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Abstract

This paper explores the performance of mul-
tilingual models in the general domain on the
clinical Question Answering (QA) task to ob-
serve their potential medical support for lan-
guages that do not benefit from the existence
of clinically trained models. In order to im-
prove the model’s performance, we exploit mul-
tilingual data augmentation by translating an
English clinical QA dataset into six other lan-
guages. We propose a translation pipeline in-
cluding projection of the evidences (answers)
into the target languages and thoroughly evalu-
ate several multilingual models fine-tuned on
the augmented data, both in mono- and multilin-
gual settings. We find that the translation itself
and the subsequent QA experiments present
a differently challenging problem for each of
the languages. Finally, we compare the perfor-
mance of multilingual models with pretrained
medical domain-specific English models on the
original clinical English test set. Contrary to
expectations, we find that monolingual domain-
specific pretraining is not always superior to
general-domain multilingual pretraining. The
source code is available at https://github.
com/lanzv/Multilingual-emrQA.

1 Introduction

Medical professionals spend considerable time go-
ing through (long) clinical documents to find an-
swers to specific questions about particular patients
(Demner-Fushman et al., 2009). This process can
be simplified using natural language processing
models designed for Question Answering (QA),
either by searching for relevant evidence to an-
swer the question or directly providing a precise
answer that does not even need to be present in the
context texts (Tsatsaronis et al., 2015). Patients
would directly benefit from this more efficient pro-
cess through better quality care. In addition, such
QA systems can be designed specifically for pa-
tients, allowing them to ask direct questions about

...
Lungs : R lower 01-20 with coarse BS and rales ; L side clear ; no
wheezing Abd : thin, nd, nt, soft, no masses palpable Ext : thin, no
edema, multiple old well-healed scars on R leg Skin : warm and dry,
no rash or breakdown noted though could not examine sacrum Neuro :
reactive to pain, otherwise

Pertinent Results : 2014-01-20 05:30 AM BLOOD WBC -
10.9 RBC - 4.63 Hgb - 13.6 * Hct - 40.3 # MCV - 87 MCH - 29.3 MCHC
- 33.7 RDW - 14.0 Plt Ct - 393 # 2014-01-20 05:30 AM BLOOD Neuts -
82.6 * Lymphs - 14.5 * Monos - 2.2 Eos - 0.2 Baso - 0.4 2014-01-20
02:08 PM BLOOD PT - 13.2 PTT - 27.4 INR ( PT )- 1.2 2014-01-20
05:30 AM BLOOD Plt Ct - 393 # 2014-01-20 05:30 AM BLOOD
Glucose - 334 *
...

Figure 1: Clinical text sample from emrQA dataset
(Pampari et al., 2018), after filtration by Yue et al.
(2020).

their discharge summaries or about other aspects of
their medical records (Soni and Demner-Fushman,
2025).

Finding specific evidence supporting an answer
in discharge summaries is a crucial step for two
reasons: First, given the sensitive nature of the
data and the current inability to guarantee that mod-
els will not hallucinate, the model must point to
the specific part of the text that it used to gener-
ate its response. This allows a physician to verify
the answer directly. Second, discharge summaries
are typically lengthy documents, which pose chal-
lenges for large language models (LLMs) (Pre-
masiri et al., 2023; Luo et al., 2024). Extracting
relevant evidence from the text and incorporating it
into prompts within a Retrieval-Augmented Gener-
ation setup offers a potential solution to this prob-
lem (Abdelghafour et al., 2024).

Currently, most medical research data and re-
lated QA models are conducted predominantly in
English (Jin et al., 2019; Henry et al., 2019; John-
son et al., 2023) although most medical institutions
use their local language to produce clinical texts,
and models trained on English data are not applica-
ble to documents in other languages.

In contrast, general-domain multilingual models
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Figure 2: Multilingual data augmentation pipeline for the emrQA dataset.

(Devlin et al., 2018; Sanh et al., 2019; Conneau
et al., 2019) are available for QA tasks in various
languages. This raises two questions: How do such
models, which have never been exposed to clinical
data, perform clinical QA tasks? How important is
the pretraining of the clinical domain?

To enhance the performance of multilingual
models and expose them to more clinical data dur-
ing fine-tuning, this study explores the impact of
multilingual data augmentation. Several previous
works have shown that multilingual data augmen-
tation generally improves the performance of mul-
tilingual models (Liu et al., 2021; Bornea et al.,
2021). However, it remains unclear whether the
same holds in the clinical domain, which often dif-
fers from the standard language (Henriksson et al.,
2014) (see Figure 1 for an illustration).

In this paper, we explore this idea by translat-
ing an English QA dataset derived from the emrQA
dataset (Pampari et al., 2018) into six European lan-
guages: Bulgarian (BG), Czech (CS), Greek (EL),
Spanish (ES), Polish (PL), and Romanian (RO) (as
shown in Figure 2). We present a systematic ap-
proach to machine translation of a QA dataset that
produces multilingual data for the task of finding
evidence in clinical text that answers a given ques-
tion. We exploit these translations for fine-tuning
and evaluation of various models in monolingual
and multilingual settings to investigate the impact
of such multilingual data augmentation. Following
Yue et al. (2020) and Lanz and Pecina (2024), we
use two subsets from the emrQA dataset – Medica-
tion and Relations

We first describe the Machine Translation (MT)
pipeline, which involves translating clinical reports,
translating questions, and projecting the answer ev-

idence substring into the translated text. Next, we
discuss some poor-quality translated samples and
propose how to deal with them. We then use these
translations to fine-tune several Transformer-based
models on the QA task. Based on that, we investi-
gate how multilingual data augmentation improves
the models’ performance. Finally, we compare
the performance of multilingual models with the
clinically pretrained domain-specific models and
discuss whether the clinical pretraining is necessary
for this task.

This paper presents the following contributions:
• We propose a pipeline for augmentation of the

clinical QA dataset into other languages.
• We introduce a novel unsupervised forward-

backward substring alignment evaluation
method that allows a more accurate assess-
ment of substring alignment quality between
languages without the need for labeled data.

• We demonstrate the performance of multilin-
gual models on clinical QA tasks, highlighting
the benefits of multilingual data augmenta-
tion and showing that clinical pretraining does
not have to be more beneficial than general-
domain multilingual pretraining.

2 Related Work

The task of QA involving the retrieval of the an-
swer evidence substrings for a given question in
a provided context has been extensively explored
through various datasets. Among the most promi-
nent are general purpose QA datasets such as
SQuAD (Rajpurkar et al., 2016), which has also
been already translated into several European lan-
guages via MT methods (Macková and Straka,
2020; Carrino et al., 2020; Cattan et al., 2021; Staš
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et al., 2023; Nuutinen et al., 2023). In addition to
these, the clinical QA domain has gained attention
with the emrQA dataset (Pampari et al., 2018), de-
rived from the n2c2 challenge dataset (Henry et al.,
2019).

Considerable work was done on the emrQA
dataset with notable contributions by Yue et al.
(2020), who adapted two emrQA subsets into a
SQuAD-like format for more general use. Lanz
and Pecina (2024) proposed segmentation of re-
ports into paragraphs for better QA performance.

Various medical datasets exist in multiple lan-
guages, and the Khresmoi data set (Dušek et al.,
2017) stands out as a parallel corpus of medical
sentences in several European languages. Further-
more, there is a growing trend towards the develop-
ment of datasets focused on extracting information
from clinical documents in languages other than
English (López-García et al., 2023; Zaghir et al.,
2024; Richter-Pechanski et al., 2024). Furthermore,
Gaschi et al. (2023) extended the n2c2 dataset by
translating it into French and German (and we
build on this work). This process involved aligning
named entities using methods such as FastAlign
(Dyer et al., 2013) and Awesome (Dou and Neu-
big, 2021). They also used machine translation
systems such as Opus-MT (Tiedemann and Thot-
tingal, 2020) and FAIR (Ng et al., 2019). However,
the most recent MT systems are currently NLLB
(Costa-jussà et al., 2022) and MadLad (Kudugunta
et al., 2023).

In their multilingual experiments, Gaschi et al.
(2023) tested a range of multilingual models, in-
cluding mBERT (Devlin et al., 2018), distilmBERT
(Sanh et al., 2019), and XLM-R (Conneau et al.,
2019). However, these models are not pretrained on
medical/clinical data, unlike BioBERT (Lee et al.,
2019) or ClinicalBERT (Alsentzer et al., 2019),
which were already used for emrQA experiments
on English data (Yue et al., 2020; Lanz and Pecina,
2024). Despite the existence of LLMs trained on
predominantly English medical data, such as Med-
iTron (Chen et al., 2023) and BioMistral (Labrak
et al., 2024), Lanz and Pecina (2024) demonstrated
that the application of LLMs to answer substring-
based evidence QA tasks is not straightforward,
often computationally expensive without providing
proportional benefits.

Medication Relations
Number of reports 262 426
Number of paragraphs 5 081 9 482
Number of questions 232 347 987 965

Table 1: Statistics of the Medication and Relations sub-
sets segmented into paragraphs (each question has at
least one answer in a paragraph).

3 Machine Translation of QA Dataset

This section outlines the MT methodology for the
Medication and Relations subsets of the emrQA
dataset, filtered and normalized by Yue et al. (2020).
The process includes two phases: First, clinical
reports and questions are translated using multilin-
gual LLMs. Second, for each answer evidence, we
find the corresponding substring in the translated
text.

Clinical reports often pose a challenge for MT
due to the size and complexity of their text. In addi-
tion, aligning answer evidences in such large texts
would be challenging and error-prone. Therefore,
we begin with segmenting the reports into para-
graphs proposed by Lanz and Pecina (2024) which
reduce the size of the context while preserving all
necessary information (see statistics in Table 1).

3.1 Translation Process

Several recent works have presented highly robust
MT models for general domains (Popel et al., 2020;
Costa-jussà et al., 2022; Kudugunta et al., 2023).
However, it is unclear how these models perform
on clinical data. Following Gaschi et al. (2023), the
performance of several MT models was evaluated
in the Khresmoi medical domain data set (Dušek
et al., 2017) (the results are reported in the Ap-
pendix B). For subsequent experiments, we chose
MadLad-3B, which performs best or is very similar
to the best results, but is significantly smaller and
thus more time and memory efficient.

Translations of the questions in our dataset were
done sentence by sentence. Translating (sometimes
much) longer paragraphs turned out to be more
challenging. Therefore, long paragraphs were di-
vided into shorter parts. The paragraphs that exceed
750 characters were split into two parts of about the
same length – preferably at the end of the sentence
identified by the regular expression1 closest to the
middle of the entire paragraph. If such a split were
not feasible, we split the segment at the whitespace

1[a-z]{2}\.\s+[A-Z][a-z]
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closest to the middle of a paragraph. After transla-
tion, all segments within the paragraph are joined
in their original order.

MadLad-3B sometimes tends to hallucinate
when translating clinical reports, especially when
they contain abundant medical abbreviations,
acronyms, and figures. To address this, we pro-
pose the following solution: We append the phrase
"Based on medical reports." after the end of each
segment to be translated, providing the model with
explicit context that the text is related to a clinical
text (which is not always obvious from the seg-
ment content itself). If a correct translation of this
phrase appears in a newly translated segment, it is
removed along with any surrounding whitespaces.
Otherwise, the text is translated again, with addi-
tional spaces inserted between the segment and the
prompted medical phrase to make the difference
even more explicit. In case of an increase in the
limit of translation attempts, the standard transla-
tion using the MT model without any additional
phrases was chosen. We refer to this method as
the Prompted Medical Phrase (PMP) approach and
compare it with the standard MT. The list of al-
ternative translations of the phrase added to the
prompt in all languages is provided in Appendix C.
An example of the PMP approach is provided in
Appendix D.

3.2 Answer Evidence Alignment
After translating the paragraphs, the answer ev-
idence for each question must be found in the
translated text. Due to the synthetic nature of ev-
idence substrings in emrQA, these evidence seg-
ments often lack structure, sometimes appearing as
incomplete sentences. Additionally, clinical texts
frequently contain repetitive patterns (e.g., "mg,"
"q.p.m."), making the alignment crucial to correctly
identify key clinical terms. However, these con-
cepts are often very specific and the model may
not have encountered them in alignment-based ap-
proaches during training. See Figure 3 for exam-
ples of evidence substrings from emrQA.

To align the answer evidence substring in the
translated text, we could translate the original sub-
string and locate it in the translated paragraph, as
done for SQuAD (Macková and Straka, 2020; Cat-
tan et al., 2021; Staš et al., 2023). However, due to
the complexity of clinical data, identical translation
cannot be guaranteed. Since SQuAD evidence is
usually short (such as a person’s name or location),
the problem is not so complex. Therefore, this

Question: Has the patient ever tried heparin?
Context:
...
HOSPITAL COURSE: The patient was admitted on 0/25/95 with concern for her
being at high risk of skin breakdown and infection. Plans were made for panniculec-
tomy, however, prior to this procedure, she was admitted for IV Ancef t.i.d.; Hi-
biclenz showers and sub-q Heparin. Preoperatively, her pulmonary function was as-
sessed and found to have an FEV-1 of 53% of predicted; FVC of 57% of predicted and
an FEV-1/FVC of 93% of predicted. Chest x-ray showed no active cardiopulmonary
disease ...

Question: Has the patient had allopurinol in the past?
Context:
...
MEDICATIONS: At the time of admission were as follows: 1. Lantus 100 mg q.p.m.
2. Humalog 20 units q.p.m. 3. Humalog sliding scale. 4. Neurontin 300 mg t.i.d. 5.
Lisinopril 40 mg q.d. 6. Allopurinol 300 mg q.d . 7. Hydrochlorothiazide 25 mg q.d.
8. Zocor 20 mg q.d. 9. TriCor 50 mg b.i.d. 10. Atenolol 25 mg q.d. 11. Eyedrops
prednisolone and atropine. 12. The patient was on iron supplementation.
...

Figure 3: Examples of emrQA evidence substrings,
highlighted as colored spans showing alignment chal-
lenges.

paper opts for word alignment methods, similarly
to Gaschi et al. (2023) and Zaghir et al. (2024).
Specifically, this work considers two alignment
models: the statistical model FastAlign (Dyer et al.,
2013) and the Transformer-based model Awesome
(Dou and Neubig, 2021) to project evidence from
the source to the target language.

Awesome is a pretrained aligner, while FastAlign
requires additional training. For this purpose, we
use the parallel corpus NLLB (Costa-jussà et al.,
2022), selecting the first 44.6 million sentences
paired with English for each of the languages in-
volved in our work. Since we have the same
amount of data for each language, we can directly
compare alignments across languages. Alignment
is performed on the same segments as described
in Section 3.1. Based on the predicted alignment,
the counterparts of the source answer evidence are
found in the translated paragraph. The alignment of
the first and last words determines the boundaries
of the target answer evidence substring.

As observed by Gaschi et al. (2023), the choice
of an aligner is not straightforward. They noted that
performance in the general domain is not always in-
dicative of behavior on clinical data sets, leading to
an initial suboptimal choice in their study. To objec-
tively compare the performance of Awesome and
FastAlign, this work introduces the unsupervised
forward-backward substring alignment evaluation
method. This method involves a double answer ev-
idence substring alignment, once from the source
language to the target language and then back to
the source. As a result, there are two substrings in
the source language: the original answer evidence
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BG CS EL ES PL RO
EM F1 PM EM F1 PM EM F1 PM EM F1 PM EM F1 PM EM F1 PM

FastAlign 32.1 83.2 82.4 50.0 86.6 86.0 28.6 81.6 80.9 54.6 90.9 90.5 48.3 89.0 88.4 34.2 86.7 85.3
Awesome 46.0 82.9 82.4 64.0 89.8 89.4 24.8 70.3 69.8 71.2 93.7 93.5 57.1 89.3 89.1 64.7 90.9 90.4
FastAlign PMP 41.0 88.9 88.2 53.1 91.4 91.0 41.9 87.9 87.2 56.3 93.8 93.4 50.1 90.8 90.2 35.7 89.6 88.1
Awesome PMP 59.3 89.2 88.8 66.8 93.0 92.8 36.5 76.2 75.7 72.9 96.3 96.1 58.8 90.6 90.5 68.0 93.8 93.5

Table 2: Comparison of FastAlign and Awesome and impact of the PMP translation approach on Medication subset.

BG CS EL ES PL RO
EM F1 PM EM F1 PM EM F1 PM EM F1 PM EM F1 PM EM F1 PM

FastAlign 54.9 89.9 89.1 61.2 91.5 90.9 55.8 91.1 90.6 66.7 93.6 93.4 62.7 92.2 91.5 53.3 90.0 89.2
Awesome 60.7 86.3 86.0 66.0 91.0 90.8 40.2 77.3 77.0 77.0 95.1 95.2 59.5 88.3 87.9 72.3 91.8 91.5
FastAlign PMP 61.1 92.9 92.1 67.0 94.0 93.5 60.6 92.1 91.7 71.0 95.3 95.1 66.7 93.9 93.2 57.0 91.9 91.2
Awesome PMP 66.8 89.4 89.0 70.2 93.2 93.0 44.9 79.7 79.5 79.3 97.0 97.2 62.6 90.1 89.8 76.2 94.3 94.1

Table 3: Comparison of FastAlign and Awesome and impact of the PMP translation approach on Relations subset.

substring and a two-step alignment projection of
the answer evidence substring, both included in the
same source paragraph. Ideally, the two substrings
should be identical.

If the substring changes (expands, shrinks, shifts,
etc.) during the two-step alignment projection, the
alignment is considered inaccurate. An incorrect
answer evidence substring alignment in the for-
ward step is likely to carry over to the backward
projection, leading to further errors. In contrast,
successful alignment in both directions serves as a
reliable indicator of accurate projection from the
source language to the translation language. Of
course, the projection of the substring alignment
from the source language to the target language
could be correct, but the second projection back to
the source language was problematic. So, this eval-
uation method is stricter than directly measuring
the quality of the newly generated answer evidence
substrings. Furthermore, it also indirectly evalu-
ates the quality of the MT from the previous stage
described in Section 3.1. Poor translation would
hinder accurate alignment, allowing this method
to compare the performance of the straightforward
MT and the PMP approach.

In the unsupervised forward-backward substring
alignment evaluation, we compare two English sub-
strings and aim for identity. To measure string sim-
ilarity, we use SQuAD metrics — Exact Match
(EM) and F1 score. However, evaluating the cor-
rectness of the projected substring position, not just
the word similarity, may be valuable. Thus, in ad-
dition to Exact Match (EM) and F1, we introduce
Position Match (PM) computed as:

PM =
2×OP ×OT

OP +OT
(1)

where OP = Overlap Length
Predicted Length is the predicted overlap

ratio, and OT = Overlap Length
True Length is the true overlap

ratio. The overlap is the common span between the
predicted and original substring positions.

The final scores, averaged over all aligned an-
swer evidence substrings, are shown in Tables 2
and 3. The PMP approach improves the perfor-
mance of the standard MT model. The Relations
subset is easier to process for the MT and align-
ment stages compared to the Medication subset,
achieving F1 scores higher than 90% for most lan-
guages. The EM metric shows that approximately
two-thirds of the answer evidence substrings in
almost every language were perfectly projected
without change. The Medication subset is more
challenging but still exhibits good results. For both
subsets, the Transformer-based aligner Awesome
excels in Romance languages, while FastAlign out-
performs in Greek. For Slavic languages, Awe-
some performs better in the Medication subset, but
the results in the Relations subset are less clear.
Only for Polish, FastAlign outperforms Awesome
in all metrics. The differences between FastAl-
ign and Awesome may be due to the fact that we
trained FastAlign on all our languages, whereas
Awesome was fine-tuned for word alignment only
on the Romanian-English language pair relevant
to our study. This could explain the performance
disparities between Romance languages and oth-
ers. However, since Awesome is based on mBERT,
which has seen all these languages during pretrain-
ing, and Dou and Neubig (2021) showed that Awe-
some performs well even without fine-tuning, the
impact of fine-tuning should not be pronounced.

3.3 Evaluation on Full Clinical Reports
Building on the results from the previous section,
we base our next experiments on the PMP transla-
tion approach. For the Medication subset, we will
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BG CS PL
EM F1 EM F1 EM F1

Awesome 54.1 77.4 61.7 81.4 53.0 76.8
FastAlign 50.4 79.4 57.5 82.0 55.2 80.4

Table 4: Comparison of mBERT performance on Re-
lations translated to Slavic languages aligned by Awe-
some/FastAlign (paragraphs joined into full reports).

utilize FastAlign for Greek while adopting Awe-
some for all remaining languages. For the Relations
subset, FastAlign will be employed for Greek, and
Awesome for the Romance languages. To make a
final decision on the most appropriate alignment
method for Slavic languages in the Relations sub-
set, this section evaluates the QA performance of
the mBERT model using full clinical reports as
context (rather than paragraphs, where we could
not consider translated contexts that do not contain
any question-answer pairs), considering both align-
ment models. Then, we compare alignment quality
based on QA performance.

We follow the experiments of Yue et al. (2020).
For this purpose, we focus on the Slavic languages
within the Relations subset, Bulgarian, Czech, and
Polish, and compare the QA results obtained us-
ing FastAlign and Awesome alignments, measured
using the official SQuAD evaluation script. The
results are presented in Table 4.

For Polish, we confirmed that FastAlign is the
superior method. For Bulgarian and Czech, the
choice is less clear, as the EM and F1 scores di-
verge. Although FastAlign shows a marginal F1
advantage, Awesome substantially outperforms in
EM, so we proceeded with Awesome-based align-
ment for both languages in the following experi-
ments on the Relations subset.

3.4 Filtering-out Low-Quality Alignments

Despite the alignment being mostly good, it is not
always perfect. One reason might be flawed transla-
tions from the first stage. We also lack information
about paragraphs that do not contain answers that
need to be aligned to a new language. Therefore,
paragraphs and answers with low alignment scores
need to be filtered out, ignoring paragraphs with-
out answers. This simplifies the task to Paragraph
QA (similar to Oracle QA from Lanz and Pecina
(2024)), resembling the SQuAD-like format (con-
text is a paragraph rather than a document). There-
fore, we examine which substring alignments we
should discard and which ones we should keep

(similarly as was done by Macková and Straka
(2020)).

Low-quality answer evidence substring align-
ments negatively impact both the quality of the
training and subsequent evaluation. Thanks to the
forward-backward substring alignment evaluation,
the quality of answer evidence projection can be
estimated. This allows for filtering out those with
low scores from the dataset, along with their cor-
responding paragraph context and question. Addi-
tionally, paragraphs can be removed if no question-
answer pair is available, as there is no information
about the quality of such paragraphs. As a result, in
the remainder of this work, we focus on Paragraph
QA instead of full report QA.

To determine how many answer evidences
should be discarded, we conduct the following
experiment. We sort the answer evidences from
the training data based on their PM scores and
sequentially remove 0, 5, 10, 15, 20, 30, 40, ...% of
the low-quality instances and for each resulting
subset, we fine-tune the mBERT model (for each
language separately) and compare the performance
on the (silver) full test sets using Exact Match (EM)
and F1 measures as in Yue et al. (2020). The re-
sults are averaged over three measurements with
different random seeds and visualized in Figure 5
in Appendix E. Removing about 15% of lowest-
quality instances improves the scores. Beyond this
point, further removal risks losing complex data
samples that may not have been perfectly aligned
but remain essential for our task.

The pipeline described above is applied to the
generated non-English training data and also to test
data. Traditionally, such data is referred to as silver
data, a term used to describe data that is automati-
cally generated through processing of the original
high-quality gold standard data. We experiment
with two test sets: the full test set (which may con-
tain alignment errors) and the intersection test set,
formed by intersecting the translated and filtered
test sets in each language, assuming higher relia-
bility. The intersection test set contains identical
instances across languages.

4 Multilingual Paragraph Question
Answering Experiments

In this section, the performance of multilingual
models is evaluated using the original English test
set by assessing EM/F1 on the Paragraph QA task.
The quality of the emrQA translations is also dis-
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EM Score Full Test Set Intersection Test Set
Models EN BG CS EL ES PL RO EN BG CS EL ES PL RO
distilmBERT (mono) 30.5 19.7 23.1 16.6 26.4 23.2 24.9 32.6 24.7 27.8 20.6 30.0 28.0 29.2
mBERT (mono) 32.7 21.4 25.0 17.8 28.7 24.3 27.8 34.6 26.5 29.7 22.0 32.4 29.0 32.5
XLM-R (mono) 33.4 22.1 26.0 18.3 29.1 25.5 28.0 35.4 27.3 30.9 22.3 32.8 30.5 32.6
XLM-R Large (mono) 33.7 23.0 26.5 19.1 30.4 26.0 28.5 35.4 28.2 31.5 23.3 34.3 30.6 33.1
distilmBERT (multi) 31.3 21.2 24.8 18.2 28.1 25.0 26.7 33.2 26.2 29.4 22.4 31.3 29.8 31.2
mBERT (multi) 33.0 22.6 26.6 19.4 29.9 26.6 28.5 35.1 27.6 31.3 23.9 33.5 31.7 33.2
XLM-R (multi) 33.5 22.8 26.8 19.5 30.0 27.1 28.6 35.4 27.7 31.5 24.2 33.3 31.9 33.1
XLM-R Large (multi) 33.6 23.7 27.4 20.6 30.3 27.1 29.0 35.5 29.1 32.0 25.3 33.6 32.1 33.8

Table 5: QA results on the Medication subset (EM scores) for monolingual (mono) and multilingual (multi) models.

F1 Score Full Test Set Intersection Test Set
Models EN BG CS EL ES PL RO EN BG CS EL ES PL RO
distilmBERT (mono) 71.6 62.6 65.8 56.8 67.8 65.4 67.2 72.6 66.2 68.4 60.3 69.7 68.3 69.1
mBERT (mono) 75.3 66.0 69.7 60.1 71.0 67.9 70.7 76.0 69.8 72.1 63.6 72.5 71.0 72.8
XLM-R (mono) 75.9 67.4 71.1 61.8 72.3 69.9 72.2 76.6 71.0 73.8 65.5 74.0 72.8 74.5
XLM-R Large (mono) 77.4 69.3 72.7 63.7 74.1 70.9 73.6 78.0 72.8 75.2 67.5 75.7 73.6 75.8
distilmBERT (multi) 74.5 66.9 70.4 61.1 71.7 69.4 71.4 75.2 70.5 72.4 65.1 73.3 72.5 73.4
mBERT (multi) 76.7 68.6 72.3 63.5 74.0 71.5 73.3 77.3 72.2 74.2 67.3 75.4 74.4 75.2
XLM-R (multi) 77.0 69.6 72.8 64.5 74.1 72.0 73.5 77.6 73.0 75.0 68.4 75.5 74.6 75.7
XLM-R Large (multi) 77.3 70.3 73.7 65.5 74.9 72.7 74.2 77.8 73.7 75.6 69.3 76.4 75.5 76.3

Table 6: QA results on the Medication subset (F1 scores) for monolingual (mono) and multilingual (multi) models.

cussed by analyzing the performance of multilin-
gual models on the translated data. In addition,
the impact of including multilingual data during
fine-tuning on model performance is investigated.

For these experiments, we selected four multilin-
gual models mBERT, distilmBERT, XLM-R, and
XLM-R Large (as Gaschi et al. (2023) did). In
all experiments, we use filtered training data (dis-
carding the 15% weakest alignments of the answer
evidence substrings). Based on the analysis of Yue
et al. (2020), we randomly sample the QA pairs to
have the same number of training samples as 20%
and 5% of the original unfiltered training data in
the Medication and Relations subsets, respectively.

For the test set, we analyze two approaches. The
first uses the entire unfiltered test sets. The second
filters each translation by discarding the weakest
15% of alignments of the answer evidence sub-
strings and then takes the intersection of filtered test
sets across languages, allowing direct comparison.
This filtering roughly retains 63% of the question-
answer-paragraph triplets from the full unfiltered
test sets. We split both Medication and Relations
reports into train/dev/test according to a 7:1:2 ratio
and perform experiments with three different ran-
dom seeds for the splits. Finally, we examine mul-
tilingual training, where a single model is trained
on the combined training data of all languages and
evaluated separately on each. The results are shown

in Tables 5, 6, 16 and 17.

4.1 QA Evaluation Across Languages

When the results of the full test set of other lan-
guages are compared with English, the results for
Romance languages show a slight decrease, Slavic
languages drop a bit more, and Greek displays a
substantial difference. The results clearly reflect
the quality already measured by the unsupervised
forward-backward substring alignment evaluation
method, which assesses the overall quality of the
MT process, including substring alignment. This
trend is seen not only across languages, but also
in EM and F1 scores. Although F1 scores remain
high under the alignment evaluation method, and
therefore the Paragraph QA F1 score differences of
new languages and English are not that large, EM
scores in Paragraph QA show a much larger drop.

When trying to balance the quality of the test
sets by filtering out poor-quality answer alignments
and taking the intersection of languages, the scores
across languages become more similar (except for
Greek, which remains considerably lower).

Interestingly, we also observe that in the case
of Medication, the English results improve on the
intersection test set. This suggests that by remov-
ing poorly aligned answers during translations, we
also excluded more complex answers regarding the
QA prediction process. The remaining question
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Medication Relations
EM F1 EM F1

BERTbase 31.0 72.9 91.1 96.2
BioBERT 31.1 74.4 91.7 96.9
ClinicalBERT 31.4 73.9 92.0 96.9
mBERT (w/o tgt) 31.0 75.9 90.0 96.0
mBERT (mono) 32.7 75.3 92.8 97.3
mBERT (multi) 33.0 76.7 92.6 97.3

Table 7: Performance comparison of clinical-domain
monolingual and general-domain multilingual models.

is whether these are genuinely complex question-
answer-paragraph triplets or if they represent anno-
tation errors in the original emrQA dataset, which,
due to its synthetic origin, contains numerous inac-
curacies (Yue et al., 2020).

4.2 Impact of Multilingual Training
As we can see in Tables 5, 6, 16 and 17, multilin-
gual training almost always slightly improves both
EM and F1 scores, except in rare cases. As was
already described, this training involves using all
training sets from all languages to train a single
model. In some cases, the improvement from mul-
tilingual training is even a few percentage points,
particularly for smaller and faster models or for
more problematic dataset translations.

When comparing multilingual training on the
gold data in English, we arrive at a similar con-
clusion: augmenting the data with additional lan-
guages helps, particularly for the Medication sub-
set, where Paragraph QA performance improves
in all cases except with the XLM-R Large model.
For the Relations subset, however, the differences
are almost negligible, which may be due to the fact
that the Relations task is approaching its oracle and
has little room for further improvement (Yue et al.,
2020).

5 Domain-Specific Models: Not Always
Superior

In the previous section, we learned that multilin-
gual models demonstrate strong performance, par-
ticularly on the Relations subset, despite never be-
ing specifically pretrained on clinical or medical
data. To assess how much multilingual models are
impacted by this, we measured the performance
of BERTbase, ClinicalBERT, and BioBERT mod-
els fine-tuned only on the original English emrQA
dataset on the same Paragraph QA task. In contrast,
these models are not multilingual.

Table 7 compares these three models with their
multilingual counterpart, mBERT. The evaluation
includes three settings: monolingual fine-tuning
(mono), fine-tuning with multilingual data augmen-
tation (multi), as described earlier, and mBERT
fine-tuned on train sets of all emrQA translations
except the original English data (w/o tgt).

The results show that multilingual models per-
form as well as domain-specific models in our clin-
ical QA task. Moreover, for the Medication sub-
set, multilingual models outperform their domain-
specific counterparts by a few percentage points.
Additionally, while omitting the original English
data during fine-tuning results in a performance
drop, the decrease is not substantial, indicating a
reasonable degree of cross-lingual transfer.

6 Conclusions

Our study focuses on the clinical QA task of find-
ing answer evidence substrings within a given con-
text for a specific question by multilingual models
rather than domain-specific ones assessing their
potential of medical support for various languages
(since current clinical models are predominantly
focused on English). This work investigated the
effect of multilingual data augmentation in the
clinical domain. Therefore, we described the MT
pipeline including the process of answer evidence
substring projection to translated paragraphs. Then,
we compared different alignment and translation
approaches. For our experiments, we used two
subsets - Medication and Relations - from the em-
rQA dataset, translating them into six European
languages: Bulgarian, Czech, Greek, Spanish, Pol-
ish, and Romanian.

During the data augmentation process, we ob-
served that different languages pose distinct chal-
lenges for translation and subsequent QA eval-
uation. However, multilingual augmentation it-
self can be effective even in the clinical domain,
as demonstrated by experiments on the Medica-
tion subset. However, it has a more limited ef-
fect on the Relations subset. However, we find
that domain-specific models in our clinical QA
task do not outperform multilingual models. In
fact, general-domain multilingual models notice-
ably outperformed clinical domain-specific models
on the Medication subset.
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Limitations

This work is limited by the quality of the emrQA
dataset, and our conclusions that clinical mono-
lingual domain-specific models do not outperform
multilingual general-domain models are based on
a single specific clinical task evaluated in one spe-
cific language, rather than a broader range of tasks.
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A Technical Details

This section provides additional details on fine-
tuning, resource usage, and hyperparameters used
in our experiments.

For alignment and translation models, default hy-
perparameters were used. QA models were trained
with a learning rate of 3× 10−5, 3 epochs, weight
decay of 0.01, batch size of 16, and a tokenizer pro-
cessing 384-token blocks with a 128-token stride.

The experiments were carried out on nodes
equipped with NVIDIA L40 GPUs (48GB per
GPU).

The MT process took approximately 10 hours
per language for the Medication subset and around
28 hours for the Relations subset. Alignment via
Awesome required about 5 hours for the Medica-
tion subset and 8 hours for Relations. FastAlign
training spanned several days, although the align-
ment step itself was completed in minutes.

For QA experiments, monolingual fine-tuning on
the Medication subset took 1-4 hours (depending
on model), while the Relations subset required 2-
8 hours. Multilingual training ranged from 4–22
hours for the Medication subset and 8–40 hours for
Relations.
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B Clinical Performance of MT Models

Model BLEU METEOR WER CER
NLLB 600M 28.87 0.544 55.41 41.1
NLLB 1.3B dis 34.65 0.5911 50.35 37.7
NLLB 1.3B 33.02 0.5837 51.62 38.81
MadLad 3B 38.85 0.6367 45.91 34.71
NLLB 3.3B 35.04 0.6018 49.97 37.32
LINDAT 39.04 0.6337 45.56 34.55
MadLad 7B 38.77 0.6341 46.15 35.01
MadLad 10B 39.28 0.6394 45.61 34.38
NLLB 54B 38.23 0.623 47.28 35.36

Table 8: Translation from English into Czech.

Model BLEU METEOR WER CER
NLLB 600M 30.08 0.5732 52.18 38.48
NLLB 1.3B dis 31.3 0.585 51.14 37.6
NLLB 1.3B 31.4 0.5839 51.33 37.88
MadLad 3B 34.43 0.611 49.03 35.94
NLLB 3.3B 32.59 0.5949 50.95 37.44
LINDAT 30.77 0.5785 52.69 38.24
MadLad 7B 34.47 0.613 49.16 36.07
MadLad 10B 34.7 0.6101 49.03 35.78
NLLB 54B 33.46 0.5992 50.36 37.19

Table 9: Translation from English into German.

Model BLEU METEOR WER CER
NLLB 600M 46.67 0.713 41.43 27.82
NLLB 1.3B dis 47.65 0.7188 40.67 27.01
NLLB 1.3B 48.17 0.7224 39.93 26.94
MadLad 3B 49.21 0.7307 40.33 26.72
NLLB 3.3B 47.99 0.7218 40.68 27.17
LINDAT 47.28 0.7144 39.65 27.9
MadLad 7B 48.93 0.7305 41.03 26.87
MadLad 10B 49.88 0.7364 39.46 26.4
NLLB 54B 48.3 0.723 40.65 26.84

Table 10: Translation from English into French.

Model BLEU METEOR WER CER
NLLB 600M 13.04 0.3577 72.66 56.87
NLLB 1.3B dis 15.8 0.3948 69.78 55.27
NLLB 1.3B 15.29 0.3899 69.62 54.9
MadLad 3B 19.41 0.4403 65.37 52.33
NLLB 3.3B 16.96 0.4114 68.37 53.62
LINDAT - - - -
MadLad 7B 20.48 0.4517 64.89 51.33
MadLad 10B 19.94 0.448 64.43 51.29
NLLB 54B 18.91 0.4317 65.93 51.73

Table 11: Translation from English into Hungarian.

Model BLEU METEOR WER CER
NLLB 600M 14.97 0.3786 70.64 55.53
NLLB 1.3B dis 17.37 0.41 66.7 52.33
NLLB 1.3B 16.94 0.407 68.07 53.83
MadLad 3B 20.46 0.4545 62.33 48.11
NLLB 3.3B 18.41 0.4264 65.36 50.73
LINDAT 17.87 0.4163 65.1 50.24
MadLad 7B 20.95 0.4598 61.8 47.67
MadLad 10B 20.5 0.4546 62.1 47.9
NLLB 54B 19.24 0.4368 63.98 49.55

Table 12: Translation from English into Polish.

Model BLEU METEOR WER CER
NLLB 600M 46.09 0.7364 37.85 26.41
NLLB 1.3B dis 47.62 0.7462 37.12 26.3
NLLB 1.3B 47.19 0.7476 37.44 26.47
MadLad 3B 49.05 0.7596 35.7 25.19
NLLB 3.3B 48.05 0.7534 36.84 26.05
LINDAT - - - -
MadLad 7B 48.55 0.7555 36.27 25.72
MadLad 10B 48.27 0.7545 36.48 25.69
NLLB 54B 47.98 0.7505 36.7 26.12

Table 13: Translation from English into Spanish.

Model BLEU METEOR WER CER
NLLB 600M 41.93 0.6658 40.1 28.93
NLLB 1.3B dis 44.95 0.692 38.63 27.54
NLLB 1.3B 45.31 0.692 37.32 26.77
MadLad 3B 52.34 0.748 31.4 23.07
NLLB 3.3B 46.97 0.7059 36.55 26.17
LINDAT - - - -
MadLad 7B 51.42 0.7402 32.76 24.21
MadLad 10B 51.82 0.7437 31.78 23.14
NLLB 54B 47.26 0.7071 36.34 26.2

Table 14: Translation from English into Swedish.

80



C PMP Phrase Alternatives

Language Translations
EN Based on medical reports.
BG Въз основа на медицинските доклади.

Въз основа на медицински доклади.
На базата на медицински доклади.
Въз основа на медицински съобщения.

CS Na základě lékařských zpráv.
EL Βασισμένο σε ιατρικές εκθέσεις.

Με βάση ιατρικές εκθέσεις.
Βάσει ιατρικών εκθέσεων.
Με βάση τις ιατρικές εκθέσεις.
Βάσει των ιατρικών εκθέσεων.
Σύμφωνα με τις ιατρικές εκθέσεις.

ES Basado en informes médicos.
Según los informes médicos.
De acuerdo con los informes médicos.
Con base en los informes médicos.
Fundado en informes médicos.

RO Pe baza rapoartelor medicale.
PL Na podstawie raportów medycznych.

Na podstawie sprawozdań lekarskich.

Table 15: Translations of the phrase "Based on medical
reports." used as alternative phrases to look for in the
translated paragraphs in the PMP MT approach.

D PMP Example

Figure 4: Example of the MT process based on the PMP
approach using the MadLad model.

E Filtration Experiments

Figure 5: Filtration experiment for Medication and Rela-
tions subsets with mBERT. X-axis describes the percent-
age of the weakest answer evidence substrings that are
removed from the training sets. Y-axis shows the F1 and
EM scores of the Paragraph QA task for all translations.

81



F Multilingual Question Answering Results - Relations Subset

EM Score Full Test Set Intersection Test Set
Models EN BG CS EL ES PL RO EN BG CS EL ES PL RO
distilmBERT (mono) 91.0 60.7 67.6 49.5 72.0 59.2 69.4 89.5 68.8 73.9 55.8 74.1 65.8 76.2
mBERT (mono) 92.8 63.2 70.0 51.5 74.3 61.8 70.8 90.7 71.3 76.6 57.6 76.3 68.5 77.2
XLM-R (mono) 93.2 63.3 71.1 52.3 75.3 62.9 72.2 91.1 70.9 77.4 58.7 77.1 69.6 79.0
XLM-R Large (mono) 93.6 64.7 72.4 54.6 76.2 65.1 73.1 91.5 72.8 78.9 60.9 78.1 72.3 80.0
distilmBERT (multi) 91.5 62.1 70.0 50.8 73.9 60.9 71.0 89.9 70.0 76.5 57.3 76.1 67.6 77.4
mBERT (multi) 92.6 63.3 70.6 52.3 75.1 62.8 72.1 90.3 71.2 77.3 58.6 76.5 70.0 78.5
XLM-R (multi) 93.0 64.1 72.4 53.1 75.8 63.8 72.7 91.0 72.2 78.9 59.3 77.8 70.7 79.6
XLM-R Large (multi) 93.2 65.5 72.8 54.1 76.5 64.8 74.0 91.0 73.5 78.9 60.8 78.7 71.6 80.9

Table 16: QA results on the Relations subset (EM scores) for monolingual (mono) and multilingual (multi) models.

F1 Score Full Test Set Intersection Test Set
Models EN BG CS EL ES PL RO EN BG CS EL ES PL RO
distilmBERT (mono) 96.3 82.6 85.7 79.7 89.4 83.8 87.2 95.3 86.4 88.4 83.2 90.0 86.4 89.4
mBERT (mono) 97.3 84.5 87.7 81.9 91.0 86.2 88.6 96.1 90.4 88.2 85.2 91.5 88.8 90.8
XLM-R (mono) 97.4 85.2 88.6 82.5 91.7 87.2 89.5 96.2 88.7 91.0 85.7 92.1 89.6 91.7
XLM-R Large (mono) 97.6 86.1 89.5 84.3 92.2 88.7 90.3 96.4 89.8 92.0 87.3 92.7 91.0 92.5
distilmBERT (multi) 96.7 83.9 87.8 81.4 90.8 85.7 88.6 95.8 87.6 90.3 84.9 91.3 88.3 90.5
mBERT (multi) 97.3 85.2 88.7 83.0 91.8 87.3 89.6 96.1 88.9 91.2 86.2 92.1 89.8 91.6
XLM-R (multi) 97.4 85.9 89.3 83.7 92.5 88.4 90.3 96.3 89.6 91.7 86.7 93.0 90.6 92.4
XLM-R Large (multi) 97.5 86.7 89.9 84.5 92.7 89.2 90.9 96.4 90.4 92.2 87.6 93.2 91.1 93.2

Table 17: QA results on the Relations subset (F1 scores) for monolingual (mono) and multilingual (multi) models.
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