
Proceedings of the 9th Workshop on Constraint Grammar and Finite State NLP, pages 59–63
March 5, 2025 ©2025 University of Tartu Library

Divvunspell—Finite-State Spell-Checking and Correction on Modern
Platforms

Flammie A Pirinen
Divvun

UiT—Norgga árktalaš universitehta
Tromsø, Norway

flammie.pirinen@uit.no

Sjur Nørstebø Moshagen
Divvun

UiT—Norgga árktalaš universitehta
Tromsø, Norway

sjur.n.moshagen@uit.no

Abstract

Spell-checking and correction is one of
the key applications of natural language
support. Historically, for the biggest,
less morphologically complex languages,
spell-checking and correction could be
implemented by relatively simple means;
however, for morphologically complex
and low-resource languages, the solutions
were often suboptimal. Finite-state meth-
ods are the state of the art in rule-based
natural language processing and also for
spell-checking and correction they have
been effectively used. In this article,
we show some recent developments of a
finite-state spell-checker implementation
that works with modern operating systems
and platforms.

1 Introduction

Spell-checking and correction is one of the most
basic and most important applications of natural
language processing for standardised, written lan-
guages. A spell-checker works as a tool for all of
the writers of the language, ensuring that most of
the texts written follow a norm that is enforced by
the tool. This has enormous significance for the
text production in the language, which in turn is
becoming more and more important in the era of
large language models. A large language model
is built on huge quantities of texts written by hu-
mans, and an underlying expectation is that the
majority of the text is written in a standard, norm-
abiding language form.

Traditionally spell-checkers have been readily
available for morphologically simple languages
but have had more limited success for more mor-
phologically complex languages; for example, to
this day hunspell is popularly used for a lot of
platforms on a computer as a default spell-checker

engine. Hunspell itself being developed because
previous systems were insufficient for Hungar-
ian morphology, it moreover is limited for other
morphologically complex languages. Another ap-
proach to spell-checking that is popular in contem-
porary systems is data-based, either statistical or
neural network, this is what many of the autocor-
rect and autocomplete style models are based on.
This, on the other hand, limits the low-resourced
languages out of the equation.

The main contribution of this article is recent
developments in our implementation of finite-state
spell-checking, as well as relevant tooling and au-
tomation. Finite-state spell-checking works for
morphologically complex languages and does not
necessarily require any training data, making it
suitable for low-resource use cases. One emphasis
of this article is the developments related to full
end-user use case of the method that the software
is not merely an academic experiment but a prod-
uct that can be installed and used by the language
users. For this purpose, we have developed auto-
mated evaluation methodology as well as systems
for automatically distributing the new changes to
end-users.

Following the recent trends of the language
technology, that is the break-throughs of the large
language models and neural networks, we eval-
uate our system and compare it to an out of the
box neural network in a basic spell-checking and
correction task. While the evaluation we perform
here is quite rudimentary as a neural network ap-
plication, it builds towards the research question
of: how and to which extents and in which parts
of a spell-checking and correcting system shall the
large language models be used in hybrid with ex-
isting finite-state and rule-based solutions.

2 Background

Spell-checking and correction is an application of
natural language processing that has been stud-

59



ied since the 1950’s. The earliest models worked
in practice based on static lists of correctly writ-
ten word-forms to check against, then slowly
adding support for morphological processes as
larger vocabularies and more morphologically
complex languages were implemented. The most
widely spread versions of the spell-checkers used
in personal computers are commonly known as
*spell software, from original SPELL to ispell,
aspell, myspell, hunspell and nuspell. Still, these
have been difficult to adapt for morphologically
rich languages, so for specific languages softwares
like zemberek for Turkish and hspell for Hebrew
have been developed

Parallel to dictionary-based spell-checkers there
has been statistical approaches to spell-checking.
This is based on learning a language model from
large correctly written texts, one of the most in-
fluential models here is (Norvig, 2010). This line
of models is usually a basis in most of the mo-
bile auto-complete and autocorrect style systems,
nowadays likely based on generative neural net-
work models.

The most basic tool for modeling errors is based
on the invention of edit distance, where the er-
rors are modeled as a combination of missing a
letter, adding an extra letter, using a wrong letter,
or swapping two adjacent letters, first introduced
by Levenshtein (1966). Other common ideas that
have been used include listing common confus-
ables altogether, trying to map phonemic errors to
the writing system various ways, and weighing the
mistakes made on a keyboard by the keyboard lay-
out.

One of the most popular ways of handling word-
forms of morphologically complex languages is
Finite State Morphology (Beesley and Karttunen,
2003), this is often considered the state of the
art in handling rule-based language modeling of
morphologically context low-resourced languages
to this date. The finite-state formulation of spell
checking with statistically trained language and er-
ror models has been researched by Pirinen et al.
(2014). This type of models is also used by the
spell-checking and correction solution we are pre-
senting in this article.

3 Methods

Finite-state spell-checking is based on using finite-
state automata to model both the correctly spelled
words (language model) and mapping of the mis-

spellings from incorrect forms to correct word-
forms. In finite-state format this means that
there is an automaton that accepts the cor-
rectly spelled word-forms and does not accept in-
correctly spelled word-forms, and another two-
tape automaton that can relate incorrectly spelled
word-forms to correctly spelled word-forms. The
automata can be weighted and thus give an or-
dering to correction suggestions as well as like-
lihoods for the words of the languages in general.
This model has been introduced by at least Pirinen
and Lindén (2010), and the software introduced
here is based on the same finite-state formulation.
For language models we have used freely available
open source finite-state models from the GiellaLT
infrastructure (Pirinen et al., 2023).

The divvunspell1 software we introduce in this
article is implemented in the Rust programming
language and has bindings and implementations
for modern operating systems and mobile plat-
forms: macOS systemwide, Windows systemwide
and in MS Office, LibreOffice on all desktop sys-
tems, and in iOS and Android keyboard apps.
There is also a REST API for web-based clients2.
We have implemented some basic improvements
to the engineering and efficiency as well as cor-
rectness of the software. The published version is
both light-weight and fast enough to be used as an
interactive spelling checker on average end-users’
mobile platforms. We have fine-tuned the error-
correction algorithm with adjustable weights in
the errors made in word-initial, word-medial and
word-final positions separately; in the the current
version a spelling error in the first or last letter of
the word adds triple the weight of an error in the
mid-word unless configured otherwise.3 We have
also developed an automated evaluation software
for the spell-checking software that can ensure the
quality of the spell-checking models does not de-
grade, as well as a continuous integration and de-
ployment system that can distribute the models to
the end users when the dictionaries or grammars
of language models are updated, as long as the
quality of the spell-checker has not deteriorated.
The automatic evaluation tools are available on
the github repo of divvunspell and their integra-
tion to language development infrastructures can

1https://github.com/divvun/divvunspell
2https://api-giellalt.uit.no/speller/X

X, where XX is the ISO 639 language code.
3the actual and up-to-date implementation of the algo-

rithm can be found on GitHub.

60

https://github.com/divvun/divvunspell
https://api-giellalt.uit.no/speller/XX
https://api-giellalt.uit.no/speller/XX


be found on the actual language data repositories4.
We experiment with a popular out-of-the-box

large language model that is available for most
users free of charge via a chat interface. 5 We
do not perform any in-context learning or retrieval
augmented generation, this is an initial experiment
towards potential hybrid models of finite state and
neural models of spell-checking and correction.

4 Results

We performed a small experiment to verify the
working of our system and to see how well the
out-of-the-box neural network works on this task.
We are testing with a real-world error corpus of
Finnish word-forms – 50 correctly written words
and 50 spelling mistakes found in a large corpus
– by picking up non-words and correcting them
manually. Finnish is a morphologically complex
language with medium-to-high resources. The re-
sults are in Table 1. The overall quality of both
spelling checking and correction is lower in the
LLM-based system than it is for the rule-based
system but it still manages to provide correct
suggestions almost as often as rule-based system
does.

System 1st Any
FST 70 % 88 %
LLM 50 % 85 %

Table 1: Automatic evaluation of spelling correc-
tion

5 Discussion and Future Work

We have shown a software that brings the spell-
checker to end-users on mobile and desktop plat-
forms and updates automatically when linguistic
data gets developed. However, especially on mo-
bile platforms but also increasingly on desktop,
the spell-checking has been shifting towards a sub-
function of a text prediction subsystem, e.g. auto-
complete / autocorrect. It would be interesting fu-
ture work to study possibility of such a system for
morphologically complex and low-resource lan-
guages.

We only performed cursory experiments to
ensure that our system works within specified

4https://github.com/giellalt/template
-language-und, to be refactored into https://gith
ub.com/divvun/actions/

5At the time of writing we had access to a version of
ChatGPT-4o.

parametres, the system should be functionally
similar as the system evaluated by Pirinen et al.
(2014) in their larger survey. We also performed
the same experiment on an out-of-the-box, not
fine-tuned and not prompted, re-inforced or other-
wise context augmented neural network, mainly to
find out their current level of quality and possible
future modes of hybridisation. From the results it
seems that the LLM-based systems are approach-
ing the quality of rule-based system in terms of
overall suggestions but if you concentrate on sug-
gestion quality, it is still not comparable. More im-
portantly, when doing a manual error evaluation,
we find some examples where rule-based system
is more restricted towards edit distance type error
modeling, whereas LLM tends to suggest patterns
of related word-forms of a same word.

One of the requirements of an end-user sys-
tem in spell-checking and correction is high pre-
cision in detecting errors, the end-users tend to re-
act very negatively of spell-checking systems that
red-underline words they know are correctly writ-
ten. Secondly the suggestions need to be reason-
able first and foremost. Both of these aspects are
relatively harder to get right with LLM solutions
of today, however, there are some indications that
LLMs can be more creative in error modelling,
and especially when the spelling-correctors are set
in the automatic text prediction context, they have
been succesful. Ideally we could foresee a future
system that combines the high precision of rule-
based spell-checking with creative prediction of an
generative AI as a potential spell-checking system.

6 Summary

We have demonstrated a spell-checking and cor-
rection system based on finite-state technology
that works on end-user systems including desktop
office applications and mobile phones. We tested
an LLM-based approach to the same task to see
where they stand at and if they could be included
in the system but at the moment they are still far
enough from end-user quality to be included as-is.

Limitations

The LLM test is based on one version of a closed
commercial system and is not reproducible. The
test is only intended to give an impression of ini-
tial usability of such systems, and for that reason
we also have not included extensive descriptions
of the parameters, prompts and version specifics.

61

https://github.com/giellalt/template-language-und
https://github.com/giellalt/template-language-und
https://github.com/divvun/actions/
https://github.com/divvun/actions/


Figure 1: Example of LLM-based spell-checking and correction

You are a spell-checker for Finnish language,
you will be given a list of word-forms and you
should answer with a list of the word-forms,
then suggested corrections for example:

rahhaa rahaa rahkaa
If a word is already correct,
the first suggestion should be
the same as the input word:

päälle päälle

Figure 2: ChatGPT prompt for spell-checking.

The prompt used is given in the Figure 2.

Ethics Statement

The data annotation and human evaluation was
performed by article authors and colleagues; no
unpaid annotators were used. The LLMs use
significant amount of water and electricity and
we have made an effort to minimise unnecessary
overuse of LLMs.

Acknowledgments

References
Kenneth R Beesley and Lauri Karttunen. 2003. Finite

State Morphology. CSLI publications.

V. I. Levenshtein. 1966. Binary codes capable of cor-
recting deletions, insertions, and reversals. Soviet
Physics—Doklady 10, 707–710. Translated from
Doklady Akademii Nauk SSSR, pages 845–848. Un-
translated version 1965.

Peter Norvig. 2010. How to write a spelling corrector.
Web page. Retrieved 2024, available http://no
rvig.com/spell-correct.html.

Flammie Pirinen, Krister Lindén, et al. 2014. State-
of-the-art in weighted finite-state spell-checking.
In Computational Linguistics and Intelligent Text
Processing 15th International Conference, CICLing
2014, Kathmandu, Nepal, April 6-12, 2014, Pro-
ceedings, Part II.

Flammie Pirinen, Sjur Moshagen, and Katri Hiovain-
Asikainen. 2023. GiellaLT — a stable infrastruc-
ture for Nordic minority languages and beyond. In
Proceedings of the 24th Nordic Conference on Com-
putational Linguistics (NoDaLiDa), pages 643–649,
Tórshavn, Faroe Islands. University of Tartu Library.

Flammie A Pirinen and Krister Lindén. 2010. Finite-
state spell-checking with weighted language and er-
ror models—building and evaluating spell-checkers

62

http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html
http://norvig.com/spell-correct.html
https://aclanthology.org/2023.nodalida-1.63
https://aclanthology.org/2023.nodalida-1.63


with wikipedia as corpus. In 7th SaLTMiL Work-
shop on Creation and use of basic lexical resources
for less-resourced languages LREC 2010, Valetta,
Malta, 23 May 2010 Workshop programme, page 13.

63


