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Abstract

Reinforcement learning (RL) is increasingly
used in the healthcare domain, particularly
for the development of personalized adaptive
health interventions. However, RL methods are
often applied to this domain using small state
spaces to mitigate data scarcity. In this paper,
we aim to use Large Language Models (LLMs)
to incorporate text-based user preferences and
constraints, to update the RL policy. The LLM
acts as a filter in the action selection. To evalu-
ate our method, we develop a novel simulation
environment that generates text-based user pref-
erences and incorporates corresponding con-
straints that impact behavioral dynamics. We
show that our method can take into account the
text-based user preferences, while improving
the RL policy, thus improving personalization
in adaptive intervention.

1 Introduction

Reinforcement learning (RL) is increasingly used
in the healthcare domain, particularly for the de-
velopment of personalized adaptive health inter-
ventions (Coronato et al., 2020; Liao et al., 2020;
Gönül et al., 2021; Yu et al., 2021; Spruijt-Metz
et al., 2022; Karine et al., 2024). However, RL
methods are often applied to adaptive intervention
problems using small state spaces to mitigate the
data scarcity that results from practical limitations
on adaptive intervention trial designs, including
limited numbers of participants, limited numbers
of interventions per day, and limited study dura-
tions.

Moreover, there can be issues in the decision
rule or policy that result in incorrectly contextu-
alized messages sent to the participant (e.g., user
preference not aligning with the policy). These
messages may annoy the participant or cause par-
ticipant disengagement. Therefore, it is critical to
consider participant preferences before it is too late
or irreversible (e.g., the participant exits the study).

One solution to prevent disengagement is to al-
low the participant to specify their preferences in
the form of free-text descriptions and immediately
take them into account to influence the action se-
lection. This is especially relevant in today’s gen-
eration, where people use chats and social media
to communicate. For example, the user preference
can be: “I twisted my ankle” or “my leg is sore”.
The user can enter their preference in a daily survey
in the mobile health app.

In this paper, we explore leveraging the natural
language understanding ability and reasoning ca-
pabilities of Large Language Models (LLMs) to
influence RL action selection based on participant
descriptions of preferences. We evaluate an ap-
proach where an RL agent proposes a candidate
action at each time step. Next, given the text-based
participant preference, we use the LLM to decide
whether the candidate action (sending one of sev-
eral message types message) should be allowed
or not allowed. The LLM is used as a filter in
the action selection with the goal of better align-
ing the RL policy with the user preferences and
constraints. We use Thompson sampling as a data-
efficient base RL algorithm (see Appendix A.2 for
relevant background). We refer to the resulting
method as LLM+TS.

To evaluate our approach, we build on a recently
introduced simulation environment for an adaptive
messaging physical activity intervention that simu-
lates key aspects of behavioral dynamics including
intervention habituation and disengagement risk
(Karine and Marlin, 2024). We add to this system
a simulation of participants responding to a daily
query about their general health state. We generate
the responses based on the true underlying health
state of the simulated participant, and incorporate
constraints that impact behavioral dynamics.

Our preliminary results show that different fami-
lies of LLMs reason about the simulated participant
preferences with different accuracies, but that using
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any of the evaluated LLMs results in improved per-
formance relative to standard Thompson Sampling.
We explore the effect of leveraging intermediate
reasoning and domain-specific knowledge within
the prompt, mirroring promising LLM approaches
such as chain-of-thought reasoning and retrieval-
augmented generation (Zheng et al., 2023; Wei
et al., 2022; Lewis et al., 2020).

Our contributions are:

1. LLM+TS. We introduce an “LLM as judge”
approach to enhancing personalized adaptive
health interventions. LLM+TS leverages the nat-
ural language understanding and reasoning ca-
pabilities of LLMs to improve the limited state
representation of a Thompson Sampler, while
maintaining data efficiency and providing inter-
vention designers with better control over inter-
vention content. This is a promising approach
for significantly augmenting the intelligence of
personalized adaptive health interventions. We
provide an overview of our method in Figure 1.

2. StepCountJITAI for LLM. We create a novel
simulation environment to evaluate the proposed
method. Our simulation environment extends
an existing base simulator to add the support for
LLMs. It generates text-based user preferences
and incorporates constraints that impact behav-
ioral dynamics. Our simulation environment has
significant potential to enable the development
of new RL algorithms for adaptive interventions
that incorporate text-based user preferences.

2 Background

We describe the base simulator below and provide
more details in Appendix A.1. We also provide the
background on Thompson Sampling in Appendix
A.2, and related work in Appendix A.3.

StepCountJITAI: an adaptive physical activity
simulation environment. There is limited prior
work on simulation environments for adaptive in-
terventions in the literature. In this work, we ex-
tend the base physical activity adaptive intervention
simulator introduced in Karine and Marlin (2024).
This base simulator was specifically designed to
support the development of new RL algorithms
applicable to the adaptive intervention domain.

A messaging-based physical activity adaptive in-
tervention can be framed as an RL system. In this

Figure 1: Overview of the LLM+TS method. LLM+TS is a
hybrid method that combines LLM inference and RL policy
learning to improve action selection. The RL agent proposes a
candidate action a. The LLM prompt that is used to guide in-
ference includes a description of the behavioral dynamics and
the participant preferences along with questions that prompt
chain of thought-like reasoning. Finally, the prompt asks the
LLM to decide whether the candidate action (sending one
of several message types message) should be allowed or not
allowed (i.e., ã = 0 or ã = a). Thus, the LLM acts as a judge,
filtering the candidate actions.

simulation environment, the state includes a con-
text variable ct ∈ {0, 1} that can model a binary
state such as ‘stressed / not stressed’ or ‘at home /
not at home,’ etc. at each time t. The simulation
also models the dynamics of two key behavioral
state variables: habituation level ht and disengage-
ment risk level dt. The different types of messages
that can be sent to a participant are the possible
actions. The variable at denotes the action at time
t. The possible actions at are:

• at = 0 (do not send a message)
• at = 1 (send a generic message)
• at = 2 (send a message tailored to context 0)
• at = 3 (send a message tailored to context 1)

The goal in this domain is to maximize the par-
ticipant’s total walking step count over the duration
of the intervention. Thus, step count serves as the
reward rt. Further details of the base simulator
are described in Appendix A.1.2.

However this base simulator does not include
the support for LLMs. Thus, we extend the base
simulator to create a simulation environment that
includes the support for LLMs. We describe this
novel simulation environment in Section 3.2.
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3 Methods

In this section, we describe our proposed method as
well as our novel simulation environment. Figure 1
provides an overview of the proposed method.

3.1 Proposed Approach: LLM+TS

We propose a hybrid method where the RL agent
outputs a candidate action at each time step. Then,
based on the LLM prompt that includes the user
preference and other information, the LLM decides
whether to allow or not allow the RL candidate
action. We summarize the method below.

1. Candidate Action Generation: At each time step
t, the RL agent proposes a candidate action at
based on its current parameters θt and the cur-
rent state st. If the candidate action is at = 0,
set ãt = 0. No message is sent. If the action is
at ̸= 0, apply LLM inference.

2. LLM Inference: Given the current user prefer-
ence and other context information, construct
the LLM prompt. Apply an LLM to perform
inference given the prompt. Extract the decision
from the LLM response.

3. Action Filtering: If the LLM decision is to “not
send” a message, set ãt = 0. Otherwise, set
ãt = at.

4. Policy Update: Take the action ãt. Observe the
reward rt and new state st+1. Update the RL
agent’s parameters based on the tuple (st, ãt, rt),
obtaining θt+1.

We note that if the RL agent proposes the candi-
date action at > 0 (indicating a candidate message
to be sent), then the LLM is prompted to decide
if this message should actually be sent or not. If
the RL agent proposes the candidate action at = 0
(indicating no message) or if no user preference
was generated, then there is no need to call LLM
inference, so the RL loop continues as usual. We
note that the RL agent does not have knowledge of
the text-based user preferences.

We construct the LLM prompt by including a
description of the specific adaptive intervention
domain, the hypothesized behavioral dynamics, in-
termediate reasoning questions to guide the LLM, a
statement of the user preferences, and a final ques-
tion asking the LLM to make a decision to “send”
or “not send” a message. We provide an example
of a constructed LLM prompt in Appendix B.1.

To evaluate the proposed method, we create a
simulation environment to generate the text-based

user preferences and incorporate additional latent
physical health states as described in the next sec-
tion. Importantly, the LLM inference step used to
filter action selection is completely separated from
the application of LLMs to simulate participant
generation of text descriptions of preferences. In a
real-world application of the proposed method, the
preference text would, of course, be generated by
the participant via an intervention app.

3.2 StepCountJITAI for LLM
We extend the base simulator introduced in Karine
and Marlin (2024) to create a new simulation envi-
ronment that generates participant preferences and
constraints conditioned on an additional state di-
mension that is not observable by the RL agent.
Specifically, we introduce a new state variable
wt ∈ {0, 1} indicating whether the user is able
to walk or not.

We implement the dynamics for wt using a
Markov chain where the value for wt is sampled
conditioned on wt−1. This allows “can walk” and
“cannot walk” states to persist for different average
lengths of time. These dynamics are described in
detail in Appendix Figure 4 and Table 3.

We use two different LLM prompts to simulate
the generation of participant text conditioned on
the variable wt. When transitioning from wt−1 = 1
to wt = 0, we emit text produced by prompting
the LLM to generate a short description of a reason
why a person might not be able to walk. When
transitioning from wt−1 = 0 to wt = 1, we emit
text produced by prompting the LLM to generate a
message describing that the participant is “feeling
fine." When staying in the wt = 1 state, we emit a
new participant preference statement with probabil-
ity 0.3. We provide further details on LLM-based
user preference generation in Appendix B.

When in the wt = 0 or “cannot walk” state,
we modify the behavioral and reward dynamics
accordingly. First, if wt = 0 and ãt ̸= 0, the
disengagement risk dt is incremented regardless
of whether the tailoring of the action was correct
or not. This simulates the idea that a participant
might lose significant trust in the system and be
more likely to disengage from using it if walking
suggestions continue to be issued despite the fact
that the participant indicates a reason for not being
able to walk. Second, we set the reward to rt = 0 if
wt = 0, consistent with the idea that the participant
accumulates no reward (i.e., no step) if they can not
walk. The dynamics are given in Appendix B.3.1.
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Figure 2: Example scenarios showing that LLM+TS outper-
forms standard TS. (top) Scenario 1: pw11 = 0.7 (probability
of staying in state “can walk”) and various pw00 (probabil-
ity of staying in state “cannot walk”). (bottom) Scenario 2:
pw11 = 0.95 and various pw00 .

4 Experiments

We conduct experiments to validate the LLM re-
sponses and compare our method to standard TS.

Validating LLM Inference. We perform experi-
ments evaluating the ability of different LLMs to
correctly classify preference statements as imply-
ing that the participant can or cannot walk. We
found average inference accuracies of 0.86 for
Gemma 2, 0.87 for Llama 3 8B and 0.98 for Llama
3 70B. Details are provided in Appendix C.1.

Validating LLM+TS. We conduct extensive exper-
iments to compare LLM+TS to standard Thomp-
son Sampling (TS). Both LLM+TS and TS use the
same TS state space that does not include access to
the wt state variable. However, LLM+TS performs
inference over the text of user preferences as de-
scribed previously. We generate results by varying
the probability of remaining in the “cannot walk”
state pw00 and the probability of remaining in the
“can walk” state pw11 . We show results for two real-
istic scenarios: Scenario 1, where pw11 = 0.7, and
Scenario 2, where pw11 = 0.95. In both scenarios,
pw00 varies in the range [0.1, ..., 0.5]. We plot the
median total reward, with the 25th and 75th per-
centiles, over 5 trials in Figure 2. We see that when
there is a higher probability that the participant is
in the “cannot walk” state, LLM+TS significantly
outperforms TS, as expected. More details and
results are provided in Appendix C.2.

Analysis of Selected Actions. We compare the
histograms of selected actions, taking into account
all actions selected by each method across 5 trials.
The histograms show that LLM+TS selects more
at = 0 actions, which indicates that the LLM has
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Figure 3: LLM+TS vs. standard TS. Example histograms
of all selected actions (top), and plots of average cumu-
lative reward per episode for (pw11 , pw00) = (0.7, 0.5),
ϵd = 0.01, ηd = 0.05.

correctly decided to “not send” a message when
the user cannot walk. We also compare the average
cumulative reward per episode in Figure 3, which
suggests that the average episode length for TS is
significantly lower than for LLM+TS due to early
disengagements. Additional results are provided in
Appendix C.

5 Conclusion

We introduce LLM+TS, an “LLM as judge” ap-
proach to enhancing personalized adaptive health
interventions. LLM+TS leverages the natural lan-
guage understanding and reasoning capabilities of
LLMs to improve the limited state representation
of a Thompson Sampler, while maintaining data ef-
ficiency and providing intervention designers with
better control over intervention content. To evalu-
ate our method, we introduce StepCountJITAI for
LLM, a novel simulation environment that gener-
ates user preferences and incorporates constraints
that impact behavioral dynamics. Our results show
that LLM+TS is a promising approach for signifi-
cantly augmenting the intelligence of personalized
adaptive health interventions. Our novel simula-
tion environment has significant potential to enable
the development of new RL algorithms for adap-
tive interventions that incorporate text-based user
preferences.

Limitations

The proposed method was evaluated on selected
LLMs at this time. Other LLMs could be used
depending on available resources. Future work will
involve inserting additional insights into the LLM
prompt or using advanced LLMs to further improve
the LLM inference accuracy.
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A Background and Related Work

We provide the background on StepCountJITAI
and Thompson Sampling, and the related work.

A.1 StepCountJITAI simulation environment
The base simulator introduced in Karine et al.
(2023); Karine and Marlin (2024) mimics a par-
ticipant’s behaviors in a mobile health study, where
the interventions (actions) are the messages sent
to the participant, with the goal of increasing the
participant walking step count (reward), given the
participant’s context and behaviors (states). We
summarize the base simulator specifications in Ta-
bles 1 and 2, and provide details below.

A.1.1 StepCountJITAI specifications
For the notation, we use an uppercase letter for
the variable name, and a lowercase letter for the
variable value, for example: the context variable C
has value ct = 0 at time t.

Below we describe some of the simulation en-
vironment variables and parameters that are used
in the behavioral dynamics: ct is the true context,
pt is the probability of context 1, lt is the inferred
context, ht is the habituation level, dt is the dis-
engagement risk, st is the step count (st is the
participant’s walking step count), and at is the ac-
tion at time t. The base simulator also includes
behavioral parameters: δd and ϵd are decay and
increment parameters for the disengagement risk,
and δh and ϵh are decay and increment parameters
for the habituation level.

The goal is to increase the participant’s walking
step count. Thus, the walking step count is also the
RL reward.

Action Description

a = 0 No message is sent to the participant.
a = 1 A non-contextualized message is sent.
a = 2 A message customized to context 0 is sent.
a = 3 A message customized to context 1 is sent.

Table 1: Possible action values

Variable Description Values

ct true context {0, 1}
pt probability of context 1 [0, 1]
lt inferred context {0,1}
dt disengagement risk level [0, 1]
ht habituation level [0, 1]
st step count N

Table 2: State variables

We use the same default parameter values as in
the base simulator: context uncertainty σ = 0.4,
behavioral parameters δh = 0.1, ϵh = 0.05, δd =
0.1, ϵd = 0.4, ms = 0.1, ρ1 = 50, ρ2 = 200.
For our experiments, we set the disengagement
threshold Dthreshold = 0.99. The maximum study
length is 50 days, with daily data. We describe the
behavioral dynamics below, in Appendix A.1.2.

A.1.2 StepCountJITAI behavioral dynamics
The behavioral dynamics are as follow: Sending
a message causes the habituation level to increase.
Not sending a message causes the habituation level
to decrease. An incorrectly tailored message causes
the disengagement risk to increase. A correctly
tailored message causes the disengagement risk to
decrease. When the disengagement risk exceeds
a given threshold, the behavioral study ends. The
reward is the surplus step count, beyond a baseline
count, attenuated by the habituation level.

These behavioral dynamics can be translated into
equations:

ct+1 ∼ Bernoulli(0.5), xt+1 ∼ N (ct+1, σ
2) (1)

pt+1 = P (C = 1|xt+1), lt+1 = pt+1 > 0.5 (2)

ht+1 =

{
(1− δh) · ht if at = 0

min(1, ht + ϵh) otherwise
(3)

dt+1 =





dt if at = 0

(1− δd) · dt if at ∈ {1, ct + 2}
min(1, dt + ϵd) otherwise

(4)

st+1 =





ms + (1− ht+1) · ρ1 if at = 1

ms + (1− ht+1) · ρ2 if at = ct + 2

ms otherwise
(5)
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where σ is the context uncertainty, xt is the con-
text feature, σ, ρ1, ρ2,ms are fixed parameters. We
use the same default parameter values as the base
simulator, which we summarize in Appendix A.1.1.

A.2 Thompson Sampling
Thompson Sampling (TS) is a probabilistic method
for decision-making under uncertainty. It can be
used to address contextual multi-armed bandit prob-
lems (Russo et al., 2018; Chu et al., 2011; Thomp-
son, 1933).

Typical TS for contextual bandit settings uses a
reward model of the form N (r; θ⊤a vt, σ

2
Y a), where

vt is the state vector at time t, θa is a vector of
weights, and σ2

Y a is the reward variance for action
a. Thus, θ⊤a vt represents the mean reward for ac-
tion a.

The reward model weights θa are random vari-
ables of the form N (θa;µta,Σta). Actions are
selected at each time t by sampling θ̂a from
N (θa;µta,Σta) and choosing the action with the
largest value θ̂⊤a vt. The prior distribution for θa is
of the form N (θa;µ0a,Σ0a). The distribution over
θa for the selected action is updated at time t based
on the observed reward rt and vt using Bayesian
inference. We provide the update equations for the
mean and covariance matrix below.

Σ(t+1)a = σ2
Y a

(
v⊤t vt + σ2

Y a Σ
−1
ta

)−1 (6)

µ(t+1)a = Σ(t+1)a

(
(σ2

Y a)
−1 rt vt +Σ−1

ta µta

)

(7)

A.3 Related work
Recent works use LLMs in RL, where the RL agent
selects actions based on natural language inputs,
and apply to games (Du et al., 2023). Note that
in our work, we leverage LLMs as foundational
models and focus on online decision-making for
episode-limited RL settings. Recent research on
RL from human feedback, and from AI feedback,
typically require some form of reward modeling,
and a large number of episodes to perform well.
Other works have also explored using natural lan-
guage inputs, but apply to recommender systems
for items such as movies, social media, recommen-
dation algorithms (Lyu et al., 2024; Feng et al.,
2024; Mysore et al., 2023; Sanner et al., 2023).
However, these approaches also require a large
number of iterations to work well. In contrast, we
use Thompson Sampling which is a Bayesian ap-
proach that can perform well in a lower number of
iterations than typical deep RL methods.

Recent works use LLM as a judge, intermediate
reasoning and retrieval-augmented generation, to
generate better LLM responses (Zheng et al., 2023;
Wei et al., 2022; Lewis et al., 2020). We use similar
ideas, but focus on creating a single LLM prompt,
where the LLM makes a decision, based on the user
preference and reasoning in the prompt.

B Method details

We first provide an example of an LLM prompt that
is used in our method, as described in Section 3.
Then, we provide further details about our novel
environment simulator that supports LLMs.

B.1 Example of LLM prompt

In our new method, the LLM prompt contains the
following blocks of text (description of behavioral
dynamics, participant preference, reasoning), as
described in Section 3.1.

Example of LLM prompt.

A mobile health app can send a message to the

user to encourage the user to walk.

...

Sending a message causes the habituation level

to increase.

Not sending a message causes the habituation

level to decrease.

An incorrectly tailored message causes the

disengagement risk to increase.

A correctly tailored message causes the

disengagement risk to decrease.

If the user is sick, injured or cannot walk, then

the mobile health app should not send a message.

...

This morning, when we asked the user how they

felt, the user reply was: "I twisted my ankle".

...

Given the user reply, answer the following

questions:

provide the reason for sending a message,

provide the reason for not sending a message,

is there any risk to the user?

will the user disengage from the study?

is there some long term consequence?

...

Given these answers, provide the final answer to

this question: should the mobile health app send

a message to the user?

We detail the text in purple. The text for the
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user reply (e.g., “I twisted my ankle”) is chosen
randomly from the lists provided in Appendix B.3.

B.2 Creating auxiliary variable W (cannot
walk / can walk)

We first augment the simulation environment states
with a binary state variable W with value: 0 “can-
not walk” or 1 “can walk”. The variable W is not
observed by the RL agent. It reflects a hidden state
of the user, and is used to generate the user pref-
erence, and trigger the constraints. We implement
a Markov chain to simulate wt, the values of W
at time t. The Markov chain sketch and transition
function for W are shown in Figure 4 and Table 3.

0 11− pw01

pw01

1− pw11

pw11

Figure 4: Markov chain sketch.

wt wt+1 P (wt+1|wt)

0 0 1− pw01

0 1 pw01

1 0 1− pw11

1 1 pw11

Table 3: Transition Function.

We define the new parameters: pw01 the proba-
bility of transitioning from wt = 0 to wt+1 = 1,
and pw11 the probability of remaining in the “can
walk” state.

pw01 = P (wt+1 = 1|wt = 0) (8)

pw11 = P (wt+1 = 1|wt = 1) (9)

Setting pw11 to a lower (or higher) value allows
for a lower (or higher) probability of remaining
in the “can walk” state. Similarly, setting pw01 to
a lower (or higher) value allows for a lower (or
higher) probability of transitioning from wt = 0 to
wt+1 = 1.

We note that the parameters pw01 and pw11 can be
used to simulate the user state “cannot walk” over
a variety of ranges, from shorter to longer time
intervals, and thus enabling a variety of scenarios
for our experiments.

In Section 4, we run our experiments and show
the results for two realistic scenarios: Scenario 1,

where pw11 = 0.7, and Scenario 2, where pw11 =
0.95. In both scenarios, pw00 varies in the range
[0.1, ..., 0.5], where pw00 = 1− pw01 .

B.3 Generating a text-based user preference
“cannot walk”.

Following the Markov chain and transition function
in Figure 4 and Table 3, W can take values 1 “can
walk” or 0 “cannot walk”.

When W transitions from 1 “can walk” to 0 “can-
not walk”, a user preference is randomly chosen
from a list of pre-defined reasons for “cannot walk”.
The “cannot walk” list was previously created by
asking ChatGPT to give reasons why a user cannot
walk.

When W transitions from 0 “cannot walk” to 1
“can walk”, a user preference is randomly chosen
from a list of pre-defined texts of type “other”. The
“other” list was previously created by asking Chat-
GPT to give examples of how a healthy participant
feels today.

When W remains at 1 “can walk”, we generate
the user preference of type “other”, based on a
Bernoulli distribution: either generate the “other”
preference with probability 0.3, or do nothing with
probability 1− 0.3 = 0.7.

We show some examples of user preferences of
type “cannot walk”:

I am tired, I do not want to walk, I got an injury,

I have a headache, My legs are sore, I twisted my

ankle, I’m feeling dizzy, I’m out of breath, I

have a cold, I’m feeling weak, I pulled a muscle,

My knee hurts, I have blisters, I feel nauseous,

I have stomach cramps, I can’t find my shoes, I

don’t have time, I’m waiting for someone, It’s

too hot outside, It’s too cold outside, ...

We show some examples of user preferences of
type “other”:

I am feeling good, I’m in a great mood, I feel

energized, I’m feeling positive, I’m doing well

today, I feel great, I’m in high spirits, I feel

focused, I’m feeling relaxed, I feel motivated,

I’m doing fine, I feel optimistic, I’m feeling

calm, I feel balanced, I’m feeling strong, I feel

productive, I’m in a positive state of mind, I

feel healthy, I feel confident, I feel alert, ...
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B.3.1 Inserting new constraints to impact
behavioral dynamics

Below are the equations for the behavioral dynam-
ics implemented in the StepCountJITAI simulation
environment, with the new constraints.

We insert the new constraints in blue color. The
default base simulator equations are in black color.

The new constraints impact dt+1 and st+1.
We note that at = ã when the LLM is called, at

time t. If the LLM is not called, then at takes the
RL candidate action value a, at time t.

ct+1 ∼ Bernoulli(0.5), xt+1 ∼ N (ct+1, σ
2) (10)

pt+1 = P (C = 1|xt+1), lt+1 = pt+1 > 0.5 (11)

ht+1 =

{
(1− δh) · ht if at = 0

min(1, ht + ϵh) otherwise
(12)

dt+1 =





dt if at = 0

and wt = 0 or 1

(1− δd) · dt if at ∈ {1, ct + 2} and
wt = 1 (can walk)

min(1, dt + ηd) if at ∈ {1, ct + 2} and
wt = 0 (cannot walk)

min(1, dt + ϵd otherwise
+(1− wt) ηd)

(13)

st+1 =





ms + (1− ht+1) · ρ1 if at = 1

and wt = 1 (can walk)

ms + (1− ht+1) · ρ2 if at = ct + 2

and wt = 1 (can walk)

ms wt otherwise
(14)

Below we explain in more detail how the new
constraints impact dt+1 and st+1.

• No message is sent. If at = 0, and wt = 0
or 1, then dt+1 = dt. When no message is
sent to the participant, then it does not matter
if the participant can or cannot walk, and the
disengagement risk remains the same.

• Correct message, and can walk. If at ∈
{1, ct + 2}, and wt = 1 (can walk), then
dt+1 = (1− δd)dt: we decrement dt.

• Correct message, but cannot walk. If at ∈
{1, ct + 2}, and wt = 0 (cannot walk), then

dt+1 = min(1, dt + ηd): we increase the dis-
engagement risk. In other words, we insert a
single penalty.

• Incorrect message. If at > 1 and at ̸= (ct +
2), then dt+1 = min(1, dt+ϵd+(1−wt) ηd):
we have a single penalty (incorrect message,
and can walk) or a double penalty (incorrect
message, and cannot walk).

• Cannot walk. If wt = 0 (cannot walk) then
we set st+1 = 0.

The reward is the walking step count. It is set to 0
when the user cannot walk. We use the same de-
fault parameter values as in the base simulator. We
introduce the new constraint parameter for “cannot
walk” ηd ∈ [0, 1].

C Experiment details

We provide more details about the experiments
described in Section 4.

C.1 Validating LLM response.

We perform experiments to check if the LLM re-
sponse is correct. For each experiment, we generate
prompts for “cannot walk”. Ideally, the LLM re-
sponse to these prompts should be “not send” a
message. We also ask the LLM to provide a rea-
son for its decision. Below, we provide examples
of user preference, LLM decision, and the LLM
reason for its decision.

Examples of user preference, LLM decision, and
LLM reason.

Example 1:
The user preference is: my leg is sore.

The LLM correctly decides “not send” with the
reason: The user has a sore leg, indicating they

cannot walk. The app should not send a message.

The LLM manages to provide a valid reason.

Example 2:
The user preference is: I’m feeling dizzy.

The LLM correctly decides “not send” with the
reason: The user is feeling dizzy, which means

they cannot walk, so the mobile health app should

not send a message.

Again, the LLM manages to provide a valid reason.
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Example 3:
The user preference is I am dealing with anxiety.

The LLM incorrectly decides “send”, with the
reason: The user is expressing anxiety, and a

tailored message could be helpful.

In a few cases, the LLM incorrectly decides to
send a message, when the user cannot walk. To
check the LLM accuracy, we perform preliminary
experiments on a dataset of 100 different text-based
user preferences (50 “cannot walk” and 50 “other”
user preferences), and compare the LLM decisions
with the true human decisions. We use an LLM
temperature of 0.2 (level of randomness in the
LLM response). We use different LLMs, includ-
ing Gemma 2, Llama 3, Llama 3.1, Llama 3.2, etc.
(Gemma Team, 2024; Llama Team, 2024). We
found the average accuracies are 0.86 for Gemma
2, 0.87 for Llama 3 8B and 0.98 for Llama 3 70B.

Further investigation reveals that the LLM in-
correct decision occurs when the text-based user
preference is ambiguous, thus does not clearly in-
dicate if the user can or cannot walk. However,
since these ambiguous text-based user preferences
appear in less than 6% of the time steps during
our experiment, and since the hybrid action falls
back to the RL candidate action, LLM+TS still
outperforms the standard TS agent.

Above, we have shown how to check if the LLM
response is correct, thanks to our simulation en-
vironment, by tracking exactly where the LLM
decision is incorrect. Future work would involve
inserting additional insights into the LLM prompt
to further improve the LLM response.

C.2 Validating LLM+TS.

We conduct extensive experiments to compare our
novel method LLM+TS to the standard TS. An
experiment (a.k.a., trial) corresponds to the behav-
ioral study of one participant, where the maximum
study length is 50 days, with daily data. We repeat
each experiment 5 times.

We run our experiments for various combina-
tions of the parameters (pw11 , pw00), where pw00

= 1 − pw01 , to cover different scenarios. For ex-
ample, the participant often sustains a light injury
and thus often cannot walk for short periods, or the
participant sometimes twists their ankle and thus
sometimes cannot walk for longer periods.

For our experiments, we set the TS prior param-
eters µ0a = 0 and Σ0a = 100I for each action a,
and the reward noise variance σ2

Y a = 252 for each
action a, using the same notation as in Equations 6
and 7.

For each experiment setting, we compute the
total reward as the sum of the rewards over a behav-
ioral study (i.e., up to 50 time steps). We perform
the experiments for various combinations of the dis-
engagement parameter ϵd from the base simulator,
and the new constraint parameter ηd.

We present the results for two realistic scenar-
ios: Scenario 1, where pw11 = 0.7, and Scenario 2,
where pw11 = 0.95. In both scenarios, pw00 varies
in the range [0.1, ..., 0.5]. We also set the proba-
bility of generating the “other” preference to 0.3.
Recall that pw00 is the probability of remaining in
the “cannot walk” state, and pw11 is the probability
of remaining in the “can walk” state.

For each experiment, we also run using various
LLMs, including Gemma 2, Llama 3, Llama 3.1,
Llama 3.2, etc. (Gemma Team, 2024; Llama Team,
2024). When using the different LLM versions,
we found similar results for the same experiment
settings, as shown in Figure 5.

We run the experiments for various combinations
of (pw11 , pw00). We show the results using Llama 3
8B in Figure 6. The histograms show that LLM+TS
is able to capture a larger number of actions 0,
which indicates that the LLM has correctly decided
to not send a message when the user cannot walk.
We also compare the cumulative rewards, and show
that LLM+TS outperforms standard TS.
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Figure 5: Comparing LLMs: Gemma 2 9B in the left column,
Llama 3 8B in the center column, and Llama 3 70B in the
right column. Each row shows a different experiment setting.
The results are similar for the same experiment settings.
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Figure 6: LLM+TS vs. standard TS. Example of histogram for
all the selected actions, and plot of the cumulative rewards for
various combinations of (pw11 , pw00). The histograms show
that LLM+TS is able to capture a larger number of actions
0, which indicates that the LLM has correctly decided to not
send a message when the user cannot walk. The cumulative
reward plots show that LLM+TS outperforms standard TS.
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