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Abstract

Chronic Kidney Disease (CKD) is a global
health challenge, affecting 5–10% of the pop-
ulation, with a significant burden on health-
care systems. Early prediction of CKD pro-
gression from stage III to stage V is crucial to
enable timely interventions. Traditional pre-
dictive methods rely on biochemical markers
and demographic factors, but are often limited
by issues such as missing data and reliance
on structured inputs. This study explores the
potential of several encoder-based language
models, to predict CKD progression using a
cohort from the Clinical Practice Research
Datalink (CPRD) GOLD database. We applied
both Full Fine-Tuning (FFT) and Parameter-
Efficient Fine-Tuning (PEFT) with LoRA to
pre-trained models, comparing them against
traditional machine learning algorithms such
as Random Forest and XGBoost. Our results
show that fine-tuned models, particularly dmis-
lab/biobert-v1.1-FFT, outperform traditional
models in predicting CKD progression, with an
AUC of 0.7787, precision of 0.7261, and accu-
racy of 0.7045. Although LoRA-based models
are more computationally efficient, they con-
sistenly exhibit lower performance. These find-
ings suggest that fine-tuned encoder models
hold significant potential for improving CKD
progression prediction. However, there is still
room for further enhancement in their accuracy
and applicability in clinical settings.

1 Introduction and Related Work

1.1 Introduction

Chronic Kidney Disease (CKD) is one of the
leading causes of mortality worldwide, affecting
approximately 5–10% of the global population
(Eknoyan et al., 2004; Martínez-Castelao et al.,
2014). The disease imposes a significant burden on
healthcare systems, and early prediction of CKD
progression is crucial for improving patient out-
comes. CKD is classified into five stages: stage I,

stage II, stage III, stage IV, and stage V —based
on estimated glomerular filtration rate (eGFR) val-
ues: stage I (eGFR 90), stage II (60 eGFR 89),
stage III (30 eGFR 59), stage IV (15 eGFR 29),
and stage V (eGFR < 15). Accurate prediction of
progression from stage III to stage V is critical to
enable timely interventions that can help mitigate
associated risks.

The United States Renal Data System (USRDS)
report indicates that approximately 35.4% of CKD
patients are referred to interdisciplinary programs
later than recommended, likely due to insufficient
risk profile classification (Isaza-Ruget et al., 2024;
Mendelssohn et al., 2009). This delay can com-
promise the effectiveness of potential treatments,
highlighting the need for more efficient methods of
early detection and intervention.

Current predictive methods rely heavily on bio-
chemical markers like urinary albumin/creatinine
ratio (uACR), eGFR, and demographic factors such
as age and sex. While these models are useful, they
often suffer from limitations, such as missing data
in biochemical measures, making imputation unre-
liable and potentially leading to biased predictions.
However, it is important to note that bias is not
exclusive to these methods—pre-trained language
models and other machine learning approaches can
also exhibit biases, depending on data distributions.
Additionally, existing risk calculators are often con-
strained by structured data and require extensive
manual feature engineering, which can limit their
flexibility and adaptability.

The potential for language models to improve
CKD progression prediction remains largely unex-
plored, especially in the context of large, complex
datasets such as those from the Clinical Practice
Research Datalink (CPRD). This study seeks to ad-
dress this gap by applying state-of-the-art encoder
models like BioBERT and ClinicalBERT to pre-
dict CKD progression, focusing on domain-specific
fine-tuning to improve prediction accuracy. The
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motivation for this approach stems from the recog-
nition that language models pre-trained on medical
texts can uncover subtle patterns in clinical data
that traditional models may miss.

Our key contributions are as follows:

• Comparing domain-specific and general-
domain BERT models for CKD progression
prediction.

• Benchmarking BERT models against tradi-
tional machine learning approaches (XGBoost
and Random Forest).

• Assessing Parameter-Efficient Fine-Tuning
(PEFT) as a resource-efficient adaptation
method.

1.2 Related Work
A significant body of research has focused on pre-
dicting CKD progression using machine learning
models. For instance, a study by Isaza-Ruget et al.
(2024) utilized logistic regression, random forests,
and neural networks for CKD progression predic-
tion. This study incorporated a variety of patient
features, including demographics, lab results, and
comorbidities, to build a robust risk prediction
model. Despite promising results, traditional mod-
els like these are often constrained by the need
for structured data and manual feature engineering,
which can limit their scalability and accuracy when
applied to diverse populations.

Similarly, Klinrisk’s proprietary machine learn-
ing model (Tangri et al., 2024), validated in clinical
trial populations such as CANVAS (Neal et al.,
2013) and CREDENCE (Jardine et al., 2018),
demonstrated improved prediction of CKD progres-
sion compared to the Kidney Disease Improving
Global Outcomes (KDIGO) heatmaps and kidney
failure risk equations (KFRE). These models rely
on routinely collected laboratory data like eGFR
and albuminuria. However, they still face chal-
lenges when dealing with unstructured clinical data
or missing information, which transformer models
could address more effectively. The study by Zhu
et al. (2023), employs recurrent neural networks for
CKD progression prediction. Their model achieved
an AUROC of 0.957 with eGFR time-series data
alone, improving to 0.967 with additional clinical
variables.

In a similar vein, Reddy et al. (2024) developed
explainable machine learning models, including
decision trees and random forests, to predict CKD

progression. Their models achieved high predic-
tive accuracy (ROC-AUC: 0.94–0.98) using key
variables like eGFR slope and recent eGFR.

Saito et al. (2024) applied time-series cluster-
ing and LightGBM to stratify patients based on
eGFR trajectories, achieving a prediction accu-
racy of 0.675. According to Shapley values, the
most predictive features included baseline eGFR,
hemoglobin, and BMI, reinforcing the importance
of these variables in forecasting renal function de-
cline.

2 Methodology

This study aimed to predict the progression of
chronic kidney disease (CKD) from stage III (CKD
III) to stage V (CKD V) using a cohort of patients
from the CPRD GOLD database. To address class
imbalance, we employed age as a covariate in the
propensity score matching process, ensuring com-
parability between patients with differing progres-
sion outcomes. For prediction, we utilised machine
learning models, including traditional algorithms
(Random Forest and XGBoost) and encoder-based
language models. Our goal was to develop mod-
els for predicting CKD progression using both ap-
proaches.

We fine-tuned pre-trained models using Full
Fine-Tuning (FFT) and Parameter-Efficient Fine-
Tuning (PEFT) with LoRA, while also optimizing
hyperparameters for Random Forest and XGBoost
models. The following sections detail these ap-
proaches, including their implementation and eval-
uation.

2.1 Cohort Selection Criteria

We selected patients from the CPRD GOLD
database who were registered in a GP practice be-
tween 01/01/2010 and 31/12/2020, aged 16 years
or older, and had two or more long-term conditions
(LTCs). We used READ v2 and ICD10 codes to
identify individuals with CKD, specifically target-
ing stages III and V. A list of the relevant codes is
available in the provided GitHub link. We excluded
secondary care events that occurred after patients
were transferred out of their GP practices, result-
ing in a distribution of 206,553 patients in class
0 (CKD3) and 4,606 patients in class 1 (CKD5).
We then refined the cohort by removing patients
from the negative class (CKD3) who had a median
follow-up period of less than 6 years-2.4 months,
excluding 93,926 patients. We also excluded 166
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patients with terms related to preparatory care for
dialysis, renal transplant planning, ligation of arte-
riovenous dialysis fistulas, acute hypercalcaemia
of dialysis, or creation of graft fistulas for dialy-
sis. The final cohort comprised 122,267 patients
in class 0 (CKD3) and 4,606 patients in class 1
(CKD5).

2.2 Age-Matched Cohort

To reduce bias from confounding variables and
address the extreme imbalance between the neg-
ative and positive classes in our dataset, we used
the MatchIt R package with 1:1 nearest neighbor
(NN) for propensity score matching (PSM). This
approach matched patients from the CKD progres-
sion group with those from the non-progression
group based on the key covariate: age. By min-
imising the confounding effect of age, which sig-
nificantly influences CKD progression, we ensured
a balanced and fair comparison between the two
groups, despite the severe class imbalance. We
chose age as the sole matching criterion because it
is a critical risk factor for CKD progression. Differ-
entiating between physiological and pathological
kidney function decline becomes increasingly chal-
lenging with age (Noronha et al., 2022). Balancing
the age distribution between the progression and
non-progression cohorts was essential, given the
strong link between ageing and renal function de-
cline. After matching, the dataset included 4,596
instances in both the positive and negative classes.

2.3 Data Summary Statistics Table

Table 1 summarizes the key characteristics of the
dataset, providing an overview of the variables and
their distribution, which informs the subsequent
analysis.

2.4 Full fine-tuning and Parameter Efficient
fine-tuning (LoRA)

We framed CKD progression prediction as a se-
quence classification task, where each input se-
quence S represents a concatenation of patient-
specific attributes and can be defined as in Equa-
tion 1. :

S = [E,C1, P1, C2, P2, . . . , Cn, Pn], (1)

where E denotes the patient’s ethnicity, Ci repre-
sents the i-th LTC, and Pi denotes the i-th con-
tinuous prescription. A list of all possible LTCs

can be found in the GitHub link: AI MULTIPLY
GOLD Read Codes. A continuous prescription
is defined as a group of consecutive prescriptions
where each pair of prescriptions is at most 84 days
(Guthrie et al., 2011) apart. This group of con-
secutive prescriptions must contain at least three
prescriptions (Connor et al., 2024). We included
continuous prescriptions in our analysis that are
known to be associated with drug-induced renal in-
jury and nephrotoxicity. A comprehensive list can
be found in (Connor et al., 2024). The sequence
length is variable and depends on the number of
recorded conditions and prescriptions for each pa-
tient. Labels were assigned as y=1 for cases (pro-
gression) and y=0 for controls (non-progression).
To reduce potential confounding, we introduced a
6-month buffer period before CKD stage III diagno-
sis, excluding clinical events that occurred within
this window. A patient’s CKD stage III diagnosis
date might not reflect the exact onset of kidney dys-
function. Events occurring just before diagnosis
might be influenced by external factors rather than
true disease progression.

3 Experimental Setup

We evaluated several pre-trained encoder-based
models, including UFNLP/gatortron-base
(Yang et al., 2022), bert-base-uncased (De-
vlin, 2018), dmis-lab/biobert-v1.1 (Lee et al.,
2020), microsoft/BiomedNLP-BiomedBERT-
base-uncased-abstract-fulltext (Gu et al.,
2021), allenai/scibert_scivocab_uncased
(Beltagy et al., 2019),
bionlp/bluebert_pubmed_mimic_uncased_L
(Peng et al., 2019), and medicalai/ClinicalBERT
(Huang et al., 2019). Model training was conducted
using the Hugging Face Transformers library, with
each model fine-tuned over three epochs. We
tokenised the sequences to a maximum context
length of 512, used a learning rate of 2e-5, and
used AdamW optimization with weight decay of
0.001. Stepwise decay of the learning rate (gamma
= 0.1) was applied, along with gradient clipping
(max norm 1.0) to prevent exploding gradients.
Early stopping was used to stop training when the
validation error did not improve.

We compared LoRA (Low-Rank Adaptation)
(Hu et al., 2021) and full fine-tuning (FFT) for
CKD progression prediction, both of which used
similar configurations (learning rate of 2e-5, 5
epochs, maximum sequence length of 512, and
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Table 1: Summary Statistics of CKD Cohort

Variable Class 1 (N = 4,596 ) Class 0 (N = 4,596)
Age (mean ± SD) 66.34 ± 14.37 66.51 ± 13.84
Sex (Male / Female) 2,663 / 1,933 2,705 / 1,891
Ethnicity - -

White (%) 86.79 88.79
Black or Black British (%) 2.08 3.62
Asian or Asian British (%) 6.82 2.78
Mixed (%) 0.67 0.34
Unknown (%) 0.36 5.14
Chinese or Other Group (%) 1.71 0.84

Median progression time Stage V 6.24 years NA

batch size of 8). In full fine-tuning (FFT), all model
parameters are updated during training, which can
be computationally expensive. In contrast, LoRA
adapts the model weights using low-rank matri-
ces with a reduced number of trainable parameters.
Specifically, we apply a LoRA adaptation param-
eter r=16, which controls the rank of the matrices
and significantly reduces the number of parameters
being trained. This makes LoRA a more compu-
tationally efficient alternative to full fine-tuning,
particularly for large pre-trained models.

Both methods were evaluated using stratified 5-
Fold cross-validation, where each fold was split
into training, validation, and test sets. The valida-
tion set comprised 10% of the training data, strati-
fied by class labels. We reported the performance
metrics (accuracy, F1-score, precision, recall, and
AUC) averaged across folds, using mean values.

We tokenised and encoded input sequences us-
ing each model’s corresponding tokeniser, apply-
ing padding and truncation to ensure uniform in-
put lengths. Training was performed with a batch
size of 32 for FFT and 8 for LoRA, and Data-
Parallel was used when multiple GPUs were avail-
able. The validation performance was assessed
after each epoch, and the model with the lowest
validation loss was selected for testing. The train-
ing process involved optimizing the models using
the AdamW optimizer with weight decay and ad-
justing the learning rate using stepwise decay.

For each fold, the best model was evaluated on
the corresponding test set. Predictions were made
using softmax probabilities, which allowed us to
compute additional metrics such as area under the
receiver operating characteristic curve (AU-ROC),
accuracy, precision and recall.

For the tabular models, we conducted a grid

search to optimize hyperparameters for XGBoost
(learning rate, max depth, and number of estima-
tors) and Random Forest (number of estimators,
max depth, and minimum samples per split). We
employed 5-fold cross-validation, training the mod-
els on training subsets and evaluating them on val-
idation subsets. We report averaged performance
metrics: accuracy, F1 score, precision, recall, and
ROC AUC—across folds and record the best per-
forming hyperparameter configurations for each
metric.

4 Evaluation and Results

Figure 1 compares the performance of various mod-
els using five metrics: Accuracy, F1, Precision, Re-
call, and AUC (Area Under the Curve). Models
evaluated include different fine-tuning strategies
FFT and LoRA in addition to RF and XGBoost.

The model dmis-lab/biobert-v1.1-FFT has the
highest performance across most metrics, partic-
ularly AUC (0.7787), Precision (0.7261), Accu-
racy (0.7045) and F1 scores (0.6890). Its recall is
low (0.6622), meaning the model is highly selec-
tive in identifying progression but fails to detect
many actual cases. In practice, this could mean
missing patients whose disease progression might
have slowed with earlier intervention. While some
models like UFLNLP/gatortron-base-FFT perform
well in accuracy (0.7034) and recall (0.7293), they
slightly lag in precision (0.6477), which might not
be ideal for our clinical applications. The contrast-
ing performance of our fine-tuned models in pre-
cision and recall highlights the trade-off between
these two metrics. A potential approach to mitigate
this is employing a Mixture of Experts (MoE) ar-
chitecture with a gating mechanism. Future work
will explore MoE’s effectiveness in optimizing both
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Figure 1: Heatmap of performances across various metrics.

precision and recall in CKD progression prediction.
Models fine-tuned using FFT generally outper-

form their LoRA counterparts across all metrics.
This trend is consistent for models like bert-base-
uncased, allenai/scibert_scivocab_uncased, and
microsoft/BiomedNLP-BiomedBERT.

While traditional methods like Random For-
est and XGBoost perform reasonably well
(AUC of 0.7663 and 0.7671, respectively),
they lag behind transformer-based models fine-
tuned with FFT, particularly in metrics like
Precision and Recall. Models pre-trained
on biomedical data, such as dmis-lab/biobert-
v1.1, microsoft/BiomedNLP-BiomedBERT, and
bionlp/bluebert_pubmed_mimic_uncased, tend to
perform better than general domain models like
bert-base-uncased in terms of accuracy. While
dmis-lab/biobert-v1.1-FFT achieved the best ac-
curay, its recall (0.6622) remains a concern in clin-
ical settings where minimizing false negatives is
critical.

5 Discussion

In this study, we demonstrate the potential of
encoder-based models for predicting CKD progres-
sion from stage III to stage V using LTCs, con-
tinuous prescriptions, and ethnicity from CPRD.
To achieve this, we developed three types of mod-
els: full fine-tuning, parameter-efficient fine-tuning

(PEFT) using Low-Rank Adaptation (LoRA), and
tabular models, including Random Forest (RF) and
XGBoost. Model names bearing the suffix FFT
indicate that the models have been fully fine-tuned,
whereas those with the suffix LoRA represent Low-
Rank Adaptation fine-tuning, a method categorised
under PEFT.

While our primary aim was to evaluate the po-
tential of fine-tuned language models for predicting
CKD progression, we also included tabular models
in the study. This enabled us to compare the per-
formance of advanced deep learning methods with
traditional models like RF and XGBoost, which are
often better suited to structured data. By incorporat-
ing both approaches, we provide a comprehensive
assessment of the different modeling techniques
for this task.

The results indicate that FFT consistently outper-
forms PEFT using LoRA across all evaluated met-
rics, particularly in recall and AUC suggesting that
full adaptation of pre-trained models is necessary
for tasks as complex as CKD progression. Among
the fine-tuned models, those pre-trained on biomed-
ical corpora, such as BioBERT, ClinicalBERT, and
BlueBERT, demonstrate strong performance, with
AUC values around 0.77. This reinforces the im-
portance of domain-specific pre-training for clin-
ical prediction tasks. Among all models tested,
dmis-lab/biobert-v1.1-FFT achieved the highest

240



AUC (0.7787), Precision (0.7261), and Accuracy
(0.7045), indicating its robustness in CKD pro-
gression prediction tasks. Its domain-specific pre-
training on biomedical text, coupled with fully fine-
tuned (FFT) models, has proven promising for the
task of CKD progression prediction.

LoRA-based models exhibit lower performance,
with AUC scores ranging between 0.6911 and
0.7298. While LoRA fine-tuning offers compu-
tational efficiency, its lower recall and precision
suggest limitations in capturing subtle predictive
patterns in the data. Notably, some LoRA models,
such as BiomedBERT-LoRA, show comparatively
better recall (0.7135) but at the expense of preci-
sion (0.6348), indicating a tendency towards higher
false positives. While LoRA’s efficiency may be
compelling in resource-constrained scenarios, its
limited recall capabilities could make it less suit-
able for critical, high-stakes clinical applications

The results highlight the importance of recall
in high-stakes applications like CKD progression
prediction, where minimizing false negatives is
crucial for timely intervention. Among the models
tested, bert-base-uncased-FFT achieves the highest
recall, suggesting its potential for capturing at-risk
patients. However, as a general-domain model fine-
tuned on CPRD data, it lacks the medical domain
specificity of models like BioBERT.

Interestingly, tabular models, including RF and
XGBoost, perform competitively with language
models. XGBoost and RF achieve AUC of 0.7671
and 0.7663, closely matching several fine-tuned
language models.

6 Conclusion and Future Work

In conclusion, the study demonstrates that encoder
models, particularly BioBERT FFT, significantly
contribute to predicting the progression of CKD.
Through the use of domain-specific pre-training
and fine-tuning strategies, BioBERT surpasses tra-
ditional machine learning methods such as Ran-
dom Forest and XGBoost. By identifying pat-
terns in clinical data, BioBERT shows promise in
predicting CKD progression with an accuracy of
nearly 70%. While this isn’t perfect, it points to the
model’s potential for advancing predictive analyt-
ics in kidney disease and could ultimately support
better decision-making in both research and clinical
settings.

Although the findings show potential, further im-
proving the model’s accuracy is essential for its

practical application in medical settings. There-
fore, future work will focus on extending this study
to include prompt-based decoder models in few-
shot and zero-shot settings with Chain-of-Thought
reasoning, potentially incorporating domain knowl-
edge. Additionally, we plan to evaluate these mod-
els against the standard kidney failure risk equa-
tion commonly used in general practice settings.
Refining the predictions further by accounting for
mortality as a competing risk will also be a key
area of exploration.

7 Limitation

This study examines CKD progression over time,
including patients who died during the observa-
tion period. While mortality may influence disease
trajectories, our approach focuses on progression
patterns independent of competing events. Future
research could explore alternative modeling strate-
gies that explicitly account for competing risks to
provide a complementary perspective.

In addition to competing risks, an important lim-
itation of this work is the lack of interpretability
analysis. Techniques such as SHAP or LIME could
offer insight into model decisions, and future work
will explore these methods along with systematic
error analysis. Further, as this study is limited to
internal validation, future efforts will evaluate gen-
eralizability using an independent dataset. Lastly,
while we frame CKD progression as a static classi-
fication problem, future research could incorporate
time-series modeling or survival analysis to better
capture disease dynamics.
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