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Abstract
Medication Extraction and Mining of its
related attributes play an important role in
healthcare NLP research due to its practi-
cal applications in hospital settings, such as
their mapping into standard clinical knowl-
edge bases (SNOMED-CT, BNF, etc.). In this
work, we investigate state-of-the-art LLMs in
text mining tasks on medications and their re-
lated attributes such as dosage, route, strength,
and adverse effects. In addition, we explore
different ensemble learning methods (STACK-
ENSEMBLE and VOTING-ENSEMBLE) to aug-
ment the model performances from indi-
vidual LLMs. Our ensemble learning re-
sult demonstrated better performances than
individually fine-tuned base models BERT,
RoBERTa, RoBERTa-L, BioBERT, BioClin-
icalBERT, BioMedRoBERTa, ClinicalBERT,
and PubMedBERT across general and spe-
cific domains, with statistical significance
testing (p=0.048). Finally, we build up
an entity linking function to map extracted
medical terminologies into the SNOMED-
CT codes and the British National Formu-
lary (BNF) codes, which are further mapped
to the Dictionary of Medicines and De-
vices (dm+d), and ICD (Clinical Coding).
We host the fine-tuned models and desk-
top applications at https://github.com/
pabloRom2004/Insight-Buddy-AI-App

1 Introduction

Information Extraction on Medications and their
related attributes plays an important role in nat-
ural language processing (NLP) applications in
the clinical domain to support digital healthcare.
Clinicians and healthcare professionals have been
doing manual clinical coding for quite a long time
to map clinical events such as diseases, drugs, and
treatments into the existing terminology knowledge
base, for instance, ICD and SNOMED. The proce-
dure can be time-consuming yet without a guaran-
tee of total correctness due to human-introduced

errors. With the process of automated informa-
tion extraction on medications, it will be further
possible to automatically map the extracted terms
into the current terminology database, i.e. the au-
tomated clinical coding. Due to the promising fu-
ture of this procedure, different NLP models have
been deployed in medication mining and clinical
coding in recent years. However, they are often
studied separately. In this work, 1) we investigate
text mining of medications and their related at-
tributes (dosage, route, strength, adverse effect, fre-
quency, duration, form, and reason) together with
automated clinical coding into one pipeline. In
addition, 2) we investigate the ensemble learning
mechanisms (Stack and Voting) on a broad range of
NLP models fine-tuned for named entity recogni-
tion (NER) tasks. These models include both gen-
eral domain trained BERT, RoBERTa, RoBERTa-L,
and domain-specific trained BioBERT, BioClini-
calBERT, BioMedRoBERTa, ClinicalBERT, and
PubMedBERT. In this way, users do not have to
worry about which models to choose for clinical
NER. Instead, they can just place the newer mod-
els into the ensemble-learning framework to test
their performances. We offer desktop applications
and web interfaces for the clinical NER, ensemble,
and coding models we are developing upon paper
acceptance.

2 Literature Review and Related Work

2.1 Biomed/Clinical Named Entity
Recognition

Named Entity Recognition (NER) is a critical task
for extracting key information from unstructured
text, like medical letters. The complexity and
context-dependency of medical language pose sig-
nificant challenges for accurate entity extraction.
Traditional approaches to NER, such as rule-based
systems, have shown limited success in capturing
the nuanced contextual information crucial for clin-
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ical NER (Nadeau and Sekine, 2007). The advent
of deep learning methods, particularly Long Short-
Term Memory (LSTM) networks, marked a signif-
icant improvement in NER performance (Graves
and Schmidhuber, 2005), e.g. the ability to cap-
ture long-range dependencies in text. However,
these models still struggled with rare entities and
complex contextual relationships in clinical notes.
The introduction of BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al.,
2019) revolutionised various NLP tasks, includ-
ing NER. BERT’s self-attention mechanism and
bidirectional training allow it to capture nuanced
contextual information over long pieces of text.
The model’s pre-training on a large corpus using a
masked language modelling objective builds rich
token representations. The model can then be later
fine-tuned by adding a classification layer at the
end of the network to make decisions over each
individual token embedding.

However, BERT’s pre-training on general do-
main corpora (Wikipedia and books) limited its
effectiveness on specialised medical texts. This lim-
itation led to the development of domain-specific
BERT variants. For example, BioBERT (Lee et al.,
2019), pre-trained on large-scale biomedical cor-
pora; ClinicalBERT (Wang et al., 2023), fine-tuned
on EHR data from 3 million patients after pre-
training on 1.2 billion words of diverse diseases,
and other variants like Med-BERT (Rasmy et al.,
2021) have demonstrated enhanced performance
on medical NER tasks due to their specialised train-
ing on the medical domain 1. Despite these im-
provements, single-model approaches still strug-
gle with the inherent complexity and variability of
clinical text, as the comparative studies reported
in (Belkadi et al., 2023) across different models
using BERT, ClinicalBERT, BioBERT, and scratch-
learned Transformers.

2.2 Ensemble Learning for Biomedical NER

Ensemble methods have emerged as a promising
direction to address these challenges, they have
proven useful in other fields, such as computer
vision (Lee et al., 2018). By combining multi-
ple models, ensembles can leverage the strengths
of different models while mitigating their individ-
ual weaknesses. In the context of NER, ensemble

1there have been other versions of Clinical BERTs such
as (Huang et al., 2019) and (Alsentzer et al., 2019) that were
trained on Medical Information Mart for Intensive Care III
(mimiciii) data (Johnson et al., 2016) respectively.

learning has shown performance improvements,
as shown by (Naderi et al., 2021), where an en-
semble is used in a health and life science corpus
for a significant improvement in performance over
single models. (Naderi et al., 2021) conducted
max voting for word-level biology, chemistry, and
medicine data. However, on clinical/medical NER,
they only focused on French using the DEFT bench-
mark dataset; while for the other two domains of
biology and chemistry, they tested on English data.
There are two commonly used ensemble methods,
voting and stacked ensembles: 1) Maximum vot-
ing in ensembles where each model contributes
equally to the final decision as used in the paper
(Naderi et al., 2021) have proved effective. This is
where the most voted label is picked. 2) Training
a network on the outputs of the ensemble aims to
capture more nuanced relationships. This is accom-
plished using a method called stacking introduced
by (Wolpert, 1992). Stacking offers a more sophis-
ticated approach by training a meta-model on the
outputs of the base ensemble; the model is expected
to learn more complex patterns from the ensemble
outputs, leading to better predictions. This has
proven effective in this paper (Saleh et al., 2022)
where they use a stacked ensemble with a support
vector machine (SVM) for sentiment analysis. In-
stead, we will use a simple feed-forward network
from the outputs of the ensemble to the final labels
for our tasks. more examples on stacked ensem-
ble can be found at (Mohammed and Kora, 2022;
Güneş et al., 2017).

Earlier work on ensemble learning for biomed-
ical NER mostly includes older models such as
BiLSTM, CRF, SEARN, and RNNs (Ju et al.,
2020; Kim and Meystre, 2020; Christopoulou et al.,
2020). This work aims to address this gap by
investigating 1) whether stacked and voting en-
sembles can make a difference on NER tasks of
clinical notes, 2) the ensemble performance on
newer Deep Learning models based on BERT from
domain fine-tuning, which are a) general domain
BERT, RoBERTa, and RoBERTa-L, and b) biomed-
ical domain BioBERT, BioClinicalBERT, BioMe-
dRoBERTa, ClinicalBERT, and PubMedBERT.

2.3 Model Quantisation
To make the LLMs more computational friendly
and available for smaller machine users, model
quantisation is a recent topic in deep learning to
reduce the required memory when running the
model mostly by reduce the model size, but with-
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Figure 1: INSIGHTBUDDY Framework Pipeline: individual NER model fine-tuning, ensemble, and entity linking.
Two kinds of base models include the general domain and the biomedical domain with their Huggingface repositories
in Table 3. Pre-preprocessing data: cut the sequence with the first full stop “.” after the 100th word, otherwise, cut
the sequence up to 128 words. Fine-tuning: using the same parameter sets for all eight models. Ensemble: different
strategies will be displayed in Fig 2. Entity Linking: links to clinical KB including BNF and SNOMED.

out much effecting the model performances. There
are quantisation-aware training and post-training
quantisation (PTQ). We use the extreme reduction
to 4-bit (16 values) transformers.js Q4 implemen-
tation in our work for PTQ. Recent work on this
topic can be found at (Lin et al., 2024; Liu et al.,
2023).

3 Methodologies

The Overall framework of INSIGHTBUDDY is
shown in Figure 1, which displays the base mod-
els we included from the general domain 1) BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and RoBERTa-Large, and 2) biomedical/clinical
domains BioBERT (Lee et al., 2019), BioClinical-
BERT (Alsentzer et al., 2019), BioMedRoBERTa
(Gururangan et al., 2020), ClinicalBERT (Wang
et al., 2023), and PubMedBERT (Gu et al., 2020).
The fine-tuning of eight models uses the same set of
parameters (Section 4 for parameter selections) and
the n2c2-2018 shared task training data with data
pre-processing. The initial evaluation phase using
n2c2-2018 testing set gives an overall idea of each
model’s performance. This is followed by ensem-
ble learning on all the models’ outputs. With the
output from NER models, we add an entity linking
function to map the extracted medical entities into
the standard clinical terminology knowledge base
(KB), using SNOMED-CT and BNF as our initial
KB, which is further mapped to ICD and dm+d.

For data pre-processing, we chunk the sequence
into a maximum of 128 words. If there is a full stop

“.” between the 100th and 128th word, it will be
cut at the full stop. Regarding ensemble-learning
strategy, we draw a InsightBuddy Ensemble figure
(Figure 2) to explain in detail. Firstly the initial
output of eight individual fine-tuned NER models
is tokenised, i.e. at the sub-word level, due to the
model learning strategy, e.g. “Para ##ce ##tam
##ol” instead of “Paracetamol”. What we need to
do at the first step is to group the sub-word tokens
into words for both practical application and vot-
ing purposes. However, each sub-word is labeled
with predefined labels and these labels often do not
agree with each other within the same words. We
designed three group solutions, i.e. first-token
voting/selection, max-token voting, and average
voting. The first-token voting is to assign a word
the same label as its first sub-word piece. For ex-
ample, using this strategy, the word “Paracetamol”
will be labeled as “B-Drug” if its first sub-word
“Para” is labeled as “B-Drug” regardless of other
labels from the subsequent sub-words. The max-
token voting will assign a word the label that has the
highest sub-word logit, this indicates that the model
is more confident in that prediction, the higher the
logit is. The average voting solution calculates the
average logits across all sub-words predictions and
then samples from this to get the label for the entire
word.

Regarding word-level ensemble learning, we
investigate the classical voting strategy with mod-
ifications (two solutions). For the first solution
“>=4 or O”, if there are more than half of the mod-
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Figure 2: INSIGHTBUDDY Voted Ensemble Pipeline: individual NER model fine-tuning outputs are at token/sub-
word level. "Logits are the outputs of a neural network before the activation function is applied" first, we do the
grouping of sub-words into words using three strategies: first token label, max token voting, or average voting (from
our results, the first-token-lable selection gives higher Recall, while other two voting give higher precision, but they
all end with the same F1 score, ref Table 4 ). || We take the best output from the first token label selection as the
solution. For word-level ensemble on eight models, we have two solutions for voting, 1) either majority voting with
>= 4 labels as the same then we pick it, otherwise choose default “O”, or 2) max voting with the most popular label
whatever it is; for max voting, if there is a tie, e.g. (3,3,2), we tested both alphabetical pick-up, or random pick-up
of tied labels. Our results show that “>=4, or O” performs similarly to “max + alphabetical”, while “max + random”
slightly performs lower.

els agree on one label, we pick this label, i.e. >=4
such same labels. Otherwise, we assign the default
“O” label to indicate it as context words, due to the
models’ disagreement. For the second solution, we
use max-voting, i.e. the most agreed label regard-
less of how many models they are, e.g. 2, 3, 4, or
more. In this case, if there are ties, e.g. (3, 3, 2) two
labels are voted both three times from six models,
we need to decide on the tied labels. There are two
solutions for the selection, 1) alphabetical, and 2)
fully randomised.

We also draw the STACKED-ENSEMBLE in Fig-
ure 12 and 13, where the model training and one-
hot encoded model predictions are illustrated. In
the training phase, we cut the real data into 80%
and 20% for the training and testing of the model.
Model exports are conducted only if at least 2 mod-
els are predicting a label that is not “O”; other-
wise “O” is the default option and the output is
ignored and not included in the stacked training
data. For training data collection, output logits for
each model are converted into a one-hot encoded
vector, concatenated and saved along with the real
label for each token. There are 8 one-hot encoded
vectors from 8 individual models and 1 label. So

the model during training will see the value “1”
eight times from the eight models, and the value “0”
for the rest of the vector values. Overall, there are 8
vectors with each length of 19 digits. So there will
be 8 (number of models) × 19 (number of labels) -
8 (eight 1s as there are 8 one hot encoded vectors
so they have a single 1 each) = 144 “0” values for
every training example. We use one-hot encoding
instead of the output logits themselves to avoid the
model overfitting because the model makes more
confident predictions when running on the training
set. As this is the data that it was originally trained
on, it is very confident with it’s predictions. We can
mitigate this by only feeding the one-hot encoded
vectors to the stacked network.

4 Hyper Parameter Optimisations

We used a set of parameters for model fine-tuning
and selected the better parameter set as below using
the validation data. We tried different learning rates
(0.0001, 0.0002, 0.00005) and batch sizes (16, 32).

• learning_rate: 0.00005

• train_batch_size: 32
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Individual models max-logit grouping (word)
Metric P R F1

BERT
accuracy 0.9773
macro avg 0.7942 0.7965 0.7928
weighted avg 0.9784 0.9773 0.9775

RoBERTa
accuracy 0.9780
macro avg 0.8029 0.8201 0.8094
weighted avg 0.9795 0.9780 0.9784

RoBERTa-Large
accuracy 0.9788
macro avg 0.8091 0.8351 0.8202
weighted avg 0.9802 0.9788 0.9792

ClinicalBERT
accuracy 0.9780
macro avg 0.8087 0.7916 0.7964
weighted avg 0.9785 0.9780 0.9779

BioBERT
accuracy 0.9776
macro avg 0.7972 0.8131 0.8027
weighted avg 0.9787 0.9776 0.9779

BioClinicalBERT
accuracy 0.9776
macro avg 0.7999 0.8090 0.8017
weighted avg 0.9788 0.9776 0.9779

BioMedRoBERTa
accuracy 0.9783
macro avg 0.8065 0.8224 0.8122
weighted avg 0.9797 0.9783 0.9786

PubMedBERT
accuracy 0.9784
macro avg 0.8087 0.8292 0.8166
weighted avg 0.9800 0.9784 0.9788

Voting Max logit ensemble word level
accuracy 0.9796
macro avg 0.8261 0.8259 0.8232
weighted avg 0.9807 0.9796 0.9798

Table 1: Word-level individual model (grouping using
max-logit) vs ensemble using max-logit, Eval on n2c2
2018 test data

• eval_batch_size: 32

• seed: 42

• optimizer: Adam with betas=(0.9,0.999) and
epsilon=1e-08

• lr_scheduler_type: linear

• lr_scheduler_warmup_ratio: 0.1

Model Macro P Macro R Macro F Accuracy Tokens
BERT 0.8336 0.8264 0.8283 0.9748 756798
ROBERTa 0.8423 0.8471 0.8434 0.9770 756014
ROBERTa-L 0.8489 0.8606 0.8538 0.9782 756014
PubMedBERT 0.8324 0.8381 0.8339 0.9783 681211
ClinicalBERT 0.8482 0.8245 0.8341 0.9753 796313
BioMedRoBERTa 0.8482 0.8477 0.8468 0.9775 756014
BioClinicalBERT 0.8440 0.8405 0.8406 0.9751 791743
BioBERT 0.8365 0.8444 0.8393 0.9750 791743

Table 2: INSIGHTBUDDY individual sub-word level
model eval on n2c2-2018 test set. The first group: nor-
mal domain PLM; The second group: biomedical PLM.
The different numbers of Support are due to the different
tokenizers they used – ROBERTa and ROBERTa-L use
the same tokenizers, BioClinicalBERT and BioBERT
use the same tokenizers, and other models all use dif-
ferent tokenizers; PubMedBERT generated the least
number of sub-words/tokens 681,211 while Clinical-
BERT generated the largest number of tokens 796,313.

• num_epochs: 4

• mixed_precision_training: Native AMP

5 Experimental Evaluations

We use the n2c2-2018 shared task data on NER of
adverse drug events and related medical attributes
(Henry et al., 2020). The data is labeled with
the following list of labels: ADE, Dosage, Drug,
Duration, Form, Frequency, Reason, Route, and
Strength in BIO format. So, overall, we have 19
labels, 2 (B/I) x 9 + 1 (O). The original training
and testing sets are 303 and 202 letters respectively.
We divided the original training set into two parts
(9:1 ratio) for our model selection purposes: our
new training and validation set, following the data
split from recent work by (Belkadi et al., 2023).

We report Precision, Recall, and F1 score in two
categories “macro” and “weighted”, in addition to
Accuracy. The “macro” category treats each label
class the same weight regardless of their occurrence
rates, while the “weighted” category” assigns each
label class with a weight according to their occur-
rence in the data. We first report the individual
model fine-tuning scores and compare them with
related work (subword level); then we report the
ensemble model evaluation with different ensemble
solutions (word level).

5.1 Individual Models: sub-word level
The performance of individual models after fine-
tuning is reported in Table 2 where it says that
RoBERTa-L performs the best in the macro Pre-
cision (0.8489), Recall (0.8606) and F1 (0.8538)
score across general domain models, also winning
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Table 3: INSIGHTBUDDY integrated individual models
and their Huggingface repositories.

Ensemble List Link
BERT https://huggingface.co/google-bert/bert-base-uncased
BioBERT https://huggingface.co/dmis-lab/biobert-base-cased-v1.2
ClinicalBERT https://huggingface.co/medicalai/ClinicalBERT
BioClinicalBERT https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
PubMedBERT https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
BioMedRoBERTa https://huggingface.co/allenai/biomed_roberta_base
RoBERTa https://huggingface.co/FacebookAI/roberta-base
RoBERTa Large https://huggingface.co/FacebookAI/roberta-large

domain-specific models. BioiMedRoBERTa wins
the domain-specific category models producing
macro Precision, Recall, and F1 scores (0.8482
0.8477 0.8468). In comparison to the NER work
from (Belkadi et al., 2023), who’s macro avg
scores are: 0.842, 0.834, 0.837 from ClinicalBERT-
Apt, our fine-tuned ClinicalBERT has similar per-
formances (0.848, 0.825, 0.834), which shows
our fine-tuning was successful. However, our
best domain-specific model BioMedRoBERTa pro-
duces higher scores: macro P/R/F1 (0.8482 0.8477
0.8468) and weighted P/R/F1 (0.9782 0.9775
0.9776) and Accuracy 0.9775 as in Figure 6.
Furthermore, the fine-tuned RoBERTa-L even
achieved higher scores of (0.8489 0.8606 0.8538)
for macro P/R/F1 and Acc 0.9782 in Figure 13.
Both fine-tuned BioMedRoBERTa and RoBERTa-
Large also win the best models reported by (Belkadi
et al., 2023) which is their ClinicalBERT-CRF
model, macro avg (0.85, 0.829, 0.837), Acc 0.976.
Afterwards, in this paper, we emphasis on word
level instead of sub-word, which was focused on
by (Belkadi et al., 2023).

5.2 Ensemble: word-level grouping (logits)

We tried first logit voting, max voting, and average
voting to group sub-words into words with corre-
sponding labels. Their results are shown in Table
4, in the upper group. First logit voting produced a
higher Recall 0.8260 while Max logit voting pro-
duced a higher Precision 0.8261 resulting in higher
F1 0.8232, i.e. Max logit > First logit > Aver-
age logit with macro F1 (0.8232, 0.8229, 0.8227).
However, overall, their performance scores are very
close, so we chose the first-logit voting output for
the afterward word-level ensemble due to computa-
tional convenience.

5.3 Individual vs Ensemble Models

The word-level performance comparisons from in-
dividual models and voting max-logit ensembles
are presented in Table 1.

Figure 3: ClinicalBERT Eval at Sub-word Level. This
score is similar (slightly winning R/F1) to (Belkadi et al.,
2023) paper on ClinicalBERT-Apt whose macro: (85.3
81.0 82.5) and weighted: (0.974, 0.975, 0.974), which
says our fine-tuning is successful. However, our best
domain-specific model BioMedRoBERTa produces bet-
ter score: macro P/R/F (0.8482 0.8477 0.8468) and
weighted P/R/F (0.9782 0.9775 0.9776) and Accuracy
0.9775 as in Figure 8. Furthermore, the fine-tuned
RoBERTa-L even achieved higher scores of (0.8489
0.8606 0.8538) for P/R/F1 and Acc 0.9782 in Table 1.
Afterwards, in this paper, we emphasis on word level
instead of sub-word, which was focused by Belkadi et al.
(2023).

5.4 Ensemble: Voting vs Stacked (one-hot)
Regarding Stacked Ensemble using one-hot en-
coded vectors, as shown in the middle group in
Table 4, it actually produced higher Precision score
0.8351 in comparisons to the highest Precision
0.8261 from Voting Ensembles. However, the Re-
call score on macro avg is 2 point lower than the
voting ensemble, 0.8065 vs 0.8260, which means
that the Stacked Ensemble reduced the false pos-
itive errors but also increased the false negative
error prediction. This implies that it has stricter
constraint on positive predictions.

5.5 Ensemble Models: BIO-span vs non-strict
word-level

So far, we have been reporting the evaluation scores
on the BIO-strict label categorization, i.e. we dis-
tinguish between the label’s beginning or the inner
part of the label. For instance, a B-Drug will be
different from an I-Drug and it will be marked
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as wrong if they are different from the reference.
However, we think in practice, there are situations
when users do not need the BIO, especially B and
I difference. In Table 4, we can see that, without
considering the label difference of B and I, only
focusing on the 9 label categories, word level en-
semble model produced much higher Macro avg
evaluations cores on Precision (0.8844) and Recall
(0.8830) leading to higher F1 (0.8821), in compari-
son to BI-distinguished Macro F1 0.8232 (voting-
max-logit) and F1 0.8156 (stacked-first-logit).

5.6 Word-level: voting ensembles vs
individual fine-tuned

As in Table 1, BioMedRoBERTa individual
word level max logit grouping scores macro avg
P/R/F1 (0.8065 0.8224 0.8122 563329) vs max
logit ensemble voting P/R/F1 (0.8261 0.8259
0.8232), we can see that ensemble boosted P
(0.8261-0.8065)/0.8065= 2.43%, and F1 (0.8232-
0.8122)/0.8122= 1.35% which says the ensemble
voting is successful. By increasing the Precision
score, the ensembles reduce the false positive la-
bels in the system output, while keeping the Recall
at the same level, i.e. the true positive labels.

5.7 Model Quantisation

To reduce the computational cost, we also carried
out the quantisation on fine-tuned models. The
quantised model can perform similar level of accu-
rate scores in comparison to the original models but
with 25% of the size. For instance, using BioMe-
dRoberTa, the quantised model achieved (0.811,
0.821, 0.814) for macro(P, R, F1), which is very
similar to the original size fine-tuned model scores
(0.8065, 0.8224, 0.8122) as in Table 1, even achiev-
ing slightly higher Precision and F1. The reasons
for this can be that 1) Block-wise Quantization:
The Q4 implementation isn’t just reducing preci-
sion uniformly - it uses sophisticated block-wise
quantisation that preserves important patterns while
simplifying others. 2) Calibrated Discretization:
The extreme reduction to 4-bit (16 values) forces
more decisive classification boundaries, which can
be beneficial for NER tasks where clear token
boundaries are important. 3) Optimisation Benefits:
The transformers.js Q4 implementation includes
specific optimisations for inference beyond sim-
ple precision reduction. Overall, this is fundamen-
tally different from naive quantization - the trans-
formers.js/GGML approach is carefully designed
to maintain model performance while drastically

reducing size. In some cases, this sophisticated
quantisation can improve results by simplifying
decision boundaries in beneficial ways.

The full model size is 497 MB and the 4 Bits
Quantised model is 125 MB. The corresponding
detailed evaluations on each entity type and the
confusion matrix for quantised BioMedRoBERTa
are presented in Figure 6 and 7 on word level with
BIO.

Voting Average Ensemble word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8253 0.8256 0.8227 ± 0.0037
weighted avg 0.9807 0.9796 0.9798

Voting First logit Ensemble word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8255 0.8260 0.8229 ± 0.0034
weighted avg 0.9807 0.9796 0.9798

Voting Max logit Ensemble word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8261 0.8259 0.8232 ± 0.0036
weighted avg 0.9807 0.9796 0.9798

Stacked Ensemble first logit word level (BIO)
Metric P R F1
accuracy 0.9796
macro avg 0.8351 0.8065 0.8156 ± 0.0037
weighted avg 0.9800 0.9796 0.9794

Non-BIO-only-word ensemble
Metric P R F1
accuracy 0.9839
macro avg 0.8844 0.8830 0.8821 ± 0.0025
weighted avg 0.9840 0.9839 0.9838

Table 4: Word-level grouping ensemble voting evalu-
ation with significance test. F1 score: max > first >
average logit voting though they are very close scores.
The stacked ensemble has the highest Precision scores,
but the lowest Recall scores, which lead to lower F1. In
the bottom cluster, it is the word-level evaluation with-
out distinguishing B/I labels, evaluation on n2c2 2018
test data.

5.8 Significance Test

To assess the statistical significance of performance
differences between ensemble methods and the
strongest individual model (RoBERTa-Large with
first token strategy), we conducted bootstrap re-
sampling tests with 500 iterations. Our analysis
revealed that the Non-BIO-only-word ensemble
showed statistically significant improvement (p =
0.048) over the baseline. Interestingly, while the
Stacked Ensemble first logit approach performed
significantly worse in F1 score (p = 0.002), it
achieved the highest precision (0.8351) among all
methods, suggesting potential utility for precision-
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Figure 4: Demonstration of Clinical Events Outputs
using A Synthetic Letter.

Figure 5: Context-awareness Feature using Window
Parameter around the Entity

focused applications. The three Voting ensem-
ble approaches (Average, First logit, and Max
logit) showed slight numerical improvements in
F1 scores but these differences did not reach statis-
tical significance (p > 0.05).

For robust evaluation, we calculated 95% confi-
dence intervals using bootstrap resampling on the
test dataset. This involved randomly sampling 95%
of the sentences with replacement, calculating the
F1 score for each resampled dataset, and repeat-
ing this process 200 times per model. The stan-
dard deviation across these iterations provides a
measure of performance stability across different
subsets of the data. These findings demonstrate
that while some ensemble configurations can offer
consistent improvements, performance gains are
sensitive to both the specific ensemble strategy em-
ployed and the evaluation methodology. Our com-
prehensive comparison provides valuable insights
for researchers applying ensemble approaches to
clinical named entity recognition tasks.

6 Entity Linking: BNF and SNOMED

To map the identified named entities into the clin-
ical knowledge base. We use the existing code
mapping sheet from the British National Formulary

Figure 6: BioMedRoBERTa Quantised Model Eval.

(BNF) web between SNOMED-CT, BNF, dm+d,
and ICD 2. We preprocessed the SNOMED code
from 377,834 to 10,804 to filter repeated examples
between the mapping of SNOMED and BNF. We
looked for non-drug words present in the text, then
we filtered the drugs further by seeing if words like
[’system’, ’ostomy’, ’bag’, ’filter’, ’piece’, ’clo-
sure’] were present in the text, and if so, it was
discarded.

For SNOMED CT mapping, we applied a fuzzy
search to the cleaned mapping list with drug names.
Then the SNOMED CT code will be added to
the searching function on the SNOMED CT web,
whenever there is a match. For BNF mapping, the
linking function uses keyword search to retrieve
the BNF website with corresponding drugs, due to
its different searching features in comparison to the
SNOMED-CT web page. Potential users can select
whichever is suitable to their preferences between
the two clinical knowledge bases (KBs), Figure 11.

7 InsightBuddy-AI Desktop Application

We illustrate the Desktop Applications of
InsightBuddy-AI in Figure 4 and 14, for demonstra-
tion of clinical event recognition using a synthetic
letter via 1) loading our pre-trained model and com-
mon NER categories via 2) loading a Huggingface
NER model. There is also a sliding window fea-
ture called “context length” to allow flexible length
of context around the entities visible to users, as in

2https://www.nhsbsa.nhs.uk/prescription-data/
understanding-our-data/bnf-snomed-mapping
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Figure 7: BioMedRoBERTa Quantised Eval Confusion
Matrix.

Figure 8: BioMedRoBERTa Eval at Sub-word Level on
n2c2 2018 test data.

Figure 5. For Clinical Coding (entity linking) op-
tions, the desktop application can currently directly
link the extracted entities to BNF and SNOMED-
CT. The INSIGHTBUDDY-AI software supports
both Mac and Windows systems.

8 Discussion and Conclusion

In this paper, we investigated Stacked Ensemble
and Voting Ensemble on medical named entity
recognition tasks using eight pretrained LMs from
both general and biomed/clinical domains. Our
experiments show that our fine-tuned best individ-
ual models outperformed the state-of-the-art on
standard shared task data n2c2-2018. The two en-
semble strategies using output logits and one-hot

Figure 9: word-level grouping ensemble, max logit vot-
ing Eval on n2c2 2018 test data.

Figure 10: word-level ensemble max-logit voting Eval
confusion matrix on n2c2 2018 test data.

encoding further improved the model performances.
We carried out model quantisation and again im-
proved the model performances, especially on Pre-
cision scores, while reducing the model size by
75%. We carried out statistical significance test-
ing and the results show that the word-level MER
ensemble significantly improved over the baseline
model (p=0.048). We offer desktop applications
and user interfaces for individual fine-tuned models
where we added the entity linking/normalisation
function to BNF and SNOMED CT clinical knowl-
edge base. We call the package INSIGHTBUDDY-
AI, which is released publicly for free research
use.
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Limitations

The affiliated entity linking / clinical coding part
of our software InsightBuddyAI was manually ver-
ified by ourselves qualitatively with some sampled
medical terms, especially drug names. It would
be more accurate to 1) quantitatively evaluate such
entity linking result, as well as 2) a systematic qual-
itative assessment such as by multiple annotators
(clinical coders) with the measurement of agree-
ment levels. For option 2), it is costly to carry out
such an experiments. For option 1), we are still
looking for any publicly available data set for such
purposes.

At the publication stage, we are informed of
the related software implementation in this do-
main from Johnsnowlabs 3 on Clinical NER. While
this is a commercialised company developing NLP
packages for healthcare, it is worthy in the future
to carry out some comparisons on experimental
performances using the same shared task data. On
the other hand, it is also possible that they already
integrated the shared task data into their system
pre-trainings.

In addition, a more detailed error analysis, par-
ticularly for specific entity types or challenging
cases, would help determine whether improve-
ments are consistent across all medication at-
tributes. The current study does not compare en-
semble models with decoder-only large language
models (LLMs), such as GPT-4 or BioMistral,
demonstrating strong zero-shot and fine-tuned per-
formance. It is useful to integrate such compar-
isons in the future, even though this is already an
extended investigation with more findings based
on our initial software release IndightBuddy-AI
(Romero et al., 2025).
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A Diagrams on System Details

More details on Stacked Ensemble are listed in
Figure 12 and 13 on training strategy and one-hot
encoding. Figure 11 shows the entity linking /
coding diagram.

B Further Analysis on Models and Scores

B.1 Word-level vs Sub-word Level scores
From word-level ensemble result in Figure 9, it
says that the ensembled model can achieve word-
level evaluation scores 0.826, 0.826, and 0.823 for
macro P/R/F1, which is close to sub-word level
best model 0.847 F1. We can see that at word-
level evaluation, there are 563,329 support tokens
in Figure 9, vs sub-word level 756,014 tokens in
Figure 8.

Word-level ensemble voting, max-logit voting
> first-logit > average-logit, as shown in Table 4,
with Macro F1 scores (0.8232, 0.8229, 0.8227)
respectively, which are very close though. They
have the same weighted average F1 and Accuracy
scores (0.9798, 0.9796) respectively.

B.2 Ensemble: Stacked using output logits
(non one-hot)

When we used the ‘output logits’ instead of ‘one-
hot encoding’ for stacked ensemble, as we dis-
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Figure 11: ENTITYLINKING: function illustration for mapping to both BNF and SNOMED-CT

Figure 12: STACKEDENSEMBLE: training strategy.

cussed in the methodology section, it will lead to
overfitting issues. We use the Max logit stacked
ensemble as an example, which shows that the
Stacked Ensemble using output logits produced
much lower evaluation scores macro avg (0.6863,
0.7339, 0.6592) than the voting mechanism macro
avg (0.8261, 0.8259, 0.8232) for (P, R, F1).
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Figure 13: STACKEDENSEMBLE: one-hot encoding data.

Figure 14: Loading Any Huggingface NER model: example outcome with typical (PER, LOC, ORG, MISC) label
set
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