Yubo Ma, Yixin Cao, Yong Hong, and Aixin Sun. 2023.
Large language model is not a good few-shot informa-
tion extractor, but a good reranker for hard samples!
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 10572–10601, Sin-
gapore. Association for Computational Linguistics.

Aristotelis-Angelos Papadopoulos, Mohammad Reza
Rajati, Nazim Shaikh, and Jiamian Wang. 2021. Out-
lier exposure with confidence control for out-of-
distribution detection. Neurocomputing, 441:138–
150.

Soham Parikh, Mitul Tiwari, Prashil Tumbade, and
Quaizar Vohra. 2023. Exploring zero and few-shot
techniques for intent classification. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 5: Industry Track),
pages 744–751, Toronto, Canada. Association for
Computational Linguistics.

Md Rashad Al Hasan Rony, Christian Suess, Sin-
chana Ramakanth Bhat, Viju Sudhi, Julia Schneider,
Maximilian Vogel, Roman Teucher, Ken Friedl, and
Soumya Sahoo. 2023. CarExpert: Leveraging large
language models for in-car conversational question
answering. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing: Industry Track, pages 586–604, Singapore. As-
sociation for Computational Linguistics.

Yilin Shen, Yen-Chang Hsu, Avik Ray, and Hongxia Jin.
2021. Enhancing the generalization for intent clas-
sification and out-of-domain detection in slu. arXiv
preprint arXiv:2106.14464.

Bo Wang and Tsunenori Mine. 2022. Practical and
efficient out-of-domain detection with adversarial
learning. In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, pages 853–862.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Zhihong Zhu, Xuxin Cheng, Hao An, Zhichang Wang,
Dongsheng Chen, and Zhiqi Huang. 2024. Zero-shot
spoken language understanding via large language
models: A preliminary study. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalua-
tion (LREC-COLING 2024), pages 17877–17883.

A Baseline System Architecture

The baseline system used in our experiments con-
sists of three main components: NLU (Natural
Language Understanding), DM (Dialogue Man-
agement), and NLG (Natural Language Genera-
tion). These components are structured as follows:

A.1 NLU (Natural Language Understanding)

The NLU component is responsible for intent clas-
sification in single-turn utterances. It is divided
into two subcomponents:

• Rule-NLU: This subcomponent processes
predefined, well-structured utterances. It uses
rule-based methods to classify intents for com-
mands such as "Navigate home" or "Make a
call." Rule-NLU is designed to handle only
the top 5% of the most frequently used utter-
ances.

• PLM-NLU: This subcomponent handles
more flexible, free-form utterances that cannot
be predefined by rules. It is fine-tuned from a
Pretrained Language Model (PLM) and is re-
sponsible for identifying intents in utterances
such as "How long does it take to get to the
nearest Starbucks?" The PLM-NLU model is
based on a bi-directional transformer text en-
coder architecture, specifically the ELECTRA

https://doi.org/10.18653/v1/2023.findings-emnlp.710
https://doi.org/10.18653/v1/2023.findings-emnlp.710
https://doi.org/10.18653/v1/2023.acl-industry.71
https://doi.org/10.18653/v1/2023.acl-industry.71
https://doi.org/10.18653/v1/2023.emnlp-industry.56
https://doi.org/10.18653/v1/2023.emnlp-industry.56
https://doi.org/10.18653/v1/2023.emnlp-industry.56

Figure 5: The Overall Architecture of IVRS system (without ASR & TTS)

base model, by training an intent classifier and
a slot extractor, respectively. The model’s key
parameters are as follows:

– Architectures:
ElectraForSequenceClassification

– Embedding Size: 768
– HiddenActivation: gelu
– HiddenSize: 768
– MaximumPositionEmbeddings: 512
– ModelType: electra
– NumberofAttentionHeads: 12
– NumberofHiddenLayers: 12
– PositionEmbeddingType: absolute
– ProblemType: single_label_classification
– SummaryActivation: gelu

– VocabularySize: 32,200

A.2 DM (Dialogue Management)

The DM component manages the dialogue flow.
While it handles single-turn utterances, it is also
designed to manage multi-turn interactions in spe-
cific scenarios where follow-up utterances and re-
sponses are required. The DM processes the user’s
input, tracks the conversation state, and selects the
appropriate response templates to maintain the flow
of dialogue.

A.3 NLG (Natural Language Generation)

The NLG component generates responses based on
the templates processed by the DM. If the NLU or
DM component cannot fully handle the request, or
if an out-of-spec utterance is encountered, it uses
an LLM to manage the question-answering task.
The LLM complements the system by generating
responses for out-of-domain queries or ambiguous
utterances not predefined in the template library.

For queries requiring external resource access,
such as retrieving Point of Interest (POI) informa-
tion or accessing vehicle maintenance manual sys-
tems, the LLM Agent identifies the appropriate
tool and makes API calls with relevant parameters
to retrieve external knowledge. Once the results
are fetched, the system generates responses using

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) in order to ensure accurate and contex-
tually relevant answers.

A.4 Exclusion of ASR and TTS

In this study, we excluded the Automatic Speech
Recognition (ASR) and Text-to-Speech (TTS) com-
ponents from the experiments. The focus was on
the interaction between the NLU, DM, and NLG
components, and the performance of these modules
was evaluated independently of speech input and
output systems.

B Detailed Experimental Setup

In our experimental setup, we used both the conven-
tional NLU-based system and a hybrid architecture
incorporating Pretrained Language Models (PLMs)
and Large Language Models (LLMs) for intent
classification and dialogue handling. Below, we
detail the hardware, software environments, and
models used for our experiments.

B.1 Hardware and Software Environment

All experiments were conducted using an NVIDIA
GPU server with 8 Tesla A100 GPUs, each with
40GB of memory. The operating system was
Ubuntu 20.04 LTS, and Python 3.8 was used as
the programming language.

The experiments were run in a Docker container
environment using the following setup:

• CUDA version: 11.3

• Python libraries: Transformers 4.30.2, Torch 1.10.0,

and FastAPI 0.78

B.2 LLM Usage Parameters

For generating responses in tasks such as dialogue
generation and question answering, we used a va-
riety of models including GPT-4o, GPT-4o-mini,
CCVR-Chat, and LLaMA-3.1-8B-Instruct. Below

are the detailed parameters used for controlling the
behavior of the LLM during inference:

• Model Version:
– GPT-4o: gpt-4o-2024-05-13
– LLaMA-3.1-8B-Instruct: llama-3.1-8B-instruct

• Temperature: 0.3,
• Max Tokens: 512 tokens,
• Top-p: 0.95,
• Frequency Penalty: 0 (default),

• Presence Penalty: 0 (default),

These parameters were fine-tuned to balance re-
sponse quality, coherence, and efficiency, ensuring
that the generated outputs were relevant and con-
textually appropriate for the IVSR system.

C LLM ContextBridge Prompt

LLM ContextBridge Prompt provides a structured
approach to interacting with a In-Vehicle Speech
Recognition (IVRS) system. It includes four main
components.

C.1 Situation Description

The following are representative commands for all
functions supported by the Hyundai Motor Com-
pany’s vehicle voice recognition system. The voice
recognition system can recognize the driver’s speech
and execute the function or respond. The parts
marked with "< >" in the supported representative
commands are proper nouns, and the other parts rep-
resent semantic expressions. Various words can be
included in the proper noun part.

C.2 Specification: Representative Commands
The system utilizes a set of abstracted represen-
tative commands to efficiently manage the range
of functions it can understand and execute, such
as checking the weather, controlling media play-
back, managing vehicle settings, and making calls.
These representative commands are derived from a
summary of the vehicle voice recognition specifi-
cation, ensuring full coverage of In-Vehicle Speech
Recognition System (IVRS) capabilities.

In LLM ContextBridge, we use abstracted rep-
resentative commands to optimize the use of the
LLM’s input prompt length (max_token_length).
This approach ensures the LLM can capture the
full range of functionalities while minimizing in-
put complexity. Traditional methods often rely
on intent-example pairings provided in a few-shot
manner, leading to a significantly longer prompt.
However, the proposed method reduces the overall
prompt length by using only abstracted representa-
tive commands without explicitly including intents,

making the system more efficient in handling the
available prompt space.

A representative command is a representative sen-
tence of all functions supported by the voice recogni-
tion system. Even if the customer’s speech is some-
what different from this, if a different predicate with
a similar meaning is used, and a minor difference in
particle or change in ending is considered to have the
same meaning as the representative command.

Tell me the weather in <REGION>
Tell me the weather on <DATE>
<BroadcastingStationName>
AM <Frequency>
FM <Frequency>
Call <CallTarget>
Send message <content> to <CallTarget>
Turn off <APP>
Run <APP>
Turn on <APP>
Turn on <AirConditioner>
Turn off <AirConditioner>
Raise the temperature of <AirConditioner>
Lower the temperature of <AirConditioner>
...
Directions <POI>
Find <POI>
Search for <POI>
Let’s go to <POI>
Turn down the volume of <APP>
Turn up the volume of <APP>
Set the volume of <APP> to <NUMBER>
Mute <APP>
Unmute <APP>
Temperature Lower <NUMBER>
Raise <temperature>
Set temperature to <NUMBER>
Play <ARTIST>
Play <SongTitle>
Play <SongTitle> sung by <ARTIST>
Open <SWITCH>
Close <SWITCH>
Raise <SWITCH>
Put <SWITCH> down

C.3 Few-shot Examples

Examples demonstrate how the system processes
different types of user input, from simple questions
to requests for specific actions. These examples
help the system handle both direct commands and
interactive interactions without errors.

User: Who made you?
Assistant: {’function’:’CHAT’, ’question’:’Who
made you’, ’answer’:’I am an AI assistant made by
Hyundai Motor Company.’}
User: Is there a Starbucks near Gangnam Station?
Assistant: {’function’:’NLU’, ’question’:’Find Star-
bucks near Gangnam Station’, ’answer’:’I will find a
Starbucks near Gangnam Station.’}
User: Tell me about the Hyundai Motor company’s
electric vehicle lineup
Assistant: {’function’:’AI’, ’question’:’Tell me more

about Hyundai Motor Company’s electric car lineup’,
’answer’:None}
User: Tell me more
Assistant: {’function’:’AI’, ’question’:’Tell me more
about Hyundai Motor Company’s electric car lineup’,
’answer’:None}

C.4 Task Instructions
The instructions provide a structured approach for
processing driver utterances within IVSR systems.
The prompt details how to handle different types of
inputs, ensuring the system generates contextually
appropriate responses in JSON format.

The assistant should return the result of process-
ing the driver’s utterance as a JSON-formatted
string. The response JSON entity contains three
keys: response = {’function’, ’question’,
’answer’}.
Process the driver’s utterance according to the follow-
ing rules:

1. If the driver’s utterance has the same mean-
ing as a representative command and corre-
sponds to the same function, respond with a
message confirming that the function is being
executed. Insert this message as the value for
both ’function’ and ’answer’.

2. If there are multiple representative commands
that are semantically similar but not identical
to the recognized utterance, ask the driver for
clarification. In this case, set ’function’ to
’CHAT’ and insert the assistant’s follow-up
question as the value of ’answer’.

If the driver responds with ’yes’ or another
confirmation, update ’function’ to ’NLU’, set
’question’ to the representative command in-
ferred from the conversation, and provide a
message confirming that the function is being
executed in ’answer’, based on the context.

3. If the utterance refers to a function that is
not supported by the vehicle or voice recog-
nition system, set ’function’ to ’CHAT’ and
’answer’ to a message stating, "This is not
a supported function in this vehicle."

4. For utterances unrelated to the vehicle’s func-
tions, provide a friendly and helpful response.
Set ’function’ to ’CHAT’, and insert the as-
sistant’s response as the value of ’answer’.

5. For queries requiring external information,
such as searching for the latest information, ex-
ternal knowledge, or vehicle manual data, set
’function’ to ’AI’ and ’answer’ to None.

6. If ’question’ requires rephrasing to match
a representative command (as in Rule 1), re-
place only the predicate part of the driver’s
original utterance with the representative com-
mand, while preserving any proper nouns. In
all other cases, use the driver’s original input
in the ’question’ field.

7. If the driver’s current utterance omits details
that are clear from the context, restore the omit-
ted content in both ’question’ and ’answer’.

D Example Use Cases

The case study below demonstrates the practical
application of our system. It highlights how LLM
ContextBridge has been effectively integrated into
a real-world IVSR system, seamlessly integrating
the existing NLU system with the generative capa-
bilities of LLMs.

User: It’s getting a bit chilly.
Assistant: {’function’:’CHAT’, ’answer’:’It sure has
gotten cold. Wear something warm! Would you like
to increase temperature setting?’}
User: Yes.
Assistant: {’function’:’NLU’, ’answer’:’Okay, in-
creasing the temperature setting.’}
User: Good. Are there any good burger places
nearby?
Assistant: {’function’:’CHAT’, ’answer’:’The Mc-
Donald’s Songpa Jamsil DT branch is nearby.’}
User: Sure, please tell me the route.
Assistant: {’function’:’NLU’, ’answer’:’Navigating
to the McDonald’s Songpa Jamsil DT branch.’}

User: I smell something strange.
Assistant: {’function’:’CHAT’, ’answer’:’If there is
a strange smell inside the vehicle, please check the
ventilation system. Would you like me to turn on the
air cleaner mode?’}
User: I do not know where the smell is from.
Assistant: {’function’:’CHAT’, ’answer’:’It’s diffi-
cult to determine the exact cause of the smell inside
the vehicle. However, turning on the air cleaner mode
or opening the windows for ventilation might help.
Would you like me to turn on the air cleaner mode?’}
User: Yes.
Assistant: {’function’:’NLU’, ’answer’:’Turning on
the air cleaner mode.’}
User: Adjust the airflow direction as well.
Assistant: {’function’:’CHAT’, ’answer’:’How
would you like to adjust the airflow? You can choose
from upper airflow, lower airflow, or a combination
of both.’}
User: Towards my face.
Assistant: {’function’:’NLU’, ’answer’:’Adjusting
the airflow upwards, toward your face.’}

E Detailed Performance Analysis Across
Domains

In this section, we provide a comprehensive analy-
sis of the performance metrics for three distinct ap-
proaches to handling domain-specific tasks within
our IVSR system. The following tables delineate

the precision, recall, and F1 scores for each method
across multiple domains, illustrating how each ap-
proach fares in terms of accuracy and reliability.

Domain Prec. Rec. F1
Infotainment System Control 0.978 0.964 0.971
Vehicle Control 0.994 0.988 0.991
Agent 0.885 0.999 0.939
Navigation and Map Search 0.962 0.935 0.948
Change System Settings 0.954 0.965 0.960
Check Cluster Information 0.994 1.000 0.997
Change Bluetooth Connection 0.945 0.731 0.824
Check Built-in Cam System 1.000 0.909 0.952
Web Portal Search 0.986 0.980 0.983
Vehicle QA 1.000 0.954 0.976
IOT Control 1.000 1.000 1.000
Check the Weather 0.964 1.000 0.982

Table 7: Performance metrics for the Baseline method.

Domain Prec. Rec. F1
Infotainment System Control 0.960 0.978 0.969
Vehicle Control 0.996 0.994 0.995
Agent 0.932 1.000 0.965
Navigation and Map Search 0.974 0.963 0.968
Change System Settings 0.926 0.934 0.930
Check Cluster Information 0.991 0.991 0.991
Change Bluetooth Connection 0.960 0.726 0.827
Check Built-in Cam System 1.000 0.772 0.881
Web Portal Search 1.000 0.993 0.997
Vehicle QA 0.945 0.963 0.954
IOT Control 0.989 1.000 0.994
Check the Weather 0.982 1.000 0.991

Table 8: Performance metrics for the Proposed (GPT-
4o) method.

Domain Prec. Rec. F1
Infotainment System Control 0.949 0.842 0.892
Vehicle Control 0.989 0.954 0.972
Agent 0.554 0.934 0.695
Navigation and Map Search 0.894 0.674 0.769
Change System Settings 0.945 0.386 0.548
Check Cluster Information 0.978 0.922 0.949
Change Bluetooth Connection 0.869 0.991 0.926
Check Built-in Cam System 0.938 0.761 0.840
Web Portal Search 0.773 0.115 0.200
Vehicle QA 0.695 0.972 0.811
IOT Control 0.955 0.944 0.949
Check the Weather 0.929 0.481 0.634

Table 9: Performance metrics for the LLM-only (GPT-
4o) method.

F Demo Web

Figure 6: Interactive Web Demo of Multi-turn Dialogue for IVSR Systems

	Introduction
	Related Works
	Existing Systems
	LLM-based Approaches
	Hybrid Systems

	Proposed Method
	Overview of LLM ContextBridge
	Conventional NLU Components
	The Role of LLM ContextBridge
	Multi-turn Dialogue Handling
	Integration of LLM ContextBridge with NLU
	Advantages of LLM ContextBridge

	Experiments
	Data & Models Specifications
	Evaluation Methods and Criteria
	Performance Evaluation Results and Analysis
	Processing speed and Efficiency

	Conclusion
	Limitations
	Baseline System Architecture
	NLU (Natural Language Understanding)
	DM (Dialogue Management)
	NLG (Natural Language Generation)
	Exclusion of ASR and TTS

	Detailed Experimental Setup
	Hardware and Software Environment
	LLM Usage Parameters

	LLM ContextBridge Prompt
	Situation Description
	Specification: Representative Commands
	Few-shot Examples
	Task Instructions

	Example Use Cases
	Detailed Performance Analysis Across Domains
	Demo Web

