@inproceedings{hu-cong-2025-modeling,
title = "Modeling {C}hinese {L}2 Writing Development: The {LLM}-Surprisal Perspective",
author = "Hu, Jingying and
Cong, Yan",
editor = "Kuribayashi, Tatsuki and
Rambelli, Giulia and
Takmaz, Ece and
Wicke, Philipp and
Li, Jixing and
Oh, Byung-Doh",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = may,
year = "2025",
address = "Albuquerque, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2025.cmcl-1.22/",
pages = "172--183",
ISBN = "979-8-89176-227-5",
abstract = "LLM-surprisal is a computational measure of how unexpected a word or character is given the preceding context, as estimated by large language models (LLMs). This study investigated the effectiveness of LLM-surprisal in modeling second language (L2) writing development, focusing on Chinese L2 writing as a case to test its cross-linguistical generalizability. We selected three types of LLMs with different pretraining settings: a multilingual model trained on various languages, a Chinese-general model trained on both Simplified and Traditional Chinese, and a Traditional-Chinese-specific model. This comparison allowed us to explore how model architecture and training data affect LLM-surprisal estimates of learners' essays written in Traditional Chinese, which in turn influence the modeling of L2 proficiency and development. We also correlated LLM-surprisals with 16 classic linguistic complexity indices (e.g., character sophistication, lexical diversity, syntactic complexity, and discourse coherence) to evaluate its interpretability and validity as a measure of L2 writing assessment. Our findings demonstrate the potential of LLM-surprisal as a robust, interpretable, cross-linguistically applicable metric for automatic writing assessment and contribute to bridging computational and linguistic approaches in understanding and modeling L2 writing development. All analysis scripts are available at https://github.com/JingyingHu/ChineseL2Writing-Surprisals."
}
Markdown (Informal)
[Modeling Chinese L2 Writing Development: The LLM-Surprisal Perspective](https://preview.aclanthology.org/fix-sig-urls/2025.cmcl-1.22/) (Hu & Cong, CMCL 2025)
ACL