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Abstract
Natural Language Processing (NLP) in mental
health has largely focused on social media data
or classification problems, often shifting focus
from high caseloads or domain-specific needs
of real-world practitioners. This study utilizes a
dataset of 644 participants, including those with
Bipolar Disorder, Schizophrenia, and Healthy
Controls, who completed tasks from a standard-
ized mental health instrument. Clinical annota-
tors were used to label this dataset on five clin-
ical variables. Expert annotations across five
clinical variables demonstrated that contempo-
rary language models, particularly smaller, fine-
tuned models, can enhance data collection and
annotation with greater accuracy and trust than
larger commercial models. We show that these
models can effectively capture nuanced clinical
variables, offering a powerful tool for advanc-
ing mental health research. We also show that
for clinically advanced tasks such as domain-
specific annotation LLMs provide wrong labels
as compared to a fine-tuned smaller model.

1 Introduction

The inherent complexity of mental health data
presents significant challenges, even as the avail-
ability of AI systems designed to aid in its under-
standing and categorization continues to grow (Lee
et al., 2021). AI-based systems have increasingly
leveraged social media as a data source in the realm
of mental healthcare, leading to the development
of pre-trained models like MentalBERT (Ji et al.,
2022) and initiatives to classify and detect various
mental health phenomena, such as schizophrenia
(Liu et al., 2022), disease progression (Birnbaum
et al., 2019), depression (Kang et al., 2016), and
stress (Winata et al., 2018).

In addition to the ethical issues surrounding the
use of social media for clinical diagnoses, numer-
ous other challenges persist. These include par-
ticipant bias (Palacios-Ariza et al., 2023), issues
with generalizability (Mitchell et al., 2015), and

Figure 1: Our method creates a fine-tuned model. This
model is able to directly interact with recruited partici-
pants to help them undertake established mental health
instruments through turn-based tasks. It can annotate
for clinical variables with low error. We see that com-
mercial LLMs like GPT-4 / GPT-4o cannot annotate
when it comes to clinical variables which are niche to a
domain.

an overreliance on self-disclosure or non-clinical
labels (Mitchell et al., 2015; Coppersmith et al.,
2014).

Psychiatric disorders such as schizophrenia and
bipolar disorder are often characterized by lan-
guage deficiencies (Merrill et al., 2017). Individ-
uals with these conditions may exhibit disorga-
nized language comprehension and speech patterns
(Kuperberg, 2010). Consequently, text or speech-
based mental health instruments can be employed
to assess individuals with medically validated diag-
noses, thereby elucidating the effects of psychiatric
disorders.
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Previous efforts to apply AI in the context of
schizophrenia and bipolar disorder have predom-
inantly focused on automated diagnoses using
smaller datasets (Sadeghi et al., 2021). These classi-
fication endeavors have encountered multiple chal-
lenges. For instance, social media data often results
in non-clinical labels (Ernala et al., 2019), while
the classification of clinical data is complicated
by small datasets (Sadeghi et al., 2021), underuti-
lization of records (Montazeri et al., 2022), and
attempts to apply AI to multiple psychiatric disor-
ders simultaneously (Chandran et al., 2019).

Moreover, the scarcity of robust data sources for
mental health care and AI remains a significant
barrier, as noted by Harrigian et al. (2021). The
reliability of social media labels is further under-
mined over time due to evolving subjective anno-
tation metrics (Harrigian and Dredze, 2022). To
enhance the application of AI and language models
in schizophrenia and bipolar disorder research, we
propose a novel approach. This approach involves
testing the efficacy of AI models in the context of
data collection and annotation.

Our study starts with a dataset comprising 644
participants with established medical histories of
schizo-affective disorder or schizophrenia (SZ),
bipolar disorder (BD), or who are healthy controls
(HC). These participants undergo a mental health
instrument involving interviews conducted by ex-
pert clinicians (Patterson et al., 2001). We engaged
two expert clinicians to annotate transcribed speech
samples across five clinical variables. Importantly,
we do not conduct automated diagnoses nor suggest
that language models should be used for diagnostic
purposes. Instead, we demonstrate how modern
language models can assist in data collection and
annotation.

The contributions of this paper are as follows:

• Extending a real-world dataset with expert
clinical annotation, focusing on the language
and speech deficiencies of individuals with
bipolar disorder and schizophrenia.

• Creating a model that assists clinicians in
maintaining dialogue with recruited partici-
pants for data collection purposes.

• Creating another model replicating clinical
annotation of domain-specific variables with
low error.

• Demonstrating that our models achieve low
error rates and higher accuracy compared to
commercial language models like GPT-4.

2 Data Collection and Labeling

We start by using the dataset introduced by Aich
et al. (2022) in 2022. The data consists of tran-
scribed texts from interviews with 644 participants.
In the initial dataset, the authors recruited par-
ticipants from three categories: participants with
schizophrenia, participants with bipolar disorder,
and healthy control groups. The diagnoses for sub-
jects are all based on the DSM-V. The participants
were in two simulated clinical tasks with expert
clinicians to build the dataset. For task descrip-
tions, please refer to appendix A.

We present a clinical annotation task to expand
the dataset.

2.1 Clinical Annotation of Data

We collect clinical scores for our SSPA data. The
SSPA instrument variables (Mausbach et al., 2008)
are defined below. Annotators adhering to these
definitions were found to have near-perfect agree-
ment {κ ≥ 0.85} when labeling the presence of
these variables (Patterson et al., 2001):

• Interest/Disinterest: Subjects with a relevant
mental health condition show low engagement
in SSPA tasks since brain functions are im-
paired.

• Fluency: Subjects with higher fluency use
fewer filler words such as umm, you know, or
sooo, and/or fewer long pauses during SSPA
tasks.

• Clarity: Subjects with greater communi-
cation clarity exhibit stronger coherence in
speech, both in how things were said and what
was said. In lay terms, this variable describes
how well subjects can get their point across.

• Focus: Subjects with greater focus can more
solely concentrate on the task given to them
without veering from their course. This vari-
able also describes the subject’s ability to fo-
cus on the interviewer and the current and
overall task objectives.

• Social Appropriateness: Subjects with
greater social appropriateness scores fare bet-
ter socially with respect to the scene. They
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react more appropriately to interview cues and
are able to maintain increased composure dur-
ing tasks.

These five SSPA scores are based on partici-
pants’ interactions with the clinicians. Each of
these scores is annotated for a subject in each
scene. The scores are then averaged across the
scene for the subject. A subject’s total SSPA score
is the average of their two scene scores. Scor-
ing is performed manually by experts, achieving
a high inter-class coefficient. As shown in prior
work (Patterson et al., 2001), subjects’ SSPA scores
are significantly correlated with the presence or
absence of schizophrenia/schizoaffective disorder
(p < 0.01).1

For annotation and collection, there were two
expert annotators. These were practicing clini-
cians and researchers in psychiatry. Each anno-
tator reviews the entire transcript and labels all five
scores. Gold standard labels are adjudicated by
discussion among clinical experts. The SSPA is a
well-established standardized test with the scoring
metrics clearly defined. Cohen’s Kappa κ for all
clinical scores was κ ≥ 0.85. For our work, we
consider the final adjudicated gold standard labels.

3 Methods - Interview Sequence
Generation

3.1 Context-Aware Interviewer

Our first specialized objective was to design a
proof-of-concept context-aware interviewer to facil-
itate SSPA sessions. Currently the SSPA is admin-
istered by human clinicians with heavy case-loads.
The US mental healthcare system is already heavily
over burdened with a very low number of clinicians
to a high number of patients (Coombs et al., 2021),
potentially leading to mistakes and reduced effi-
ciency. Having a trustworthy and viable agent can
help alleviate some of this. To administer the SSPA
in a language modeling setting understanding of
context is important. Each response from an inter-
viewer depends not only on the previous turn, but
the entire dialogue history to that point, i.e. the
entire context window of that string. As described
previously, our SSPA data is represented as two sets
of dialogues (lists of n utterances), one of which
belongs to the patient P and the other of which
belongs to the interviewer I: P = {P0, P1, ..., Pn}

1Results are from a t-test taken comparing SSPA scores
for schizophrenia and control group patients.

and I = {I0, I1, ..., In}. Both are stored with as-
sociated timestamps indicating when utterances
begin.

In a real world setting, it is expected that an in-
terviewer has facilitated many interviews before,
across people with bipolar disorder and schizophre-
nia as well as people with neither condition. It is
also expected that in each complete dialogue turn
{Pi, Ii}, the Interviewer response Ii is not only a
response to the dialogue Pi but to the set of dia-
logues {P0, I0, P1, I1, ..., Ii−1, Pi}. The intuition
is thus that the interviewer is responding not only
to what was just uttered by the patient, but in a way
that is suitable with the entire conversation so far,
including all patient and interviewer utterances up
to the most recent patient utterance.

3.2 Task Setup for Interview Experiment
In this section we describe our setup for the super-
vised fine-tuning (SFT) experiment. We model this
task as a sequence to sequence problem. Our model
is trained to generate an appropriate sequence of
dialogue in response to dialogue sequences it has
seen in such a way that it is aligned with that gener-
ated by a real-world interviewer. We train on 75%
of all BD, HC, and SZ dialogues across both scenes.
The input and outputs for the encoder-decoder for-
ward pass are:

I → Out =

{
P0 → I0, if n = 0

P0, I0, ..., Ii−1, Pi → Ii, n = i

The equation above again emphasizes that to cre-
ate input-output pairs we consider the dialogue his-
tory in addition to the most recent utterance. If we
are at index 0 of a conversation, the interviewer’s
response is based directly on the the patient’s ut-
terance, but otherwise the interviewer response is
based on the entire dialogue history between the
patient and interviewer, until the i-1th interviewer
utterance and the patient utterance Pi.

A schematic diagram for the SSPA language
modeling process is shown in Figure 2. The model
is fine-tuned until the loss drops from 1.64 initially
to 0.1 after 15000 checkpoints and then results are
calculated. To initialize training we provide the
following source prefix:

You are an intelligent
interviewer see the examples
provided and learn to interview
a new patient
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Figure 2: Interview model turns and dialogue history to calculate reconstruction loss and generate well aligned
sequences towards the SSPA

We selected this prefix after experimenting with
simpler versions (e.g., "Interview a patient" and
"Talk to a patient based on examples") and finding
that the more complex final prefix was necessary
to produce results well-aligned with reference in-
terviews. This process does not involve in-context
learning (ICL), prompt engineering, or tuning; it
is a manually constructed prefix. Current literature
suggests that better prefix descriptors, followed by
improved training, yield superior results (Xue et al.,
2022). Standard hyper-parameters were maintained
at default values, and training was conducted on
T4 GPUs.

The fine-tuned model was tested individually on
all scenes and classes to simulate real-world in-
terview conditions, where the interviewer focuses
on a single scene and person, independent of prior
interview training. To evaluate the quality of gener-
ated output, we computed syntactic similarity using
ROUGE (Lin, 2004) scores, semantic similarity us-
ing cosine similarity, and alignment with human
dialogue using BERTScore (Zhang et al., 2020).

3.3 Results: Generated Interview Quality

In Table 1 we present the results of the interview
SFT experiment. To compute semantic similarity
scores, we first encoded both the generated utter-
ance and the corresponding gold expected utterance
as word embeddings from the DeBERTA model ow-
ing to the model’s increased ability to align with
human speech (Zhang et al., 2020; He et al., 2021),
and then calculated the cosine similarity between
those embeddings. To compute syntactic similarity,

we use ROUGE-1 to find overall unigram overlap
and ROUGE-L to find the longest common sub-
sequence overlap. We report precision, recall, and
F1 scores for these two metrics using the ROUGE-
SCORE package from the Python library.2 We use
the BERTScore (Zhang et al., 2020) metric directly,
using a deberta model to vectorize the inputs to the
metric generator (Zhang et al., 2020),3 and report
the precision, recall, and F1-score. According to
the authors of the original paper, this model (de-
berta) offers the best understanding of the closeness
of generated text to human intent. For all seman-
tic metrics we use deberta as our choice of model
since it has been consistently shown to outperform
other encoder based popular choices like BERT or
RoBERTa (He et al., 2021).

BERTScores, designed to capture intent and se-
mantic similarity, are almost double the correspond-
ing ROUGE scores for the same scenes. Recent
studies have shown (Zhang et al., 2020; Hanna and
Bojar, 2021) that BERTScore has two important
properties. Firstly, it correlates with other summa-
rization and similarity metrics (e.g., cosine sim-
ilarity or BLEU score). Secondly, when a task
becomes harder such as in our case, BERTScore ac-
curacy peaks around 80% (Hanna and Bojar, 2021).
Considering that our BERTScores for our task are
close to 70% we can conclude that our model works
at a high performance level. A better cosine simi-

2https://pypi.org/project/rouge-score/
3BERTScore needs users to specify which model to use to

calculate metrics between two given strings. We use deberta
for the same reasons cited earlier; i.e., studies have found it to
generate text that more closely matches human speech.
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Class × Scene Semantic Syntactic Similarity Human Alignment

Cosine ROUGE-1 ROUGE-L BERTScore

P R F1 P R F1 P R F1

BD Scene_1 0.652 0.381 0.380 0.360 0.363 0.370 0.340 0.66 0.66 0.66

BD Scene_2 0.623 0.361 0.346 0.334 0.344 0.336 0.317 0.61 0.61 0.61

SZ Scene_1 0.634 0.331 0.316 0.301 0.328 0.314 0.300 0.63 0.64 0.63

SZ Scene_2 0.613 0.371 0.362 0.346 0.360 0.352 0.340 0.62 0.63 0.61

HC Scene_1 0.670 0.390 0.390 0.360 0.380 0.390 0.360 0.67 0.68 0.67

HC Scene_2 0.643 0.402 0.392 0.380 0.390 0.380 0.370 0.64 0.64 0.63

Table 1: Interview SFT Results. P=precision, and R=recall.

larity represents closeness in the embedding space
of the vectors, whereas a good BERTScore tells
us that the outputs are aligned with the reference
sample.

However, even with a well-performing model,
our ROUGE score is quite low. Some of this may
be attributed to hallucinatory effects. For example,
we observe that in one case while the interviewer in
the original script says, e.g., "My name is INTER-
VIEWER," our model generates, e.g., "My name
is NAME"—that is, a hallucinated name that was
never previously mentioned in the dialogue. Thus,
although this is structurally aligned with the refer-
ence, it differs in a key way that is best captured by
ROUGE.

Another reason why our model exhibited lower
syntactic than semantic performance may lie in dis-
fluency. In our reference dialogues the interviewers
often pause using filler words like uh, uhh, okay,
or mmhmm to give the patients more time to speak.
While our model thematically aligns decently well
with these statements, its exact filler word matches
are quite low. For example, we observe that the
model also pauses but uses different filler words, or
longer sequences of filler words, negatively affect-
ing our ROUGE metric. However, throughout our
observations, we can see that the model seems to
understand the SSPA expectation of the interviewer
role, even though we do not specify this in our SFT
setup explicitly.

We qualitatively observe that the model appears
capable at staying on-topic for the scene-specific
task (e.g., generating content like "Of course I will
try to send someone over the fix the leak."). It is
interesting to observe that the model can discern
the underlying task over long periods of training.
Even without telling the model explicitly what the
SSPA task involves, we can see that the model

understands that a leaky pipe is at its core. This
may suggest that LLMs are well-suited for tasks
with better data and longer training (Min et al.,
2022; Brown et al., 2020). While our alignment-
based scores are not exceptionally high, this is still
a strong starting benchmark for a nuanced task
(Hanna and Bojar, 2021). The model captures close
to 70 points of alignment with the intent of the
actual interviewer. In the next phase we use this to
generate annotator scores using another model to
further progress the autonomous pipeline.

4 Methods - Annotation Generation

We also frame our SSPA score prediction task as
a sequence to sequence task. Rather than simply
predicting a sequence of scores, we also predict the
label for which the score is being generated. In Sec-
tion §2.1 we discussed what the five clinical vari-
ables are and how the scores are collected. In this
score prediction task, the model learns to predict
the score (SSPA clinical value) and the correspond-
ing label. Therefore, the model predicts a sequence
Interest = XX,F luency = Y Y rather than a
simple distribution 4, 5, 3... This increases com-
plexity, but helps us evaluate and walk towards a
more explainable model. For this setting we use
the interview dialogues from our source dataset and
a t5-base LLM. We use the following prompt to
generate scores:

You are an intelligent annotator
see the examples provided and
generate scores for each variable

The source prefix selection and other model pa-
rameters are kept the same as in the interview gener-
ation task described earlier in this paper. The model
trains for 10000 checkpoints and the validation
loss goes from 0.8 to 0.02 in our best performing
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model checkpoint. We calculate this reconstruction
loss between the variable labels and scores that are
annotated by our clinicians and the ones that are
generated by our model. A standard cross-entropy
loss function is used to find the loss. The model is
trained on 75% of the data and validated on 5% of
the data, with the remainder held out for testing.

4.1 Results: SSPA Score Prediction

The results of the SSPA score prediction model
are presented in Table 2. The values represent the
root mean squared error (RMSE) between the orig-
inal annotated labels Y = {S1, S2, . . . , Sn} and
the predicted labels Y ′ = {S′

1, S
′
2, . . . , S

′
n}, where

Y ∈ {Interest,Fluency,Clarity,Focus,Social}.
The results indicate generally low error, with im-
proved predictive performance in Scene 2 com-
pared to Scene 1.

The model exhibits superior performance for the
variables Social and Focus, which is anticipated as
the SSPA predominantly evaluates social skills, and
Social encapsulates social appropriateness. The
variables Focus, Clarity, and Fluency are linguisti-
cally dependent, with the model performing best in
this order, and the least effective for Interest. The
higher RMSE for Interest can be attributed to its
reliance on non-verbal cues such as body language,
which are absent from our transcripts.

Overall, this standalone model demonstrates ef-
fective prediction capabilities. In the subsequent
section, we illustrate the adaptation of our previous
model from §3.1 into a chained pipeline, enabling
SSPA interview transcripts to be scored with mini-
mal RMSE differences compared to the standalone
model.

5 Chained Model

So far in this paper we have created two standalone
models: one in §3.1 that can learn from interview-
ers to appropriately interact with patients to facili-
tate the SSPA task, and the other in §4 that reads
patient-interviewer transcripts and generates a se-
quence of SSPA scores for a patient. In this section
we experiment with combining them. The primary
motivation for this lies in anticipated real-world
need, moving towards a seamless support tool for
busy clinicians who may otherwise need to admin-
ister and score the SSPA manually. We create a
chained model that (1) converses with the patient,
and (2) predicts SSPA scores from the encounter.

We predict scores for dialogues that our model

generated in §3.1. The input consists of the en-
tire dialogue between the patient P and generated
interviewer dialogues Igen, forming the sequence
{P0, I0, P1, I1, ...Pn, In}, where an interviewer di-
alogue Ik ∈ {Igen} acts as input and the model
returns a sequence of five integer-valued scores,
{S1, S2, .., S5}, that quantify the SSPA variables
defined in §2.1 (Interest, Fluency, Clarity, Focus,
and Social).

5.1 Results: Chained Model
We present the results of the experiment in Table
3. The scores reported are the RMSE between
the expected SSPA scores and the generated SSPA
scores predicted for LLM-facilitated SSPA tran-
scripts. Our first observation is the acute closeness
to the stand-alone model scores (recall Table 2).
This shows that even when LLM-based assistants
are adapted in a chained end-to-end fashion, the re-
sults are similar to those observed using standalone
models.

When we compare the difference between errors
for Tables 2 and 3 we can see that the differences
are quite low at both a variable level and a class X
scene level. We can see in Tables 5 and 4 that on a
per scene or per variable basis the differences are
quite low with no significant difference 4

6 Comparison with GPT Models

To compare the performance of our model against
a large model like GPT, below we provide a base-
line comparison between GPT-4, GPT-4o, and our
method in replicating annotation tasks as detailed
in §2.1. To get these labels we show GPT-4 the
same de-identified data along with definitions of
the clinical variables and ask it to label the data
along these five categories. The results, presented
in Table 6, illustrate the mean errors per class and
scene, with statistical significance validated using
the Wilcoxon signed-rank test. We find that GPT
models show a high degree of error in compari-
son to our method when annotating clinical scores.
This shows that a small fine-tuned model can out-
perform a large model like GPT with appropriate
fine tuning.

Our experiments reveal two significant trends in
our interview replication model: an intrinsic com-
prehension of tasks and the generation of unrelated

4A t-test between the RMSE scores per case (scene and
class) and per variable shows the differences between score
distributions for the standalone and chained models are not
statistically significant (p < 0.05).
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Class and Scene RMSE

Interest Fluency Clarity Focus Social Avg. RMSE/Case

BD Scene_1 1.36 1.10 1.04 0.97 1.06 1.10
BD Scene_2 1.09 1.11 1.14 1.15 1.12 1.12
SZ Scene_1 1.27 1.27 1.28 1.19 1.30 1.26
SZ Scene_2 1.22 1.10 1.13 1.10 1.07 1.12
HC Scene_1 1.28 1.36 1.35 1.33 1.33 1.33
HC Scene_2 0.84 0.78 0.68 0.84 0.68 0.76
Avg. RMSE/Var 1.17 1.12 1.10 1.09 1.09 N/A

Table 2: RMSE scores for standalone score prediction model, using original dataset. Avg-RMSE/Case represents
the mean RMSE across a diagnostic group and scene. Avg-RMSE/Var represents the mean RMSE for that SSPA
variable of the column.

Class and Scene RMSE

Interest Fluency Clarity Focus Social Mean/Case

BD Scene_1 1.28 1.12 1.07 0.97 1.06 1.10
BD Scene_2 1.39 1.11 1.14 1.18 1.10 1.18
SZ Scene_1 1.37 1.33 1.27 1.20 1.30 1.29
SZ Scene_2 1.33 1.13 1.12 1.15 1.10 1.16
HC Scene_1 1.33 1.37 1.27 1.30 1.28 1.31
HC Scene_2 0.83 0.78 0.75 0.92 0.75 0.80
Avg. RMSE/Var 1.25 1.14 1.10 1.12 1.09 N/A

Table 3: RMSE scores for the chained score prediction model. Interview sequences come from the generative model
described in §3.1. Mean/Case represents the mean RMSE across a diagnostic group and scene. Avg-RMSE/Var
represents the mean RMSE for that SSPA variable of the column.

information. Even without explicit task instruc-
tions, a well-constructed fine-tuning loop allows a
smaller model to intuitively understand tasks, ev-
idenced by the model’s ability to identify tasks
from indirect references. Despite the tendency of
the model to hallucinate information such as names
and dates, which typically impedes performance on
tasks necessitating factual precision, our findings
indicate that these hallucinations do not compro-
mise task completion. For our annotation task, we
maintained a sequence-to-sequence setup for pre-
dicting scores and variable labels, observing low
error rates and consistent performance across both
stand-alone and chained model setups.

7 Conclusion

This paper focused on an alternate purpose of
LLMs in mental healthcare. Instead of classi-
fication or diagnostic problems we focus on a
collaborative-LLM setup. We show that for real
world clinical tasks, often involving complicated
and nuanced variables, smaller and focused fine-

tuning can help with data collection and annotation
with relatively low error. We also show that such
models can be chained together to create reliable
and robust end-to-end data collection and annota-
tion pipelines. We showed that modern LLMs such
as GPT-4 or GPT-4o do not perform at the same
level as a fine-tuned model on clinically nuanced
tasks.

In mental health settings the expertise that clin-
icians bring cannot be replaced by LLM technol-
ogy. Rather a collaborative approach where lo-
cally trained LLMs can learn from clinical labeling
behavior without compromising data to external
servers is a better way forward. Our findings indi-
cate that language models can significantly assist
clinicians in scaling data collection and labeling
with high reliability, as evidenced by low error rates
and high similarity scores. We anticipate that the
clinical community will find our models ready for
practical implementation, and our methods both
translatable and adaptable to specific clinical tasks.
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Figure 3: Chained Model Setup. Two standalone t5 models are chained by output and input. The Interview generator
model works with patient dialogues to create LLM generated transcripts. This is fed into the score prediction model
which outputs low error scores for the SSPA using a cross-entropy loss function.Picture resized for space limitations.
Please zoom-in while reading review version.

BD Scene 1 BD Scene 2 SZ Scene 1 SZ Scene 2 HC Scene 1 HC Scene 2

0.0 0.06 0.03 0.04 0.2 0.04

Table 4: Difference of mean errors per case and scene.

Interest Fluency Clarity Focus Social

0.8 0.02 0.0 0.03 0.0

Table 5: Difference of mean errors per variable.

8 Limitations

In this study, we engaged 644 participants, which
constitutes a relatively small sample size. While
Patterson et al. (2001) originally identified eight
variables in the SSPA, we selected only five for
our analysis. The excluded variables were either
unrelated to speech (e.g., personal grooming) or
lacked expert raters due to their independence from
the healthcare context (e.g., negotiation ability).
We employed the T5 model for this task, primarily

due to hardware constraints. Despite its smaller
size, the T5 model demonstrated the capability to
achieve relatively low error rates even with lim-
ited computational resources. This observation
suggests that utilizing a larger model with more
computational capacity could potentially reduce
errors further. Furthermore, our study is limited to
analyzing transcripts from audio recordings derived
from the original dataset and does not incorporate
multimodal aspects such as features of voice or
audio.

Another limitation of our study concerns the use
of a commercial language model, such as GPT-
4/4o, exclusively for comparing annotations rather
than conducting interviews. Although it could be
argued that a commercial language model might
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Scene/Class
GPT-4
Error

GPT-4o
Error

Our Error p 4 p - 4o

HC - Sc - 1 1.60 1.57 0.2 0.03 0.03
HC - Sc -2 1.70 1.66 0.04 0.03 0.03
SZ - Sc -1 1.44 1.50 0.03 0.03 0.03
SZ - Sc - 2 1.64 1.53 0.04 0.03 0.03
BD - Sc - 1 1.51 1.49 0.00 0.03 0.03
BD - Sc - 2 1.45 1.53 0.05 0.03 0.03

Table 6: Baseline Comparison with GPT4 and GPT4o. We can see that the p values comparing our error with GPT
errors show a significant difference.

also be employed for interviews to compare perfor-
mance outcomes, this approach raises significant
ethical concerns. Firstly, most commercial lan-
guage models do not possess adequate safeguards
or specialized training to generate content that is
safe for individuals with severe psychiatric condi-
tions. Secondly, using such models could involve
transmitting sensitive subject data and speech pat-
terns to third-party systems, thereby raising serious
ethical issues related to privacy and confidential-
ity. Consequently, commercial language models
were restricted solely to annotation tasks using de-
identified data.

The broader implications of these limitations
merit careful consideration. Future work could ex-
plore how the currently excluded SSPA variables
might be more formally defined and integrated
into automated annotation pipelines using large lan-
guage models (LLMs). While our study included
644 participants—a meaningful number in the con-
text of psychiatric research—it remains relatively
modest from the perspective of generalizability in
AI applications for mental health. Nonetheless,
this dataset represents one of the largest and medi-
cally validated corpora available for schizophrenia
(SZ) and bipolar disorder (BD), laying essential
groundwork for future model development. Due
to hardware constraints, we employed the T5-base
model, and it remains an open question whether
scaling to larger variants (e.g., T5-XL or T5-XXL)
would yield statistically significant performance
improvements. We also limited the use of com-
mercial models like GPT to annotation tasks only,
in order to avoid exposing participants to unsu-
pervised, third-party systems—particularly given
the ethical concerns around deploying such models
with vulnerable populations. Despite these con-
straints, our findings demonstrate that the speech
patterns of trained psychiatrists can be reliably

replicated with low error, opening the door to po-
tential extensions such as modeling patient speech
or augmenting data for low-resource clinical con-
texts. Finally, while we utilize established metrics
such as BERTScore, ROUGE, cosine similarity,
and RMSE, we acknowledge that these summariza-
tion benchmarks offer limited explainability with
respect to individual-level communication quality.
We encourage future work to incorporate more in-
terpretable evaluation frameworks to deepen in-
sight into both linguistic nuance and clinical rele-
vance.

9 Ethical Concerns

This paper aims to demonstrate how modern lan-
guage models can be deployed in clinical settings to
collect and label data responsibly. We exclusively
use labels that are well-established in clinical con-
texts. Importantly, this paper does not advocate for
or implement the use of language models as diag-
nostic tools for mental health. We illustrate that
markers of speech relevant to psychiatric healthcare
can be predicted using language models. However,
predicting variables like Interest or Focus should
not be used or interpreted for unrelated tasks, such
as advertising, targeted marketing, or any clinical
purposes without appropriate expertise.

All data-related activities, including labeling, an-
notation, and sharing, were conducted with the ap-
proval of four independent academic Institutional
Review Boards (IRBs). Participants in the original
study provided informed consent. We adhere to
all ethical codes established by the ACM and ACL.
This paper involves numerous clinical experts in
the labeling, adjudication, and language modeling
processes, ensuring proper guidance and assistance.
Using these models or concepts from this paper for
non-clinical purposes or without expert guidance
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in clinical contexts is strictly prohibited.
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A Task Description and Purpose

In this appendix we briefly describe the Social
Skills Performance Assessment. We will talk about
the purpose of the task, the task itself, and what we
can gain from this task.

Task Motivation The Social Skills Performance
Assessment, abbrev. SSPA is a mental-health instru-
ment which serves as an indicator of social skill.
The motivations, some of which we discussed in
the introduction, is that people with psychiatric ill-
nesses are more likely to show less cohesion and
more disorganization in their speeches, as opposed
to healthy control subjects. The SSPA task stan-
dardizes the way speech is measured for subjects
with, and without psychiatric illnesses by having
the subjects take on two tasks with expert clini-
cians.

For both tasks, the participants speak with a
trained clinician. Their video and audio are
recorded. Then transcribed. The labels mentioned
in this paper were the clinicians rating the partici-
pants performance on the tasks to the two tasks.

Task Description There are two tasks to the
SSPA. The first task is the neutral or friendly task,
and the second task is the confrontational task.

The Friendly Task consists of the participant
simulating a conversation as if they moved to a
new neighborhood. They are asked to introduce
themselves to the new neighbor. We observe people
without psychiatric illnesses to briefly talk about 2-
3 topics and stay consistent. People with illnesses
tend to sway between 13-15 topics and are unable
to concisely present thoughts.

The Confrontational Task consists of the par-
ticipant complaining to their landlord after a leaky
pipe has not been fixed for months. We observe that
healthy controls are able to quickly articulate and
talk only about the problem at hand. We observe
that BD and SZ often talk about multiple different
things and then talk about the problem given to
them.

Task Outcomes Annotating clinical variables is
a different task than classification. While these
variables are not classifiers of psychiatric illnesses.
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They are important features. These variables give
clinicians and scientists much needed quantifica-
tion in the field of life-long psychiatric illnesses.
Therefore, it is imperative to bring modern technol-
ogy to the equation and slowly make care and data
collection accessible and efficient.

Prompt Details

This section describes the prompt that was used
for GPT-4/4o to annotate the posts as described in
Section §6.

System Prompt - You are going to act as
a clinical annotator. You will see a set of
conversations between a doctor and a par-
ticipant. You will also be told of a task.
You need to return a python compatible
list of five scores from a range of 1-5.
Below I describe what these scores rep-
resent. Remember that for these scores 1
is lowest and 5 is highest.

Interest - This score on 1-5 will describe
how interested this person was in the con-
versation. Look at the participant’s en-
gagement in the conversation and rate
this score.

Fluency - This score on 1-5 will describe
how fluent a person was. A person with
more filler words will score lower.

Clarity - This score on 1-5 will describe
how clearly the subject was able to com-
municate their thoughts. A higher score
shows better communication skills.

Focus - This score on 1-5 will describe
how concentrated the subject was on the
task. A person who deviates off topic
will score lower.

Social Appropriateness - This score on 1-
5 will describe how socially appropriate
to the task this participant’s score was. A
higher score is more socially appropriate.

Return the results as a list [] with five
numbers for each of the scores above.

User Prompt - In this task the partici-
pant has to introduce themselves as a new
neighbor in the neighborhood.

Doctor - Hey there, how are you? Partic-
ipant - Hey I just moved. ...

Continues for entire conversation. The system
prompt remains the same, while for each task the
user-prompt changes.
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