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Abstract

In cases of pervasive uncertainty, cognitive sys-
tems benefit from heuristics or committing to
more general hypotheses. Here we present a
hierarchical cognitive model of lexical process-
ing that synthesizes advances in early rational
cognitive models with modern-day neural ar-
chitectures. Probabilities of higher-order cate-
gories derived from vector representations ex-
tracted from the middle layers of an encoder
language model have predictive power in ac-
counting for several reading measures for both
predicted and unpredicted words and influence
even early first fixation duration behavior. The
results suggest that lexical processing can take
place within a latent, but nevertheless discrete,
space in cases of uncertainty.

1 Introduction

Skilled readers are able to quickly and accurately
leverage real-world and linguistic knowledge to
understand texts. Lexical and syntactic factors
strongly influence the speed and accuracy of sen-
tence processing (Levy, 2008; Brennan and Hale,
2019). In addition to factors such as lexical fre-
quency, word length, and syntactic processes, there
is also lexico-semantic structure in language as it
unfolds in time. Such higher-order abstractions are
posited to be advantageous for any cognitive sys-
tem to track (Kwisthout et al., 2017), such as antici-
pating or quickly integrating the semantic category
that a word belongs to into one’s understanding of
a sentence (Federmeier and Kutas, 1999; Roland
et al., 2012).

Despite clear macro structure in the predictabil-
ity of individual words (e.g., the mention of couch
versus sofa), it has been less clear how semantic
structure influences reading times. The present pa-
per aims to account for such macro structure and
better understand how the semantic predictability
of words shapes reading behavior. We quantify this
structure using Bayesian Gaussian mixture models

trained over embeddings of cloze responses, which
we apply to a standardized dataset of reading times
with associated predictability norms. Then, we
obtain “semantic” estimates using cluster probabili-
ties derived from the above Bayesian Gaussian mix-
ture modeling process, which we incorporate into
models of “early” predictive processing measures
of reading times and a later, a more “semantic”
reading time measure.

2 A hierarchical model of reading times
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Figure 1: Our hierarchical model relating linguistic vari-
ables to reading time. C is the context (potentially in-
cluding extralinguistic components), k a semantic clus-
ter, w the observed word and wf and wℓ its frequency
and length respectively, RT is a measure of reading time
such as fixation go-pass duration (FGPD) ; arrows de-
note random variable dependencies ; shaded variables
are observable, unshaded ones are latent/unobserved.

Reading times partially reflect the contextual
or conditional probability of a linguistic event
(such as a word or syntactic structure), in that low-
probability events are correlated with longer read-
ing times (e.g., de Varda et al., 2024; Shain et al.,
2024). Since the advent of neural language models,
researchers have taken a strongly lexical approach
to these analyses, though there is a growing appre-
ciation that estimates of a word or syntactic struc-
ture’s probability in context do not tell the full story
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about what makes written language easier or harder
to read (Gruteke Klein et al., 2024). Reliance
on lexical estimates of predictability may over-
estimate the uncertainty of the linguistic future
(Kwisthout et al., 2017) and thus under-estimate
the importance of higher-order prediction and over-
estimate processing difficulty (Ozaki et al., 2024).
For example, a comprehender may make more gen-
eral linguistic predictions (e.g., the CAT concept) or
more specific ones (e.g., “oriental longhair”; Degen
et al., 2020; Roland et al., 2012; Federmeier and
Kutas, 1999). We present a clustering method that
estimates these higher-order, lexico-semantic hy-
pothesis spaces K, which we demonstrate provides
additional predictive power in explaining reading
times beyond word-level information alone. Quan-
tifying higher-order structure ties the modern lexi-
cal approach to hierarchical Bayesian processing
models and early surprisal approaches (e.g., Levy,
2008). We outline such a model in Figure 1.

3 Applying cloze data to the study of
rational language comprehension

Accounting for hierarchical processing in reading
requires suitable resources for estimating these
hierarchical categories. While the contemporary
approach to estimating lexical predictability over-
whelmingly relies on language model surprisal, hu-
man beings and language models do not align make
the same prediction (Smith and Levy, 2011). We
aggregate cloze production data (Taylor, 1953) into
quasi-semantic clusters using Bayesian Gaussian
mixture modeling. We focus on the Provo Corpus,
in which participants read an incomplete text and
guessed the identity of the next word for each word
in a sentence (“serial cloze”; Luke and Christian-
son, 2016, 2018; Lowder et al., 2018), which is one
of the only parallel datasets with reading time and
cloze production statistics.

In the Provo corpus, college-age American En-
glish speaking participants incrementally guessed
the identity of each non-initial word wi for every
preamble p = w1 . . . wi−1 in order. The resulting
cloze corpus consists of 41 236 unique continua-
tions across 2398 unique preambles, from a collec-
tion of 55 short, multi-sentence web texts. Cloze
probabilities are defined as follows:

P (word | p) = count(word ∩ p)

count(p)

The Provo corpus also includes reading time data
for each of these texts from 84 participants from

the same population. We focus on two reading time
measures for their relative cognitive transparency
and to minimize the number of statistical compar-
isons (Von der Malsburg and Angele, 2017): first
fixation duration (FFD) and first go-past duration
(FGPD). FFD is often conceptualized as reflecting
early-stage visual processes while FGPD is thought
to reflect additional time for semantic integration.
Both FFD and FGPD measures are sensitive to
quantitative indicators of lexical and syntactic pre-
dictability (Staub, 2015).

4 Clustering model

We model semantic predictability using a Dirich-
let process mixture (Antoniak, 1974) of Gaussians
trained with variational inference (Blei and Jordan,
2006) on the set E ⊂ Rd of token embeddings
of participants’ best guesses in a serial cloze task.
More precisely: we model E as a sample drawn
from a weighted sum of d-dimensional multivariate
Gaussian variables ki (components)

∑
i πiki. This

can be reformulated as a two-step process of first
sampling one component k from a set K, then sam-
pling an embedding from k. If we identify each
component with the set of the embeddings it gener-
ated, K can then be seen as a clustering of E, which
can be approximated by estimating a probability
distribution over components P (e ∈ k) for each
embedding e ∈ E and assigning e to its maximum-
likelihood component argmaxk∈K P (e ∈ k).

The number of unique word forms in a clus-
ter (of approximately 36 000 completions) ranged
from 1 to 1534, showing substantial skew with a
mean/median/mode of 128/5/2 words per cluster.
Clustering results in a drop in uncertainty during
naturalistic reading that reduces the complexity of
the prediction process by lowering the size of the
hypothesis space from that of the whole vocabulary
|V | to an average of |K|+E[|k|], making it a more
tractable (and therefore more plausible) problem
for readers to solve. We demonstrate an example
case in Figure 2. More details of our implementa-
tion can be found at the clamp repository github
page.1

Part-of-speech labels are strong predictors of
clusters, with further subcategorizations being ev-
ident by assessing the component words for each
cluster. The resulting clusters partially encode part-
of-speech, with cluster agreement index (Rabbany
and Zaïane, 2017) of 0.42 between part-of-speech

1https://github.com/calicolab/clamp
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Figure 2: Word and POS repartition by cluster for responses to the preamble “Interestingly, the heaviest isotopes
physicists have. . . ”. Plot made using ggalluvial (Brunson, 2020).

labels and our clustering. We present a visualiza-
tion of cluster structure by word and by POS for a
single preamble in Figure 2.

In contrast to lexical approaches and in keep-
ing with the hierarchical nature of prediction
(Kwisthout et al., 2017), out-of-sample words (i.e.,
words with a cloze probability of 0 that are the em-
pirical next word in a sentence) may also attain a
non-zero probability, which we explore in the next
section.2

5 Predicting reading times

Hierarchical prediction mechanisms empower read-
ers to make less precise predictions in cases of un-
certainty, and result in greater ease of processing
even at early stages (Kwisthout et al., 2017). We
clustered human responses in the cloze (next-word
prediction) portion of the Provo corpus by extract-
ing their contextual representations from the hidden
layers of RoBERTa (Liu et al., 2019). As described
above, we apply Bayesian Gaussian mixture mod-
els and interpret the resulting clusters as approxi-
mations of higher-order lexico-semantic categories.

2In principle, it is possible to leverage the uncertainty
in a mixture model’s assignment of a data point to clusters.
In practice, most embeddings are assigned to a cluster with
probability 1 due to properties of the embedding space that
make lexical representations highly distinct from each other.

In that setting, the probability of a cluster C for a
given preamble p is the sum of the cloze probabili-
ties (eq. 3) of its elements:

P (C | p) =
∑

word∈C
P (word | p, C)

We constructed linear mixed effects models of FFD
and FGPD measures for words in the Provo corpus
that were either responses produced in the cloze
task (P (word > 0; guessed; Table 1) or were not
observed (unguessed; Table 2). Such cases are
precisely where we would expect uncertainty to
promote maintaining a general hypothesis rather
than a very specific one about upcoming words
(Bannon et al., 2024; Kwisthout et al., 2017; Giu-
lianelli et al., 2024).

Following Luke and Christianson (2016), we
include several basic predictors to model reading
times for each word — log word frequency, word
number, sentence number, word length, LSA Con-
text Score, and cloze probability (where applicable)
to the base model with maximal random intercepts
and slopes. LSA Context Score was defined as the
fit between the empirical next word and the sur-
rounding context using a cosine similarity distance
metric, which was reported to significantly influ-
ence processing in Luke and Christianson (2016).
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Coefficient β E t p β E t p

Intercept −0.02 0.04 −0.64 n.s. 0.01 0.03 0.26 n.s.
Cluster Probability −0.03 0.01 −3.35 *** −0.02 0.01 −2.36 *

Word frequency −0.05 0.03 −1.73 . — — — —
Sentence Number −0.01 0.01 −1.23 n.s. 0.02 0.01 1.85 .
Word in Sentence −0.02 0.01 −1.78 . 0.01 0.01 1.04 n.s.

Word Length 0.18 0.03 7.20 *** 0.04 0.02 2.60 **
LSA Context Score −0.01 0.01 −1.07 n.s. −0.02 0.01 −1.84 .

Table 1: Linear mixed effects model for FGPD for words with non-zero cloze probability. Singularity issues
affecting model convergence led to the removal of the word frequency term from the FFD model. . represents
p < 0.1; ** p < 0.01; *** p < 0.001.

Figure 3: First fixation duration (FFD) and go-pass duration (FGPD) as a function of cluster probability for words
that were guessed in the cloze norms. Cluster probability has a facilitative effect on both word types for both
eyetracking measures.

Our analyses focus on FGPD and FFD specifically.

We tested for the importance of the Cluster Prob-
ability measure P (C | p) through model compari-
son against a base model that did not include Clus-
ter Probability as a predictor. Including Cluster
Probability in the model resulted in significant im-
provements in ∆LL via a likelihood ratio test for
all measures and datasets. All models showed the
same pattern, such that next words belonging to
higher-probability clusters were read more quickly,
for both early visual stages (FFD) and higher or-
der semantic stages (FGPD) and for guessed and
unguessed words. For words that were guessed,
cloze probability did not significantly predict either
gaze measure and was thus excluded from the final
model.

Furthermore, for such zero-cloze probability
words, the effect of Cluster Probability on FPGD
was larger (Satterwhaite t(640) = −4.37) than

the effect of lexical frequency (t(440) = 3.85) for
words that had zero-probability cloze but non-zero
probability of that cluster. We visualize this re-
lationship for FGPD in Figure 3 and present the
results for zero-cloze FFDs in Table 2.

6 Related work

We are not the first to cluster language model rep-
resentations. Others modeled semantic processing
in analyses of reading times, typically comparing
static word vectors for next words against prior con-
text with cosine similarity (e.g., Luke and Chris-
tianson, 2016; Staub et al., 2015) or, more recently,
used such similarities as a smoothing factor for sur-
prisal distributions —slightly improving surprisal
theory fits to reading time measures (Meister et al.,
2024). Gaussian processes are particularly com-
mon in cognitive modeling of linguistic category
learning (Kleinschmidt and Jaeger, 2015; Toscano
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Coefficient β E t p β E t p

Intercept −0.03 0.04 −0.72 n.s. −0.01 0.03 −0.27 n.s.
Cluster Probability −0.04 −0.01 −4.37 *** −0.03 0.01 −3.29 **

Word frequency −0.08 −0.02 −3.85 *** −0.06 0.02 −3.45 ***
Sentence Number −0.05 0.01 −4.09 *** — — — —
Word in Sentence −0.01 0.01 −0.93 n.s. — — — —

Word Length 0.19 0.02 9.67 < .001 0.02 0.02 1.12 n.s.
LSA Context Score −0.02 0.01 −1.72 . −0.01 0.01 −1.38 n.s.

Table 2: Linear mixed effects model for FGPD for words with 0 cloze probability but non-zero cluster probability.
Backwards elimination from the FFD model recommended removal of other control variables. . represents p < 0.1;
** p < 0.01; *** p < 0.001.

and McMurray, 2010). Modeling semantics using
Dirichlet distributions (as in topic modeling Blei
and Jordan, 2006) has also proven successful in
modeling human semantic memory (Steyvers et al.,
2006).

Other work in computational psycholinguistics
has tested whether language processing involves a
semantic comparison between alternatives in con-
textual language space (Giulianelli et al., 2023).
We believe the current proposal that readers rep-
resent semantics as scalar, but nevertheless quasi-
discrete, categories is a novel synthesis of these
areas. The present results support the proposal
that efficient, rational language processing can be
achieved by combining levels of granularity of lin-
guistic predictions.

7 Conclusion

Here we presented a hierarchical cognitive model
of lexical processing that synthesizes early rational
cognitive models with modern-day neural architec-
tures. We argue that language model representa-
tions can be combined with human cloze data to in-
fer higher-order structure. Cluster probabilities had
predictive power in accounting for several reading
measures for both predicted and unpredicted words
and influence even early first fixation duration be-
havior. The results suggest that lexical processing
can take place at a featural level in cases of uncer-
tainty (Federmeier and Kutas, 1999; Roland et al.,
2012; Kwisthout et al., 2017).

8 Limitations

This work is meant as a proof of concept for a hi-
erarchical model of lexical processing and the use
of transformer language models as predictors of
reading times, not only through next-word proba-

bilities, but also through their internal contextual
representations of words. This study is by no mean
exhaustive, and further replications and refinements
using other datasets should be undertaken in the
future using a wider variety of datasets.

Our work did not explore the potential semantic
capacity of next word prediction-based language
models. We did not consider larger models, nor
simpler ones. We did not vary the number of clus-
ters or manipulate the hyperparameters we used for
the mixture model; future work should determine
the optimal number of clusters.

The cloze norms and the eye tracking data here
are relatively limited compared to real-world read-
ing. The data are limited to American English
which makes asking questions about other phe-
nomena (e.g., morphosyntactic processing) more
challenging. The data were gathered from highly
literate populations at a prestigious university in
the United States and are not representative of all
people. Many individuals vary substantially in their
language experience and this variability, which
shapes processing fluency (e.g., Breen et al., 2024).

Some believe that lexicalized language model
probabilities are the best probabilistic predictor of
reading time and neural data (Shain et al., 2024),
though this claim may not hold for all types of
stimuli (de Varda et al., 2024; Szewczyk and Fed-
ermeier, 2022). Perhaps more pertinently, the use
of surprisal as a measure of linguistic predictabil-
ity is not central to our question; we demonstrated
that cloze responses are highly structured and that
modeling this structure accounts even for early lan-
guage processing dynamics. Future work should
examine how to automate the discovery of semantic
probabilities using language models directly.

The appropriateness of modeling LLM embed-
dings as samples drawn from a mixture of mul-
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tivariate Gaussians has not – to our knowledge –
been extensively studied. The semantic structure
of cloze responses can be approached from several
angles, ranging from ontologies such as WordNet
(Miller, 1995), to feature sets (Turton et al., 2020),
to representing words by their distributional se-
mantics, the approach we take here. However, the
clustering results presented here are suggestive of
meaningful distributional sub-structure, and could
in principle be replicated by many other cluster-
ing algorithms, such as k-means or agglomerative
clustering.
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