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Abstract 

As digital health becomes more ubiquitous, 

people from different geographic regions 

are connected and there is thus a need for 

accurate language translation services. 

South Africa presents opportunity and need 

for digital health innovation, but 

implementing indigenous translation 

systems for digital health is difficult due to 

a lack of language resources. 

Understanding the accuracy of current 

models for use in medical translation of 

indigenous languages is crucial for 

designers looking to build quality digital 

health solutions. This paper presents a new 

dataset 1  with audio and text of primary 

health consultations for automatic speech 

recognition and machine translation in 

South African English and the indigenous 

South African language of isiXhosa. We 

then evaluate the performance of well-

established pretrained models on this 

dataset. We found that isiXhosa had limited 

support in speech recognition models and 

showed high, variable character error rates 

for transcription (26-70%). For translation 

tasks, Google Cloud Translate and 

ChatGPT outperformed the other evaluated 

models, indicating large language models 

can have similar performance to dedicated 

machine translation models for low-

resource language translation. 

1 Introduction 

Digital health has been recognized to improve 

access to healthcare services by decreasing wait 

times, improving care quality, and reducing cost 

                                                            
1 https://github.com/blocker-abby/xh-en-health-data/  

(Erku et al., 2023; Caffery et al., 2016; Gentili et 

al., 2022). Many digital health initiatives have 

focused on improving access in under-resourced 

areas, which face some of the largest challenges in 

providing healthcare services (Maita et al., 2024).  

However, as patients in under-resourced areas are 

connected to healthcare providers in various 

locations, language barriers present a serious 

challenge to be considered.  

In South Africa, 84.3% of the population is 

reliant public health facilities, many of which are 

under-resourced (Stats SA, 2023). There are 12 

official languages of South Africa, with 9 of these 

being indigenous languages (Stats SA, 2022). 

Incorporating language translation services for the 

indigenous languages of South Africa within 

digital health solutions is not only helpful but 

necessary. However, there isn’t a clear consensus 

on what the best available tools are for integrating 

translation services for digital health in South 

African languages.  

The aim of this paper is to understand the 

performance of automatic speech recognition 

(ASR) and machine translation (MT) services by 

assessing currently available pretrained models on 

South African English and isiXhosa, a South 

African indigenous language. Our contributions 

include a new dataset, consisting of audio and text 

in South African English and isiXhosa to support 

further development and evaluation of ASR and 

MT models.1 The results indicate that for ASR, 

error rates for South African English are 

comparable to human transcription; but, for 

isiXhosa, error rates are above an acceptable range, 

particularly for use in the medical field. For MT, 

large language models (LLMs) showed 
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comparable results to dedicated MT models, and 

the commercially available models outperformed 

the open-source models evaluated.  

2 Background and Related Works 

2.1 ASR 

A widely used open-source ASR model is Whisper, 

developed by OpenAI (Radford et al., 2022). 

Whisper supports ASR for South African English, 

but not isiXhosa. Whisper cites a 9.3% error rate 

for English, but English spoken with African 

accents showed lower accuracy rates (Afonja et al., 

2024). Therefore, assessment of South African 

English accents specifically is necessary to verify 

these results, and particularly on health-domain-

specific data. In addition to Whisper, the Massive 

Multilingual Speech (MMS) model is an open-

source ASR model developed by Meta, which 

supports South African English and isiXhosa. 

Pratap et al. (2023) demonstrated that MMS had 

higher accuracy when compared to Google and 

Whisper when using the FLEURS dataset (which 

includes isiXhosa data).  

In addition to open-source models, there are 

several successful commercial models for ASR. 

Particularly, the leaders in commercial cloud 

computing offer ASR APIs, these being Google 

Cloud Platform (GCP), Microsoft Azure, and 

Amazon Web Services (AWS) (Borra, 2024). Out 

of these, only GCP offers ASR for isiXhosa. These 

commercially available models have been cited to 

have better performance for ASR when compared 

to open-source models (Ferraro et al., 2023).  

2.2 Translation 

In the translation domain, the development of 

massive multilingual neural machine translation 

(NMT) models has contributed to improved 

translation of low-resource languages like 

isiXhosa. Meta’s No Language Left Behind 

(NLLB) is an open-source NMT model which 

provides translation for 200 languages, many of 

which are low-resource (Costa-jussà et al., 2022). 

In the commercial translation space, GCP, Azure, 

and AWS all offer translation APIs. Two of these 

(GCP and Azure) offer services for isiXhosa 

translation. Open source and commercial models 

have been cited to have similar performance in the 

translation domain (Licht et al., 2024). 

Current research has investigated the use of 

LLMs such as ChatGPT for translation tasks. Some 

research has found that they have high accuracy in 

comparison to NMTs (Wang et al., 2023). 

However, experiments with low-resource and 

African languages (of which isiXhosa is both) have 

shown results that still lag behind dedicated MT 

models like NLLB (Robinson et al., 2023; Ojo et 

al., 2024). 

2.3 Healthcare Applications 

ASR and MT in the healthcare sector is a debated 

topic. Accuracy in healthcare communication is 

vital, as miscommunication has the potential to 

drastically affect medical decisions and could lead 

to negative outcomes. Some healthcare bodies 

recommend against these techniques because of the 

risk (Vieira et al., 2019). However, when used 

responsibly, ASR and MT services can provide 

benefits in environments where human translation 

services cannot be provided, either due to resource 

constraints or lack of expertise. Recommendations 

for healthcare providers using these services 

include being aware of the potential errors, being 

alert to non-verbal communication from the 

patient, and for translation, back-translating 

(inputting translated materials into the MT model 

for translation back into the source language) to 

analyze where errors may have occurred 

(Randhawa et al., 2013). Therefore, it is important 

to understand the current state of ASR and MT, in 

order to apply it to digital health solutions safely. 

Understanding the development context is also 

important in determining the best-fit ASR and MT 

models for digital health applications. While 

accuracy is extremely important, there are other 

additional factors which can influence the uptake 

of solutions. The mobile application AwezaMed 

provides an example of this. The app provides 

translation of medical text for all South African 

languages using a list of predefined phrases 

(Marais et al., 2020). While there are benefits to the 

accuracy of using static translations, including the 

ability for human validation, there are also 

difficulties in that real-time and customized 

translation is not possible. In a real-time digital 

health application such as telemedicine, this 

solution may not address the needs of users; 

therefore, it is important to consider other factors 

along with accuracy to select the most appropriate 

translation models for digital health solutions. 
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3 Method 

3.1 Data 

Conversations between primary health care 

providers and patients were used as evaluation 

data. Conversation data was adapted from the 

PriMock57 dataset (Korfiatis et al., 2022), which 

provides audio and transcribed conversational data 

from mock telemedicine consultations. Ten 

random consultations were chosen from the 

available dataset of 57. The text data from each 

consult was then translated by a professional 

human translator with experience in English-

isiXhosa medical translation. 

While audio files of the consultations were 

available in the PriMock57 dataset, the speakers 

were not South African. As spoken accents can 

affect the accuracy of ASR models, it was 

important to utilize authentic audio of South 

African English speakers. Therefore, the 

conversations were re-enacted between South 

African paid actors. A total of 5 actors (3 male, 2 

female) were used, with two actors (one acting as 

the doctor, and one acting as the patient) per 

consultation. Two of the three male actors were 

included only in South African English recordings. 

The other male actor was included only in the 

isiXhosa recordings. The two female actors were 

included in both South African English and 

isiXhosa recordings. Each of the actors were fluent 

in the languages they recorded in. The actors read 

the consultation dialogue exactly as it was stated in 

                                                            
2 https://www.audacityteam.org/ 
3 https://cloud.google.com/speech-to-
text?hl=en 

the written text. Where speaking errors were made, 

this was cleaned in post-processing of the audio file 

using Audacity. 2  Audio was saved as a stereo, 

48kHz sampled FLAC file. Azure speech-to-text 

and MMS required a 16kHz sample WAV file 

input, so the audio was also converted to this 

format during evaluation of both models.  

Text data of the conversations was subdivided 

based on conversational dialogues. Each time the 

speaker changed, the text data was separated into a 

new text for evaluation. This resulted in a total of 

580 English texts and 580 isiXhosa texts. Each text 

was input into each model once and the first output 

result was used for evaluation. 

3.2 Selected ASR Models 

The chosen models for evaluation are highlighted 

in Table 1. The chosen models for ASR of South 

African English were Google Cloud Speech-to-

Text v1,3 Microsoft Azure AI Speech’s speech-to-

text,4 Whisper base model (Radford et al., 2022), 

and MMS speech-to-text (Pratap et al., 2023). Not 

all of the four chosen models offered isiXhosa 

services; those that did were Google Cloud Speech-

to-Text v1 and MMS speech-to-text.  

Whisper allowed for prompting capabilities, 

while the other ASR models did not. When 

providing an audio file input to Whisper, it is 

recommended to also provide a list of expected 

words to improve accuracy. The model was 

evaluated both with and without using this 

prompting feature. The expected terms used for 

4 https://learn.microsoft.com/en-
us/azure/ai-services/speech-

service/speech-to-text 

 

Automatic Speech Recognition 

Model Developer Availability Supported Language 

Google Cloud Speech-to-Text v1 Google Commercial en, xh 

Azure AI Speech speech-to-text Microsoft Commercial en 

Whisper base OpenAI Open Source en 

MMS Facebook Open Source en, xh 

    

Machine Translation 

Model Developer Availability Type 

Google Cloud Translate v2 Google Commercial Dedicated MT 

Azure Translator Microsoft Commercial Dedicated MT 

NLLB 200M distilled 600M Facebook Open Source Dedicated MT 

ChatGPT GPT-4o OpenAI Commercial LLM 

Gemini Flash 1.5 Google Commercial LLM 

 

Table 1: Selected Models for Evaluation 
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prompting were selected from the South African 

Department of Sport, Arts, and Culture’s medical 

terms list.5 This document translates medical terms 

into 10 of the 12 South African languages. The list 

was reduced to include only terms contained within 

the dataset, which totaled 39 unique English terms 

and 56 unique isiXhosa terms (given that some of 

the terms had multiple translations). Then, for each 

transcription, only the terms from the list included 

within the ground truth were included in the prompt 

input.  

3.3 Selected MT Models 

The chosen models for translation, featured in 

Table 1, were Google Cloud Translate v2, 6 

Microsoft Azure Translator,7  NLLB-200 distilled 

600M (Costa-jussà et al., 2022), ChatGPT GPT-4o 

mini, and Gemini Flash 1.5.8  

Given that ChatGPT and Gemini are LLMs, they 

require a prompt input to provide instructions 

rather than only the text to be evaluated. A modified 

prompt used by Robinson et al. (2023) was used for 

LLM translation, which was the following: “This 

is an [source language] to [target language] 

translation, please provide the [target language] 

translation for this sentence. Do not provide any 

explanations or text apart from the translation. 

[Translation text].” In addition to this prompt, a 

modified prompt was also tested by providing 

language pairs in English and isiXhosa. The 

language pairs were selected from the medical 

terms list translations, with only the terms in the 

input text being included in the prompt. This 

modified prompt added the following text before 

supplying the text to be translated: “In this 

context, [source language term] translates to 

[target language term].”  

3.4 Evaluation Metrics 

Two metrics were employed for evaluating ASR, as 

English and isiXhosa languages have different 

characteristics which are better explained by 

different methodologies. The standard measure for 

ASR evaluation is word error rate (WER). 

However, WER does not fully characterize ASR 

results for agglutinative languages such as isiXhosa 

                                                            
5 
https://www.dsac.gov.za/sites/defaul

t/files/2023-

11/Multilingual%20Pharmaceutical%20T

erminology%20List_0.pdf 

(Thennal et al., 2024). This is because words in 

isiXhosa have prefixes and suffixes that often 

correspond to individual words in English. 

Therefore, WER may incorrectly inflate the error 

rate of ASR for isiXhosa in comparison to English. 

To address this, both WER and character error rate 

(CER) were calculated for isiXhosa transcriptions. 

Both metrics were calculated using the 

HuggingFace evaluate library (Von Werra et al., 

2022). 

For translation, character level F-score 

(CHRF++) and bilingual evaluation understudy 

(BLEU) were used to evaluate model performance 

(Callison-Burch et al., 2007). The original and 

human-translated texts were used as ground truth 

comparisons. To address the agglutinative structure 

of isiXhosa, CHRF++ was chosen as it accounts for 

both character and word accuracy (Popović, 2015). 

Because the analysis aimed to understand model 

performance on health domain data, an analysis 

was also conducted on the error rate of models in 

transcribing and translating health terms. It is 

critical that this terminology be transcribed and 

translated correctly, as it has the potential to affect 

medical decision-making. Results were analyzed 

based on the list of health terms used for modified 

prompting. Error rate was calculated by dividing 

the occurrences of each health term in the resultant 

text by the occurrences in the ground truth text and 

subtracting from 100. Furthermore, because some 

health terms had multiple translations from English 

to isiXhosa, any of the isiXhosa translations were 

accepted for the accuracy measure. The type of 

isiXhosa translation used in the result was also 

noted and categorized into one of three types: an 

isiXhosa term; a borrowed English word with 

isiXhosa spelling; or a borrowed English word with 

English spelling. Additionally, all health terms in 

both languages were classified into the following 

three categories: anatomy; condition; or treatment.  

The average costs for transcription and 

translation were calculated using available pricing 

for commercial MT models. For LLMs, tokens 

used per character were calculated for each prompt 

and then converted to price per character based on 

the model pricing. Open source models were not 

6https://cloud.google.com/dotnet/docs/ref

erence/Google.Cloud.Translation.V2/latest 
7 https://azure.microsoft.com/en-
us/products/ai-services/ai-translator 
8 https://ai.google.dev/gemini-
api/docs/models/gemini#gemini-1.5-flash 
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included in the cost analysis, although it is 

acknowledged that running open-source models on 

local machines does incur associated costs. 

From the results, models which showed 

appropriate accuracies for digital health systems 

were implemented into an existing virtual clinic 

system web application (Blocker et al., 2024). The 

system involved ASR for South African English 

and translation of English and isiXhosa text. The 

system takes user input (either audio or text) and 

sends a request to the backend with the data. The 

backend then either processes the data (in the case 

of open-source models) or creates an additional 

request and sends the data to the cloud computing 

service (for commercial models). When the 

response is received, it is returned to the front-end 

and displayed for the user. The time taken for each 

model to return a text response to the front end was 

measured in milliseconds for each model. For 

commercial implementations (Azure and GCP), 

real-time translation methods were utilized instead 

of batch translations.  

4 Results 

4.1 ASR Model Error Rates 

Figure 1 presents the WER of South African 

English. Lower WER indicates higher accuracy of 

the ASR model. The lowest WERs for South 

African English were achieved by Whisper with 

prompting (7.1%) and Azure (7.6%). “Quick” 

human transcription of conversational speech has 

been cited with a WER of 9.6% (Stolcke & 

Droppo, 2017), indicating that the results from 

these models concur with human transcription. 

There was a 4.5% difference in WER between 

using Whisper with and without prompts. Similar 

prompting techniques were attempted with GCP 

and Azure ASR models using phrase lists; 

however, both models produced identical 

transcriptions regardless of whether phrase lists 

were employed. Results for South African English 

ASR by GCP ranged from 17.33-25.34%, which 

agrees with the literature range of approximately 

15-25% WER (Filippidou & Moussiades, 2020). 

Results for Whisper (without prompting) were 

slightly higher than the cited metric of 9.3% for 

English (Radford et al., 2022); however, this 

reported value was for general English (en), not 

South African English (en-za). 

Figure 2 presents the measured WER and CER 

for isiXhosa transcription. WER for both GCP and 

MMS were greater than human WER. CER as an 

evaluation metric for ASR is less common than 

WER, therefore there is not a generally accepted 

human error rate for comparison. However, ASR 

models in literature for isiXhosa transcription 

report CER values ranging from 13.8-40.7% 

(Reitmaier et al., 2022; Jacobs et al., 2025; Baas & 

Kamper, 2022). GCP and MMS had averages of 

43.7% and 51.4% CER respectively. These results 

are higher than those reported in literature, which 

highlights the challenge encountered in translating 

health-domain-specific conversations. The range 

of results is much wider than that seen for South 

African English, with a 45% difference between 

the lowest and highest error rate for isiXhosa. 

Given that the human WER is 9.3%, and CER 

 

Figure 1: Measured WER for transcription of South African English 
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tends to be lower than WER (Ravanelli et al., 

2024), this indicates that neither model performed 

adequately for isiXhosa ASR.  

Performance of commercial versus open-source 

models did not follow a clear trend. Both Whisper 

(open-source) and Azure (commercial) achieved 

low WERs for South African English, while GCP 

(commercial) and MMS (open-source) had higher 

error rates for both South African English and 

isiXhosa. 

ASR model results were also assessed for health 

term error rate, both generally and within the three 

categories – anatomy, condition, or treatment. 

Results for health term error rate are provided in 

Table 2. For transcription of South African English, 

Whisper with prompting had the lowest health term 

error rate at 5.39%, followed by Azure with 9.47%. 

Whisper had a 10.21% decrease in error rate when 

health terms were introduced into the prompt. For 

isiXhosa transcription, GCP had lower error rate 

than MMS. Treatment terms, which mainly 

consisted of medication names (Paracetamol, 

Ibuprofen, Metformin, etc.) had high error rates 

when transcribed from isiXhosa audio. For both 

South African English and isiXhosa, MMS had 

high error rate in transcribing treatment terms; this 

could be due to the nature of the training dataset 

used for MMS, which was domain-specific and not 

general. Overall, the models evaluated had 

acceptable performance for transcribing medical 

conversations in South African English, but 

struggled in transcribing isiXhosa medical 

conversations. 

4.2 Translation Model Results 

Table 3 provides CHRF++ and BLEU results for 

MT. Higher scores for both metrics indicate that 

predicted translations are closer to the ground truth 

translations. For English to isiXhosa, Google 

Cloud Translate reported the highest scores, 

 

Figure 2: Measured WER and CER for transcription of isiXhosa. 

 

South African English 

Model Overall  Anatomy  Conditions  Treatment  

GCP 26.02% 20.9% 39.18% 19.01% 

Azure 9.47% 4.70% 18.71% 9.63% 

MMS 50.34% 26.07% 77.00% 96.30% 

Whisper 15.6% 8.12% 19.21% 40.00% 

Whisper with prompting 5.39% 2.99% 12.50% 0.00% 

     

isiXhosa 

Model Overall  Anatomy  Conditions  Treatment  

GCP 58.84% 38.98% 78.65% 96.67% 

MMS 76.27% 67.73% 81.92% 100.00% 

 

Table 2: Error rate for ASR of health terms. 
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comfortably outperforming all other models. 

NLLB, Gemini, and Gemini with modified 

prompting had the lowest scores, with a difference 

of 16.15 between highest and lowest average score. 

For isiXhosa to English, the performance was less 

distributed, with the difference between highest 

and lowest scores at 6.8. ChatGPT and Google 

Cloud Translate were the highest scoring models, 

and NLLB the lowest scoring model.  

The only open-source translation-dedicated 

model tested, NLLB, had generally lower scores 

than the commercial models evaluated. In 

comparing translation-dedicated models to LLMs, 

ChatGPT had higher scores when compared to 

Azure and NLLB, for translation of isiXhosa to 

English, but this did not carry over to English to 

isiXhosa translation. Between LLMs, ChatGPT 

had higher scores than Gemini. Modified 

prompting did not have a significant effect on the 

overall score. 

Health term error rate was also calculated for 

translation results, with lower error rates indicating 

more accurate translations of health terms. Health 

term error rate decreased when using modified 

prompts with both ChatGPT and Gemini LLMs, as 

shown in Table 4. Google Cloud Translate had the 

lowest error rate of all evaluated models for 

English to isiXhosa translation, with a 10% 

difference  in error rates between the next best 

performing model, Azure. This is in contrast to 

isiXhosa to English translation, where the top 4 

performing models in terms of health term 

accuracy (ChatGPT, ChatGPT with modified 

prompts, Gemini with modified prompts, and 

Google Cloud Translate) were within 5% error rate 

of one another. Generally, health term accuracy 

Model 

CHRF++ Score BLEU Score 

English to 

isiXhosa 

isiXhosa to 

English 

English to 

isiXhosa 

isiXhosa to 

English 

Google Cloud Translate 63.79 57.23 0.284 0.286 

Azure 56.31 53.56 0.168 0.233 

NLLB 48.39 50.84 0.081 0.213 

ChatGPT 51.91 57.64 0.115 0.270 

ChatGPT (mod) 52.38 57.59 0.114 0.267 

Gemini 48.50 54.64 0.074 0.245 

Gemini (mod) 48.75 54.93 0.075 0.248 

 

Table 3: CHRF++ and BLEU scores for translation between English and isiXhosa. 

isiXhosa to English 

Model Overall Anatomy Condition Treatment 

ChatGPT 16.61% 14.13% 32.14% 0.00% 

ChatGPT with modified prompt 11.82% 10.87% 20.71% 0.00% 

Gemini 25.51% 26.09% 37.86% 0.00% 

Gemini with modified prompt 13.18% 14.13% 15.00% 5.26% 

Google Cloud Translate 14.44% 11.23% 30.71% 0.00% 

Azure 20.55% 11.96% 54.29% 0.00% 

NLLB 36.47% 23.91% 71.43% 32.89% 

     

English to isiXhosa 

Model Overall Anatomy Condition Treatment 

ChatGPT 49.14% 43.50% 78.86% 18.18% 

ChatGPT with modified prompt 38.14% 32.55% 64.13% 17.39% 

Gemini 62.32% 59.67% 93.48% 13.64% 

Gemini with modified prompt 55.17% 51.17% 82.98% 18.18% 

Google Cloud Translate 18.99% 14.91% 38.04% 4.55% 

Azure 29.25% 23.04% 58.70% 4.55% 

NLLB 58.91% 50.60% 87.68% 46.36% 

 

Table 4: Health term error rate for translations. 
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was lower for translations from English to isiXhosa 

compared to isiXhosa to English. 

The error rate for each health term category is 

also depicted in Table 4. Treatments (which mainly 

consisted of medications) had low error rates, with 

<10% error rate for isiXhosa to English translation 

for all models excluding NLLB. Highest error rates 

were seen with the translation of conditions from 

English to isiXhosa. This included terms for both 

diseases (i.e. diabetes, asthma, stroke) and 

symptoms (i.e. cough, headache, pain). For all 

models, translation from isiXhosa to English had 

lower health term error rates (for all term 

classifications) than translation from English to 

isiXhosa. IsiXhosa health terms were categorized 

further into three types – borrowed English terms 

with English spelling (i.e., i-Paracetamol, meaning 

Paracetamol); borrowed English terms with 

isiXhosa spelling (i.e., ifiva, meaning fever) and 

isiXhosa terms (i.e., isisu, meaning stomach). 

Borrowed English words with isiXhosa spelling 

were not used frequently by any of the models; 

both borrowed English terms with English spelling 

and isiXhosa words were used more frequently. 

4.3 Cost 

There are other factors besides accuracy that one 

might consider when choosing systems for ASR 

and MT. Particularly when considering 

commercial solutions, cost is an important factor. 

Table 5 compares the cost of the various models 

evaluated. For ASR, GCP and Azure have similar 

costs, with GCP offering slightly lower rates for 

higher volumes of audio. Whisper is unique in that 

it is open source, so it can be run on a local machine 

or accessed through OpenAI’s API. Running 

Whisper or MMS (open source) models on a local 

machine would incur costs for electricity and 

hardware. For MT, GCP and Azure can provide 

translation free of cost for low volumes of data 

(<500k and <2M characters, respectively). 

However, for larger volumes of translation, 

ChatGPT 4o mini provides a cheaper per-character 

rate at only $1.84 per million characters. Gemini 

1.5 Flash is free to use, offering the cheapest 

commercial option for translation.  

4.4 Latency 

The South African English ASR models (excluding 

MMS) and the four commercial translation models 

were implemented in the system as part of a 

language translation feature. Figures 3 and 4 depict 

the measured latencies when using each model in 

the end-to-end translation system. Microsoft Azure 

offered the lowest latencies for both ASR and MT 

compared to the other evaluated models, though 

occasionally latency could be over 10 seconds for 

transcribing long audio clips. ASR latency was 

much higher than MT, but likely because there was 

some post-processing formatting that occurred 

before transcription. Additionally, requests with 

text data are smaller in size than their audio data 

counterparts, so sending a larger request over the 

network incurs greater time.  

5 Discussion and Conclusion 

Based on the evaluation performed, we found that 

Microsoft Azure provided the best performance for 

ASR of South African English, and Whisper 

provided a viable open source alternative. 

Whisper’s performance can likely be attributed to 

its diverse training dataset, whereas the domain-

specific nature of the MMS training dataset limited 

its performance in the health domain, and with 

varied speakers. For isiXhosa ASR, GCP and MMS 

did not provide low enough error rates to be 

considered reliable. IsiXhosa ASR models also 

demonstrated high error rates for health terms, 

particularly for treatment terms (medications). This 

highlights the existing inequality between high- 

and low-resource languages, which in the health 

context may exacerbate the gap between high- and 

ASR (per minute) 

Model Cost 

GCP Tiered pricing ranging from 

$0.016-$0.004 per minute  

Azure $0.01667 per minute with 5 hours 

per month free 

Whisper Associated computing costs 

MMS Associated computing costs 

  

Translation (per million characters 

translated) 

Model Cost 

GCP $20 (first 500k characters per 

month free) 

Azure $10 (first 2M characters per 

month free) 

NLLB Associated computing costs 

ChatGPT 

4o mini 

$1.84 

Gemini 1.5 

Flash 

$0 

 

Table 5: Pricing of evaluated models. 
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low-resource medical care. If digital health 

developers must incorporate these models, then 

they should do so cautiously and with human input 

to validate results.  

For MT, Google Cloud Translate provided the 

most accurate translations in both directions. 

However, ChatGPT provided a viable alternative 

for isiXhosa to English translation. When possible, 

dictionaries should be incorporated within prompts 

to further improve performance of LLMs, 

particularly verified dictionaries of health terms. 

Translation of health terms had low error rate, 

particularly for treatment terms as generally these 

words are kept the same throughout translation. 

Condition terms such as headache, nausea, and 

diabetes should be paid specific attention when 

translated to and from isiXhosa; these may not 

follow a typical “one-to-one” translation structure 

and therefore should be approached with caution 

and verified by humans during medical translation.  

There are various advantages and disadvantages 

when comparing commercial and open-source 

models for ASR and MT. Open-source models 

provide a greater level of transparency, which 

provides greater opportunity for customization and 

development. Additionally, it allows developers to 

have more control over the privacy and security of 

their data. Given that medical transcriptions and 

translations may hold sensitive information about 

patients, this is an important factor to consider. 

However, not every digital health system has the 

capability to run large ASR or MT models. MMS 

and NLLB require high levels of computational 

power to run, which may not be feasible or 

necessary for small-scale applications. Latency 

should also be considered, especially in mission 

critical environments like trauma or emergency 

medicine. Open source models may experience 

latency depending on the hardware specifications 

used to run the models. Commercial options like 

GCP and Azure are susceptible to service outages 

an d slower response times depending on the traffic 

and conditions of their servers. Ultimately, one 

must consider the context of the digital health 

solution to select the best models for building a 

digital health translation system.  

Future work may focus on expanding the dataset 

to incorporate more medical conversation audio 

and text. This would be beneficial to validate the 

results achieved here. Additionally, this data could 

be used to improve and customize models for 

isiXhosa and for healthcare contexts. Further 

research might also follow similar methods to the 

health term analysis described here, to evaluate for 

age- or gender-related terminology accuracy. 

Developers may also take this work forward to 

make evidence-based decisions on ASR and MT 

models for digital health applications.  

Limitations 

A limitation of this research is that results were not 

validated by human evaluators. An evaluation of 

how the meaning of each result correlates to the 

meaning of ground truth statements would provide 

further valuable insights into the accuracy of these 

models. Additionally, the data published with this 

work contributes to the resources available for 

      

Figure 3: Measured latencies for Azure, GCP,                Figure 4: Measured latencies for GCP, Azure, 

and Whisper for South African English.                          ChatGPT, and Gemini for translating text. 
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isiXhosa language applications, but is not enough 

standalone data to train a domain-specific ASR and 

MT for health. Finally, because commercial 

enterprises such as Google and Azure are 

constantly improving their services, the more 

recently released models may return different 

results than those reported on in this paper.  

Ethical Considerations 

This work provides an overview of the current 

capabilities of ASR and MT models for isiXhosa. 

The authors do not provide commentary on 

whether the results indicate a maturity level that is 

ready for deployment within the healthcare sector. 

Rather, we provide benchmarks so developers can 

make educated decisions regarding ASR and MT 

model incorporation within digital health systems. 
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