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Introduction

We would like to welcome you to AmericasNLP 2025, the Fifth Workshop on Natural Language Proces-
sing for Indigenous Languages of the Americas!

The main goals of the workshop are to:

• encourage research on NLP, computational linguistics, corpus linguistics, and speech around the
globe to work on Indigenous American languages.

• promote research on both neural and non-neural machine learning approaches suitable for low-
resource languages.

• connect researchers and professionals from underrepresented communities and native speakers of
endangered languages with the machine learning and NLP communities.

In 2025, AmericasNLP will be held in Albuquerque, USA, on May 4th. Prior to the workshop three sha-
red tasks were hosted: (1) the Shared Task on Machine Translation into Indigenous Languages, (2) the
Shared Task on the Creation of Educational Materials for Indigenous Languages, and new for 2025 (3)
the Shared Task on Machine Translation Metrics for Indigenous Languages. During the workshop, there
will be two invited talks, a panel, poster session, as well as multiple paper and shared task submission
presentations.

We received a total of 22 submissions: 12 research papers, 1 extended abstract, and 8 shared task system
description papers (across all shared tasks). 8 archival papers were accepted (acceptance rate: 66%) – in
addition to the previously published and system description papers.

We would like to acknowledge all the time and effort put into the reviewing process, and thank for
program committee members for helping us create a high-quality program in a short amount of time.
AmericasNLP would not have been possible without the help our sponsor for 2025: Google. Finally, we
would also thank all the authors who submitted their work to the workshop, the participants of the shared
tasks, and everyone who will be at the workshop, both in-person and remote, to exchange and discuss
their ideas for improving natural language technologies for Indigenous languages of the Americas!

Manuel Mager, Abteen Ebrahimi, Shruti Rijhwani, Robert Pugh, Arturo Oncevay, Luis Chiruzzo, Rolan-
do Coto-Solano, and Katharina von der Wense

AmericasNLP 2025 Organizing Committee

iv



Program Committee

Program Committee

Eduardo Blanco, University of Arizona
Ruixiang Cui, University of Copenhagen
Cristina España-Bonet, DFKI GmbH
Silvia Fernandez Sabido, CentroGeo
Luke Gessler, Indiana University Bloomington
Santiago Góngora, Universidad de la República
Éric Le Ferrand, Boston College
Zoey Liu, Department of Linguistics, University of Florida
Daniela Moctezuma, Centrogeo
Sarah Moeller, University of Florida
Alejandro Molina-Villegas, SECIHTI
Remo Nitschke, University of Arizona
John E. Ortega, Northeastern University
Tanmay Parekh, University of California Los Angeles
Nathaniel Robinson, Johns Hopkins University
Atnafu Lambebo Tonja, Instituto Politécnico Nacional (IPN), Centro de Investigación en Compu-
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Keynote Talk

Alexis Palmer
University of Colorado Boulder

Bio: Dr. Palmer is an expert in computational discourse and semantics; computational linguistics for
low-resource languages and language documentation; discourse structure and coherence, and modes of
discourse and social analytics, including automated detection of offensive language in social media. She
received her PhD from UT Austin in 2009, has held a number of prestigious post docs and research
positions in Germany (including positions at the Institute for Computational Linguistics in Heidelberg
and the Institut für Deutsche Sprache in Mannheim). Until her move to CU in 2021, she was an assistant
professor at the University of North Texas, Denton. Dr. Palmer brings a prestigious National Science
Foundation CAREER grant with her to CU. In this project, she is working on cross-linguistic methods
for better development of language processing tools for low-resource languages. The project is called
FOLTA (From One Language to Another). She has also recently become interested in the question of
how we can make the outcomes of linguistic documentation more useable and accessible, particularly to
support development of pedagogical materials for a language.
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Text-to-speech system for low-resource languages: A case study in
Shipibo-Konibo (a Panoan language from Peru)

Daniel Menéndez
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Héctor Erasmo Gómez
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Abstract

This paper presents the design and develop-
ment of the first Text-to-Speech (TTS) model
and speech dataset for Shipibo-Konibo, a low-
resource indigenous language spoken mainly
in the Peruvian Amazon. Despite the chal-
lenge posed by data scarcity, data was gathered
and structured for the dataset, thus the TTS
model was trained with over 4 hours of record-
ings and 3,025 written sentences. The test re-
sults demonstrated an intelligibility rate (IR) of
88.56% and a mean opinion score (MOS) of
4.01, confirming the quality of the generated
audio using Tacotron 2 and HiFi-GAN. This
study highlights the potential for extending this
approach to other indigenous languages in Peru,
contributing to their documentation and revital-
ization.

1 Introduction

With over 7,000 languages worldwide (SIL, Ac-
cessed March 14 2024), many of them face extinc-
tion, threatening linguistic diversity and indigenous
knowledge (Evans and Levinson, 2009; Spiegelhal-
ter et al., 2002; Campbell and Rehg, 2018). In
the particular case of Peru, official statistics rec-
ognize 48 indigenous languages, while Glottolog
lists 90 (Hammarström et al., 2021). Among these,
Shipibo-Konibo, part of the Pano family, is spoken
by approximately 40,000 people1; however, NLP
efforts for the language face challenges such as at
least two orthographic traditions and limited digi-
tal resources. For more details about the Shipibo-
Konibo communities and its current writing and
speech systems, see Appendix A.

Thus, to continue previous efforts made in
projects like Huqariq (Zevallos et al., 2022), where
a combined speech corpus of Quechua, Aymara,
and Shipibo-Konibo was collected, this paper

1The 2017 Peruvian census estimates the total Shipibo-
Konibo population at 34,000, but the actual figure is expected
to be higher (INEI, 2018)

presents the development of the first Shipibo-
Konibo TTS model. The study includes dataset
creation, model selection, training, and evaluation.
The goal is to facilitate future NLP applications for
Shipibo-Konibo and other indigenous languages.
Furthermore, we aim to support language revital-
ization by offering audio resources that facilitate
pronunciation practice beyond the classroom. Ad-
ditionally, integrating synthesized speech into ed-
ucational tools such as dictionaries and verb con-
jugators enhances language accessibility as it was
done in other countries (Pine et al., 2022).

2 Speech synthesis for low-resource
languages

Developing a TTS model for low-resource lan-
guages presents challenges, primarily the lack of
structured data. This limitation impacts training
strategies, requiring transfer learning and special-
ized neural architectures as Transformer-TTS (Li
et al., 2019) or Glow-TTS (Kim et al., 2020). Addi-
tional challenges include the estimation of compu-
tational resources, as renting the necessary capacity
was the only viable option, leading to additional
expenses within our limited budget.Another chal-
lenge arose in selecting the most suitable metrics
for this low-resource scenario. While MOS is the
most commonly used in such cases, the evaluations
were also designed to extract computable data on
intelligibility (Xu et al., 2020).

3 Data Collection

No existing Shipibo-Konibo speech dataset was
available, so creating one from scratch was neces-
sary. Texts published after 2015 alphabet normal-
ization were prioritized for relevance, and corre-
sponding audio recordings were collected.

1



3.1 Text Compilation
Key sources included the Shipibo-Konibo trans-
lation of The Little Prince (Jatibi Ibo Bake) and
some bilingual educational materials from the Pe-
ruvian Ministry of Education, resulting in a corpus
of 3,025 sentences.

3.2 Audio Compilation
Audio recordings were done following the LJ
Speech (Ito and Johnson, 2017) dataset require-
ments:

• Sampling rate of 22,050Hz or higher.
• Single speaker.
• The sentences must contain diverse phonemes.
• Audio duration must be between 1-10 sec-

onds.
• Audio segments must not have long silence at

the beginning or at the end.
• Audio segments must not contain long pauses.
The recording sessions featured a native Shipibo-

Konibo speaker with prior experience in voice
documentation, which were conducted over three
months in intervals of up to two hours to ensure
vocal consistency.

By the end of all the sessions, the final dataset
exhibited the characteristics shown in Table 1.

Characteristics Value
Number of sentences 3025
Total duration 4h37m14s
Minimum sentence duration 1.08s
Maximum sentence duration 12.1s
Average sentence duration 5.1s

Table 1: Details of the audio clips collected from the
Shipibo-Konibo language.

Finally, all the sentences were trimmed and re-
sampled to 22.05KHz. Long silences were re-
moved, volume, speed, and text were normalized
as required by the Tacotron 2 model (Shen et al.,
2018).

4 The proposed TTS model

A previous evaluation of many TTS models led to
the selection of Tacotron 2 as a result of its success
in low-resource environments, showing promising
results using datasets of less than 3 hours (Debnath
et al., 2020; Dasare et al., 2022; Gopalakrishnan
et al., 2022) and the vibrant state of development
also. Previous models like Voice Loop 2 (Taigman
et al., 2017), FastSpeech2 (Ren et al., 2020) and

Transformer-TTS (Li et al., 2019) were discarded
due to factors such as their fall into disuse or their
inferior performance.

4.1 Tacotron 2

Tacotron 2 (Shen et al., 2018) was chosen for its
encoder-attention-decoder architecture, which im-
proves speech quality. Our model was implemented
in PyTorch and trained using transfer learning tech-
niques.

4.2 The HiFi-GAN vocoder

Unlike the original Tacotron 2 approach using
WaveGlow (Prenger et al., 2019), this study em-
ployed HiFi-GAN (Kong et al., 2020) due to its
recent superior performance. HiFi-GAN, a GAN-
based vocoder, generates waveforms from Tacotron
2 spectrograms.

A summary of the entire proposed model is
shown in Figure 1.

Figure 1: Architecture of the proposed TTS model.

5 Experimentation and Results

Tacotron 2 and HiFi-GAN were trained separately,
as the vocoder relied on the spectrogram predic-
tions generated by the fully trained Tacotron 2
model. Hyperparameter tuning was optimized us-
ing insights from similar projects (Debnath et al.,
2020; Dasare et al., 2022).
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5.1 Training the Tacotron 2 Model

We used Google Colab with an Nvidia A100 GPU
for the training process, and we fine-tuned a pre-
trained Latin American Spanish model from Hug-
ging Face (Cedillo, 2023), where the best hyper-
parameters achieved are displayed on tables 2
and 3, showing promising encoder-decoder align-
ment from the first epoch.

Hyperparameters Value
Epochs 225
Batch size 16
Gate threshold 0.5
Decoder dropout 0.1
Attention 0.1

Table 2: Final Tacotron2 Hyperparameters.

Optimizer Parameters Value
Learning rate 3.10−4

β1 0.9
β2 0.999
Weight decay 1.10−5

Table 3: Parameters used for the Adam optimizer.

The training process took about 225 epochs until
it stalled at a validation loss of 0.1434 (Figure 2)
and encoder-decoder alignment as shown in Fig-
ure 3.

Figure 2: Validation loss function evolution.

5.2 Training the HiFi-GAN vocoder

The vocoder was trained after Tacotron 2 using a
transfer learning strategy with a pre-trained uni-
versal female voice model to achieve faster con-
vergence with the native speaker’s voice. After 34
epochs, loss stabilization indicated convergence.

Figure 3: Epoch 225 final encoder-decoder alignment.

5.3 Evaluation and Results

For model evaluation, we extracted 400 additional
sentences from the book Koshi Shinanya Ainbo
(The Testimony of a Shipibo Woman) (Valenzuela
and Rojas, 2005), a pre-2015 Shipibo-Konibo book
with an alphabet easily adaptable to the modern
one. It narrates the life and traditions of Mrs. Ranin
Ama and her community.

As an initial inference test, Figure 4 presents
a five-word phrase from the book, lasting three
seconds: Nokon titan ea axeani jawékibo ("The
things my mother taught me").

Objective metrics like PESQ (Rix, 2003) and
POLQA (Beerends et al., 2013) require extensive
high-quality reference data, which is unavailable
for Shipibo-Konibo. Instead, we followed subjec-
tive evaluations by several native speakers, despite
being more time-consuming. The Mean Opinion
Score (MOS) is the most commonly used metric
in low-resource scenarios, while the Intelligibility
Rate (IR) can also provide valuable insights.

The Intelligibility Rate (IR) measures how accu-
rately listeners transcribe synthesized speech, cal-
culated as the percentage of correctly identified
words. The Mean Opinion Score (MOS) evaluates
speech quality based on clarity, naturalness, and
fluency, rated on a scale from 1 to 5 (see Table 4).
The average score given by the evaluators is used
to determine the final mean opinion score.

Value Descripción
1 Unacceptable or very poor quality
2 Poor quality
3 Acceptable or adequate quality
4 Good quality
5 Excellent quality

Table 4: MOS metric scale.

3



Figure 4: Spectrogram and encoder-decoder alignment
graph of a 3-second synthetic phrase.

A total of 26 native Shipibo-Konibo speakers
(11 men, 15 women), all under 30 and university-
educated, participated as evaluators. All of them
familiar with the use of PC and office software tools
to make evaluations easier. To compare natural and
synthetic speech, 25% of the evaluated phrases
were natural samples, randomly included in a set
of 20 audios per evaluator. Table 5 presents the
intelligibility rate (IR) results for both speech types.

Type of voice IR
Natural 83.45%
Synthetic 88.56%

Table 5: Intelligibility rate results.

Meanwhile, the results obtained from the same
evaluators for the mean opinion score (MOS) are
shown in Table 6.

Type of voice MOS
Natural 3.75± 1.2
Synthetic 4.01± 1.09

Table 6: Mean opinion score results.

Furthermore, Figure 5 illustrates the compari-
son between the MOS distributions for natural and
synthetic voices.

Figure 5: MOS percentage distribution for natural and
synthetic voice.

5.4 Discussion

The results were highly positive, with an IR of
88.56% and MOS of 4.01, meeting expectations.
Surprisingly, the synthetic voice outperformed the
natural voice in both metrics.

However, a parallel qualitative analysis revealed
issues such as ambiguous intonation, improper
punctuation handling, and pronunciation inconsis-
tencies. The encoder-decoder alignment analysis
during sentence synthesis identified some recurring
synthesis faults, particularly in the suffixes titai,
tiai, tian and wai, due to insufficient training data.
Additionally, significant pronunciation variations
were observed across recordings for the sounds iki,
nai, non, ani, ja, ea, baon, kon, xe, and noa.

6 Conclusions and future work

We successfully designed, developed, and evalu-
ated the first TTS model for the Shipibo-Konibo
language. For this task, we compiled speech corpus
of over 4 hours and 3,025 labeled sentences.

The Tacotron 2 spectrogram predictor and HiFi-
GAN vocoder were effectively trained, achieving
an IR of 88.56% and an MOS of 4.01, which
indicates that the synthetic speech samples sur-
passed the natural ones in some tests. These results
show the potential of the model for other Panoan
and Amazonian languages with similarly limited
speech data.

Future work will focus on improving corpus
quality, refining audio recording conditions, and in-
corporating more diverse sentence structures. This
model serves as a foundation for adapting TTS sys-
tems to other indigenous languages within the Pano

4



family and beyond.

Limitations

Despite promising results, this study has some lim-
itations:

• The corpus consists of only 4 hours and 3,025
sentences, which may not fully capture the
phonetic and prosodic variability of Shipibo-
Konibo. A larger dataset could improve gen-
eralization.

• Our was trained on a young female sin-
gle speaker, limiting voice diversity. Multi-
speaker training for broader applicability
should be included.

• Although our collaborator is a native Shipibo-
Konibo speaker, she has been living in the
capital, Lima, for several years. The distance
from her community and the reduced daily
use of her language have led to variations in
her pronunciation, which are reflected during
evaluations in the intelligibility rate (IR) and
mean opinion score (MOS) metrics for natural
voice.

• Due to the absence of high-quality reference
data, PESQ and POLQA were not used. Sub-
jective evaluations (IR and MOS) were em-
ployed, but they are more time-consuming and
dependent on evaluator bias.

• While the model provides a framework for
low-resource TTS development, its adaptation
to other Panoan or Amazonian languages re-
quires additional data and fine-tuning.

• Shipibo-Konibo has at least two writing con-
ventions. The dataset prioritizes the 2015 stan-
dard, but variations may affect the model’s
usability in different communities.

Ethics statement

This study was conducted with ethical consider-
ations in mind, ensuring respect for the Shipibo-
Konibo community and its linguistic heritage. The
native speaker who contributed to the dataset par-
ticipated voluntarily, providing informed consent
before any recording sessions. Additionally, she
was fairly compensated for her time and contribu-
tions.

We acknowledge the importance of responsi-
ble data collection and ensure that all linguistic
resources were gathered and processed with the
utmost respect for cultural sensitivity. The project
aligns with ethical guidelines for language docu-

mentation and preservation, aiming to empower
indigenous communities by providing AI tools that
support language revitalization.

Any future use of the dataset and TTS model will
be governed by principles of transparency and com-
munity engagement, ensuring that the benefits of
this research extend directly to the Shipibo-Konibo
people.
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A About de Shipibo-Konibo community

The Shipibo-Konibo community is an indigenous
Amazonian group located primarily in the Ucay-
ali region of Peru, with additional populations in
Loreto, Huánuco, Madre de Dios and urban areas
such as Lima and Pucallpa. They are known for
their rich cultural heritage, textile art, and deep
spiritual connection to nature.

In 2015, the Peruvian Ministry of Education for-
malized an official alphabet as shown in Figure 7,
though older orthographies still exist as can be seen
on the Figure 8.
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Figure 6: Map of Peru showing the areas where various
Shipibo-Konibo communities are located.

Figure 7: Current Shipibo-Konibo normalized
graphemes and phonemes

Figure 8: One of the old Shipibo-Konibo graphemes
and phonemes
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Abstract

We investigate the learning outcomes and user
response to a chatbot for practicing conversa-
tional Choctaw, an endangered American In-
digenous language. Conversational fluency is
a goal for many language learners, however,
for learners of endangered languages in North
America, access to fluent speakers may be lim-
ited. Chatbots are potentially ideal dialogue
partners as this kind of dialogue system fulfills
a non-authoritative role by focusing on carrying
on a conversation as an equal conversational
partner. The goal of the chatbot investigated in
this work is to serve as a conversational partner
in the absence of a fluent Choctaw-speaking
human interlocutor. We investigate the impact
of code-switching in the interaction, compar-
ing a bilingual chatbot against a monolingual
Choctaw version. We evaluate the systems for
user engagement and enjoyment, as well as
gains in conversational fluency from interact-
ing with the system.

1 Introduction and Motivation

Conversational fluency is a goal for many language
learners. However, for learners of endangered lan-
guages like Choctaw, access to fluent speakers may
be limited. This lack of access may be due to ge-
ographical features, such as not living on or near
tribal lands, or because there are few remaining
fluent speakers of the language. It is unclear how
many Indigenous languages are still spoken today
in the United States; one source (Moseley, 2010)
estimated there were 256 in 2010, while the 2010
US census estimated 1651. At the time of writ-
ing, no similar summary could be found for the
results of the 2020 census. However, it is antici-
pated that the number of speakers has declined over
time (Simons and Fennig, 2018), particularly after
the devastating effects of the COVID-19 pandemic

1https://www2.census.gov/library/publications
/2011/acs/acsbr10-10.pdf

(Healy and Blue; Rogers), thus support for learning
these languages is time critical.

The goal of the chatbot investigated in this work
is to serve as a conversational partner in the ab-
sence of a fluent Choctaw-speaking human inter-
locutor. The goal of the interaction is for the user
to gain conversational fluency in Choctaw, such
as through increased vocabulary or greater sense
of ease, by interacting with the system. We com-
pare a monolingual version of the chatbot against a
code-switching one.

This work builds on our previous work on
Masheli, a simplified Choctaw-English code-
switching chatbot (Brixey and Traum, 2021). How-
ever, we address several new questions, such as:
Will code-switching lead to a better user experi-
ence? Will users show a higher preference for
the code-switching chatbot? Will code-switching
improve the learning outcomes? Will Indigenous
language learners want to use this technology?
Our results indicate that interactions with the code-
switching chatbot suggest a slight improvement in
user experience but did not find significant learning
benefits compared to the monolingual chatbot.

2 Relevant Literature

Technology developed for learning purposes, es-
pecially language learning, is a well-established
area of research. Technology, particularly dialogue
systems, has been implemented in this sphere for
several reasons. While traditional classroom set-
tings may attempt to create conversational oppor-
tunities, many student factors, such as shyness or
fear of making errors, can prevent learners from
engaging fully in conversation with a human part-
ner (Shawar and Atwell, 2007). Chatbots are well
suited for language learning environments since
they can serve as an equal conversational partner
without expectations of explicit correction on er-
rors (Chou et al., 2003), and learners have reported
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feeling more comfortable chatting with a dialogue
system than with a human interlocutor (Fryer and
Carpenter, 2006).

2.1 Second language acquisition literature

Second language acquisition is learning a second
language other than the first after the first language
has been acquired (Ortega, 2014). Theories, frame-
works, and descriptions for second language acqui-
sition abound (For a more detailed overview, see
Ortega (2014); Mitchell et al. (2013); Lightbown
and Spada (2013)). This section is thus related
to Indigenous language learning and systems and
emerging bilingual conversational behaviors and
pedagogy that supports these behaviors.

2.1.1 Indigenous language pedagogy and
language learning systems

Learning an Indigenous language differs from other
second languages due to factors like a limited num-
ber of fluent speakers, often dispersed geographi-
cally, and the dominance of English in many Indige-
nous communities (2015). Language suppression
and forced cultural assimilation have contributed
to these challenges, along with a lack of published
literature and media in the language. Moreover,
the scarcity of learning opportunities and spaces to
practice the language, even on reservations, further
complicates revitalization efforts (White, 2006).
Additionally, Indigenous language teachers may
not always have formal training in pedagogy, and
there may not be enough instructors to meet the
growing demand for learners of all ages (Lukaniec
and Palakurthy, 2022).

Technology has become a significant tool for
overcoming some of these challenges, providing
new opportunities for language learning and con-
necting speakers across geographical distances
(Cassels and Farr, 2019). While technology alone
cannot revitalize a language, it can supplement the
efforts of motivated learners and serve as one of
many tools for language revitalization (Cassels and
Farr, 2019). The Choctaw Nation of Oklahoma
has long utilized technology for language teach-
ing, from early telecourses to more recent Zoom
classes, which became especially popular during
the pandemic and continue to thrive today 2. As
Mark Turin, former chair of the First Nations and
Endangered Languages Program at the University
of British Columbia, states, "tools and technology

2https://www.choctawnation.com/about/language
/classes/

don’t save language — speakers do" (Karstens-
Smith).

2.1.2 Emerging Bilingual Conversational
Behaviors and Translanguaging

Emerging bilinguals often code-switch, combin-
ing elements from different languages to communi-
cate, even in non-grammatical ways, but they still
co-construct meaning with interlocutors (Cenoz
and Gortegaorter, 2017; Canagarajah, 2011). This
is common in casual conversations where inter-
locutors share multiple languages and the language
choice is not fixed (Auer, 1995). While learning
a language is ultimately an individual endeavor,
supportive pedagogy can enhance the process. Tra-
ditional immersion pedagogy required learners to
interact only in the target language, but translan-
guaging—intentionally using multiple languages in
a learning environment—has become more widely
accepted in second-language pedagogy, especially
for teaching endangered languages (Cenoz and
Gortegaorter, 2017).

The literature differentiates code-switching from
translanguaging. Code-switching involves shifting
between languages in any conversational setting,
while translanguaging encourages emerging bilin-
guals to use all their languages purposefully in a
learning setting, with the instructor gradually re-
ducing support as learners progress (Cenoz and
Gortegaorter, 2017; Makalela, 2015). Originat-
ing in bilingual English-Welsh education, translan-
guaging emphasizes interaction and participation,
even if not entirely in the target language, allowing
learners to use other languages to fill gaps in their
knowledge (Makalela, 2015; García, 2009). This
contrasts with immersion-style teaching, which of-
ten discourages or ignores the use of the non-target
language.

In monolingual settings, emerging bilinguals of-
ten avoid addressing their language confusion, hop-
ing that future encounters or additional context in
the same conversation will provide clarification
(Canagarajah, 2011). This is known as the "let it
pass" principle (Firth, 1996), the act of not address-
ing misunderstandings, which can hinder compre-
hension if additional examples do not occur. How-
ever, classrooms using translanguaging have seen
better outcomes for second-language learners, as
fewer "let it pass" instances happen (Champlin,
2016). While translanguaging is frequently consid-
ered a verbal act (Canagarajah, 2011), the literature
supports translanguaging in text form. For example,
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Māori literacy improved when students used En-
glish to process Māori texts (Lowman et al., 2007).
Translanguaging has also been shown to be psycho-
logically beneficial for emerging bilinguals. It is
suggested to legitimize a student’s relationship with
both languages and foster self-identification as a
speaker of both languages (Makalela, 2015), while
encouraging the use of all linguistic resources,
rather than suppressing specific repertoires, can
enhance students’ self-confidence.

There are strategies to use translanguaging in a
learning environment effectively. The most com-
mon approaches emphasize linking translanguag-
ing to content in lessons, such as important vocabu-
lary, and that the instructor should utilize translan-
guaging and encourage its use by individual stu-
dents and within groups (Cenoz and Gortegaorter,
2017; Dougherty, 2021; Seals and Olsen-Reeder,
2020).

2.2 Hypotheses
To summarize the prior research, translanguaging
and using an already known language can enhance
a learner’s learning gains and sense of comfort in a
classroom setting with human-human interactions
(Butzkamm and Caldwell, 2009). The literature
also shows that code-switching can lessen the feel-
ing of distance between conversational human in-
terlocutors. Based on the literature, the hypotheses
for this experiment are as follows.

1. H1: Code-switching bilingual chatbots that
use translanguaging techniques and code-
switching frameworks lead to a better learning
experience, possibly through learning gains or
a greater sense of rapport, comfort, or enjoy-
ment for language learning users.

2. Users will demonstrate the highest learning
gains with a code-switching system.

3. Users will have a lower user experience with
the monolingual system than with the code-
switching bilingual system.

3 System Design

For this work, we implemented two chatbots: a
monolingual Choctaw version, and an English-
Choctaw code-switching one. The backend of the
chatbots is NPCEditor, a response classifier and
dialogue management system (Leuski and Traum,
2011). NPCEditor uses a statistical classifier that is
trained on linked questions and responses. The clas-
sifier is trained on a question-answer (QA) corpus.

Figure 1: Example conversation with the chatbot.

For each user input, the classifier ranks all the avail-
able responses. NPCEditor also contains a dialogue
manager, which selects an appropriate response
from the ranked responses. Previous applications
of NPCEditor have been used for interactive char-
acters in multiple domains, such as interviews with
Holocaust survivors (Traum et al., 2015). This was
also the backend for an earlier version of Masheli
(Brixey and Traum, 2021).

An example dialogue with the code-switching
chatbot is in Figure 1, demonstrating some greet-
ings (the first two complete turns) and then telling
a story about a fox in Choctaw.

We elected to use NPCEditor and handcrafted
utterances over LLMs or other approaches for two
primary reasons. First, we wanted to implement a
consistent strategy for code-switching, which we
found LLMs struggled to produce reliably. Sec-
ond, through experimentation, we discovered that
LLMs often failed to generate syntactically correct
Choctaw utterances. Since one of the chatbot’s
main goals is to help learners improve their lan-
guage fluency, providing incorrect Choctaw would
contradict that objective.
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3.1 QA Corpus

Each question in the QA corpus is matched to at
least one appropriate answer that serves as a re-
sponse for the chatbot. There is no explicit module
for recognizing the language in which the user is
communicating. The knowledge base of the chat-
bot is sharing stories about animals. We made
this selection because pedagogy literature, espe-
cially for American Indigenous languages (Cantoni,
1999), indicates that story-based instruction is bene-
ficial in language learning environments (Kickham,
2015; Andrews et al., 2009).

3.1.1 Questions
We implemented a Python script to generate ques-
tions for the question portion of the QA corpus.
The script included several sentences with predom-
inantly English syntax, such as "Can I have a story
about ..." or "Tell me about ..." and the list of ani-
mals from the stories in Choctaw to be added at the
end of the sentence. The result produced a sentence
like "Can I have a story about shawi?" (Can I have
a story about raccoons?)

The monolingual chatbot version was intended
to mimic an immersion-style pedagogy, so we only
added a handful of English and code-switched sen-
tences. Most of these were mapped to an off-topic
response encouraging the user to speak in Choctaw.
This type of response aligns with the immersion-
style curriculum, which will ignore or discourage
statements made in the non-target language.

3.1.2 Answers
To form the chatbot’s domain knowledge, ten an-
imal stories were selected from ChoCo (Brixey
et al., 2018), a Choctaw language corpus. All sto-
ries are originally in Choctaw and have English
translations. We created handcrafted responses
for the two chatbots. To incorporate translanguag-
ing strategies in the code-switching chatbot, we
repeated key vocabulary to understand the story in
English in parentheses. Repetition was one non-
spontaneous strategy for effective translanguaging
(Seals and Olsen-Reeder, 2020). The examples
in Table 1 show how code-switching and translan-
guaging were incorporated into a given line in a
story.

Code-switching was generated in two options,
insertional and switching at clauses, which fol-
lows the linguistic literature on code-switching and
the model described in Ahn et al. (2020). There
were two options for the matrix language, either

Choctaw or English. Not every sentence in a story
includes code-switching. Instead, we aimed for
roughly 75% of a given Choctaw story to have
code-switching.

3.2 Dialogue manager
The dialogue manager can choose a lower-ranked
response to avoid repetition. If the score of the
top-ranked response is below the threshold that
was selected during training, the dialogue manager
will instead select a response that indicates non-
understanding or that aims to end a conversation
topic. For example, the expression “Mihacha?” (“It
really is, isn’t it?”) might be selected as a response
when no other response scores above the threshold.

3.3 Orthographic considerations
One challenge to support Choctaw is that the lan-
guage does not have a fully standardized written
form. Each training example in the question portion
of the QA corpus was written in multiple formats
to support many different possible orthographic
presentations. For example, the sentence “Do you
know a story about a woodpecker?” could be writ-
ten with different formats of nasalized characters a

¯and i
¯
:

1. Biskinik am anumpa nan anoli ish i
¯
shi?

2. Biskinik a anumpa nan anoli ish i
¯
shi?

3. Biskinik an anumpa nan anoli ish i
¯
shi?

4. Biskinik a
¯

anumpa nan anoli ish i
¯
shi?

5. Biskinik a
¯

anumpa nan anoli ish inshi?

4 Methods

This section discusses consultations with the
Choctaw Nation of Oklahoma, the IRB review pro-
cess, and how we ensured tribal data rights. We
also describe methods to assess the user experience:
a language test to evaluate the user’s learning and
a survey to gauge their sense of rapport, comfort,
and enjoyment.

4.1 Tribal review
Several steps are required to conduct research on
the Oklahoma Choctaw language or with Choctaw
tribal members. First, a sponsor must review and
support the work. A sponsor must be someone who
works for the tribal nation. The sponsors for this
work evaluated the proposal for sensitivity to the
community, adequate protection of tribal members,
and alignment with tribal initiatives. Following a
sponsor’s approval and support, we then applied to
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English One day a man riding in a boat came to the end of the water.
Monolingual Choctaw Mak atoko

¯
nittak himona ka

¯
hattak mvt oka peni fokka osh ont aivhli ma

¯
ona tok.

Insertional-Cho matrix Mak atoko
¯

nittak himona ka
¯

hattak mvt a boat fokka osh ont aivhli ma
¯

ona tok.
Clausal-Cho matrix One day, hattak mvt oka peni fokka osh ont aivhli ma

¯
ona tok.

Insertional-Eng matrix One day a man riding in oka peni came to the end of the water.
Clausal-Eng matrix Mak atoko

¯
nittak himona ka

¯
a man riding in a boat came to the end of the water.

Repetition One day a man riding in oka peni (a boat) came to the end of the water.

Table 1: Framework-based utterances examples. English portions are bolded in code-switched utterances.

Choctaw Nation’s IRB. Our university’s IRB then
reviewed and approved the protocol.

4.2 Language Test

We created a 15-question language test to be ad-
ministered before and after the interaction. The test
determines whether learners gained any new vocab-
ulary ("What is the word for deer in Choctaw?", 12
questions) or any new syntax ("How would you say,
’Do you know a story about deer?’ in Choctaw?",
three questions).

The language test also served to inform all par-
ticipants about the chatbot’s domain knowledge of
animal stories, a fact given in the instructions read
to each participant, so that participants would have
more consistent experiences and not have to spend
time discovering which stories the chatbot knows.

4.3 Survey design

The survey was designed to evaluate the user’s
sense of rapport, the naturalness of the code-
switching, and the feeling of connection because
of language identity.

The survey consisted of twelve 5-point Likert
scale questions, and the answers were scored from
1 strongly disagree to 5 strongly agree. Many
questions came from previous research on rapport
(Novick and Gris, 2014; Gratch et al., 2007). Ques-
tions 7 and 10 are novel and tailored to this ex-
periment. All survey questions were optional, and
participants could choose to skip any questions.

1. The system understood me.
2. The system seemed unengaged.
3. The system was friendly.
4. The system and I worked towards a common

goal.
5. The system and I did not seem to connect.
6. I didn’t understand the system.
7. The system knows the Choctaw language.
8. The interaction was interesting.
9. The interaction felt natural.

10. I felt the system and I were in the same social
group.

11. I would be willing to continue the conversa-
tion with the system for longer.

12. I would recommend interacting with this sys-
tem to a friend.

13. Was there anything else that you wanted to
talk to the system about? (open-ended)

14. Do you have any other comments to share
about your experience? (open-ended)

Questions were selected to determine levels of
rapport (1, 2, 4, 5, 6, 9) and engagement and con-
nection (3, 8, 10, 11, 12). We hypothesized that
the code-switching cohort would score the chatbot
higher on these questions. The survey also mea-
sured people’s perception of the chatbot’s knowl-
edge of the Choctaw language (7) to gauge how
users perceived the fluency of the chatbot’s code-
switching.

4.3.1 Experiment session

Participants began by reading and signing a consent
form, followed by an oral explanation. The exper-
iment started with the language test, after which
participants interacted with the chatbot for 15 min-
utes. They then completed the language test again
and finished with a post-interaction survey to rate
their experience and provide comments. Partic-
ipants were encouraged to have a dictionary on
hand; if not, they were given links to two online
dictionaries, a 1915 publication (Byington, 1915)
and a 2016 publication (The Choctaw Nation of
Oklahoma Dictionary Committee, 2016).

4.3.2 Inclusion and exclusion criteria

Inclusion and exclusion criteria, in this case, spec-
ify which individuals from the participant popu-
lation are eligible or ineligible to be included in
the research study. The inclusion criteria required
participants to follow instructions, engage meaning-
fully with tasks, and provide on-topic interactions
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with the chatbot. They were instructed to commu-
nicate with the session leader only for questions
or technical issues. Participants were expected to
complete all tasks, including language proficiency
tests, surveys, and structured interactions with the
chatbot, ensuring data integrity. While participants
were not required to spend the full 15 minutes in-
teracting with the chatbot and would not be ex-
cluded for finishing early, they were encouraged
to take time referencing the dictionary. No spe-
cific number of chatbot interactions was required,
but at least one turn was necessary to demonstrate
participation. Exclusion criteria included multiple
off-topic utterances, inappropriate comments, or
off-topic survey responses. Non-engagement was
identified as discussing unrelated topics with the
session leader, except for technical issues or clarifi-
cations.

5 Results

In total, 23 participants completed the experiment.
Twelve participants interacted with the monolin-
gual Choctaw chatbot, while eleven participants in-
teracted with the framework-based code-switching
chatbot. One participant from the monolingual
chatbot met the exclusion criteria, so their survey
and language test responses were omitted.

Two participants requested to finish the chat por-
tion early. Their data was retained as they fol-
lowed all protocols and engaged with the chatbot,
albeit for less time. One participant using the mono-
lingual chatbot ended the session after 6 minutes
due to frustration, while another using the code-
switching chatbot ended it after 13 minutes, citing
frustration and disinterest. Many participants asked
the chatbot for definitions and translations despite
having a dictionary, suggesting future work could
include providing these directly.

5.1 Language Test

All language tests (pre- and post-test) were scored
for two factors. The first factor was how many
questions were attempted, regardless of correct-
ness. The second factor was correctness. A correct
answer was one point; thus, a perfect score on the
quiz would be 15.

For the first 12 questions on the language test,
we applied a rubric for grading the questions. Since
Choctaw is not standardized and can require a
keyboard with the unique characters, we made al-
lowances for differences in spelling. Half a point

was deducted if an extra syllable was added, a
vowel was sufficiently incorrect to impact the pro-
nunciation, or a consonant was substantially incor-
rect. Likewise, half of a point was deducted for the
syntax questions if the words were correct, but the
ordering was off, or the pronoun was incorrect.

Next, we evaluated the average change for at-
tempted and correct responses. The average change
in the number of vocabulary questions attempted
was 1.18 for the monolingual group and 1.36 for
the code-switching group. This indicates that the
code-switching group was slightly more inclined to
try more questions after interacting with the chat-
bot. The average change in correct answers for
vocabulary questions for the monolingual group
was 1.5, while the code-switching group was 1.36.
This indicates that all groups benefited from the
interaction, with the monolingual group improving
slightly more. No participants had decreased test
scores. Several participants in both groups showed
no improvement via the language test. The par-
ticipant with the greatest improvement was in the
code-switching group, with a gain of 4.5 points
between pre- and post-interaction tests, and this
participant also showed the greatest change in the
number of questions attempted. For the grammar
questions of the language test, the monolingual
group showed an average increase of 0.1 in the
number of grammar questions attempted. In con-
trast, the code-switching group had an average in-
crease between pre- and post-grammar questions at-
tempted of 0.09. The monolingual group improved
in correct responses on average by 0.2 points, while
the code-switching group improved by 0.18.

An overall positive finding is that learning oc-
curred with both chatbots. Additionally, we did not
observe a significantly higher level of learning with
the monolingual chatbot, the "immersion" style of
learning, over the translanguaging, code-switching
chatbot.

5.2 Responses to survey
The results of comparing the two groups’ survey
responses using a one-tailed T-test are shown in
Table 2. The table also shows the average score for
each group, with the standard deviation given in
parentheses next to the mean value.

We observed two p<0.10 values: (1) The code-
switching group scored their chatbot as friendlier
than the monolingual group, and (2) the code-
switching group reported that they would be more
likely to recommend the system to others.
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Question T-test result Mean Mono (std dev) Mean CSW (std dev)
1 The system understood me. 0.25 3(1) 3.54(1.03)
2 The system seemed unengaged. 0.73 2.54(1.50) 2.36(1.36)
3 The system was friendly. *0.07 3.18 (1.47) 4.36 (0.80)
4 The system and I worked towards a common goal. 0.65 3.36 (1.36) 3.54 (0.82)
5 The system and I did not seem to connect. 0.34 2.90 (1.51) 2.45 (1.12)
6 I didn’t understand the system. 1 2.54 (1.29) 2.54 (1.29)
7 The system knows the Choctaw language. 0.64 3.9 (0.87) 4 (0.89)
8 The interaction was interesting. 0.16 3.63 (1.36) 4.36 (0.92)
9 The interaction felt natural. 0.19 2.81 (1.32) 3.45 (0.82)
10 The system and I were in the same social group. 0.16 2.45 (1.21) 3.18 (1.16)
11 I would be willing to continue the conversation with the system for longer. 0.13 3.63 (1.74) 4.45 (0.52)
12 I would recommend interacting with this system to a friend. *0.06 3.63 (1.62) 4.54 (0.52)

Table 2: The results of comparing survey responses between the monolingual and code-switching interactions.
p<0.10 results are marked with one asterisk. Standard deviations are given in parentheses next to the average in the
final two columns.

We then analyzed the survey responses by clus-
tering the questions by rapport (1, 2, 4, 5, 6, 9) and
engagement and connection (3, 8, 10, 11, 12). We
then summed the scores for each participant in the
given cluster. We reversed the polarity for nega-
tively phrased questions (2, 5, 6). The p-value for
the clustered questions on rapport was 0.24. The
p-value for engagement and connection was 0.04,
a significant value.

6 Discussion

First, we will review the findings for the main re-
search questions.

• Will code-switching lead to a better user expe-
rience? Will users show a higher preference
for the code-switching chatbot?
The survey results indicate that users had a
better, more satisfying experience with the
code-switching, translanguaging chatbot.

• Will code-switching lead to an increase in
learning?
The language tests indicate that participants
learned new vocabulary while interacting with
the code-switching chatbot. However, they
did not learn significantly more than the mono-
lingual group, indicating that interacting with
any chatbot will lead to a learning experience.

• Will Indigenous language learners want to use
this technology?
Some participants expressed interest in inter-
acting with the chatbot again, we invited them
to chat with it again during one weekend over
the month that experiments were held. The
conversations that day were recorded via a
log, but no information was noted about who
spoke to the chatbot at any given time.

Now, we will review the findings in relation to
the hypotheses.

H1: Code-switching bilingual chatbots that
use translanguaging techniques and code-
switching frameworks lead to a better learning
experience, possibly through learning gains or a
greater sense of rapport, comfort, or enjoyment
for language learning users.

The code-switching chatbot followed translan-
guaging principles in its code-switching but also
followed linguistic frameworks that produced in-
sertional and clause switches. The survey results
suggest that modeling code-switching aspects us-
ing linguistic frameworks leads to higher levels of
reported rapport and enjoyment. The final ques-
tion of the survey indicates that the code-switching
cohort would be more likely to interact with the
chatbot again; thus, it is possible that learning gains
could be achieved over multiple interactions.

Survey results also show that participants found
the code-switching chatbot more enjoyable and bet-
ter suited as a language partner for Choctaw learn-
ers, with many describing it as friendlier. This
aligns with the literature on face, suggesting that
participants felt their face was threatened when the
chatbot didn’t understand their Choctaw attempts.
Face is the image one has of oneself and emerges
during interactions (Haugh, 2009). Face is impor-
tant in any conversation as humans want to be liked
and respected by others, but face is a key factor in
learning scenarios (Wang et al., 2008) and particu-
larly in second language conversations (Piirainen-
Marsh, 1995; Ahvenainen, 2021).

H2: Users will demonstrate the highest learn-
ing gains with a code-switching system.

The language test results show no significant
learning gains with immersion (interacting with the
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monolingual chatbot), either in the number of cor-
rect answers or the number of attempted questions.
Participants interacting with the code-switching
chatbot had slightly lower correct answers but were
more likely to attempt vocabulary questions, pos-
sibly due to increased confidence. These results
suggest that both chatbots lead to positive learning
gains.

H3: Users will have a lower user experience
with the monolingual system than with the code-
switching bilingual chatbot.

Based on the p<0.10 results for questions 3 and
12 on the user survey, a preference was observed
for the code-switching system.

Literature on face and face-work explains why
participants preferred the bilingual chatbot. As face
is tied to emotional reactions, it can be threatened
in language learning, leading to frustration, shame,
or anger (Spencer-Oatey, 2007; Holtgraves, 2009;
Ting-Toomey, 2009). Interlocutors are expected to
protect each other’s face (Holtgraves, 2009), thus
users interacting with the monolingual chatbot may
have felt rejected by its seeming disapproval of
their English or non-standard Choctaw.

7 Conclusion and Future Directions

In this work, we tested a novel code-switching
Choctaw language chatbot and the impact of code-
switching on learning. As the language is en-
dangered, effective revitalization efforts are time-
critical. The results of our study indicate that users
prefer the code-switching chatbot over the mono-
lingual one based on the survey responses, which
could have implications for maintaining long-term
learning motivation and interest. Both cohorts
demonstrated learning gains from the interaction in
the form of a vocabulary and grammar quiz, with
the monolingual cohort learning just slightly more
but not significantly more. Our contributions in-
clude novel insights into the user experience of
interacting with a code-switching dialogue system,
a chatbot capable of responding to code-switched
user input, a schema for chatbot responses using lin-
guistic frameworks and translanguaging techniques,
and a corpus of learning users’ conversations with
the chatbot. Choctaw learners have received little
study, and the conversation logs could serve as a
meaningful resource for language instructors and
linguists.

One possibility for future work is to evaluate the
learning gains over a longer period to determine if

additional time spent interacting with the chatbot
or over several sessions could produce strongly sig-
nificant results, either on the survey or language
test. It is possible that retention would be higher
with the group paired with the code-switching chat-
bot, given the higher survey scores, and with higher
retention, the possibility of higher learning. A final
consideration is that replication is needed for other
language communities to confirm that the results
found here are not unique to the Choctaw language.

8 Limitations

One computational limitation of Masheli was that
the system could not process some of the unique
characters of participants’ input. The system was
trained using specific ASCII characters but had not
been trained on some of the other possible ASCII
variations. Additionally, some of the characters did
not render correctly for unclear reasons, such as
a
¯

sometimes presented as å. Participants were en-
couraged during the experiment to use alternative
spellings if the system could not process their orig-
inal statement; however, this may have impacted
user satisfaction.

9 Ethics

This work was completed with consultation and
review from the Choctaw Nation of Oklahoma
(see Section 4.1 for more details). All of the col-
lected data from this research was requested to be
archived at the Choctaw Nation’s Cultural Center
archives to ensure that the tribe would continue to
benefit from this effort.
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Abstract

Machine translation is a tool that can help teach-
ers, learners, and users of low-resourced lan-
guages. However, there are significant chal-
lenges in developing these tools, such as the
lack of large-scale parallel corpora and com-
plex morphology. We propose a novel hy-
brid system that combines LLM and rule-based
methods in two distinct stages to translate in-
flected Ojibwe verbs into English. We use an
LLM to automatically annotate dictionary data
to build translation templates. Then, our rule-
based module performs translation using in-
flection and slot-filling processes built on top
of an FST-based analyzer. We test the system
with a set of automated tests. Thanks to the
ahead-of-time nature of the template-building
process and the light-weight rule-based transla-
tion module, the end-to-end translation process
has an average translation speed of 70 millisec-
onds per word. The system achieved an average
ChrF score of 0.82 and a semantic similarity
score of 0.93 among the successfully translated
verbs in a test set. The approach has the po-
tential to be extended to other low-resource
Indigenous languages with dictionary data.

1 Introduction

Ojibwe is an Indigenous language of North Amer-
ica in the Algonquian family spoken in both the
US and Canada. There are approximately 25,440
(Statistics Canada, 2023) in Canada, and likely not
more than a few thousand speakers in the US. It is
important to document and revitalize the language
for the benefit of the Indigenous community and
the learners. As recently discussed by (Littell et al.,
2018), machine translation has the potential to help
learners and reduce the workload of teachers.

However, it is a difficult task, because Ojibwe
is a morphologically complex language, and there
is not enough parallel data for modern neural ma-
chine translation. Similar in spirit to recent work by

(Zhang et al., 2024), we propose a novel combina-
tion of advanced neural architecture such as LLM
(Large Language Model) to annotate the dictionary
data of Ojibwe to create translation templates, and
from that, using rule-based translation computer
program, to construct good English translations
of inflected Ojibwe verbs. The present work was
designed to overcome the challenges of not hav-
ing enough data to build neural translation systems,
while keeping the precision and speed of rule-based
translations. The purpose is to help learners, teach-
ers, and researchers.

There are currently no machine translation sys-
tems available for the Ojibwe language. Many of
the current translation projects for lower-resourced
languages like Ojibwe are rule-based (Littell et al.,
2018), though there are exceptions such as the
recent translation system developed by Google
for Inuktitut (Caswell, 2024) and Meta’s NLLB
(Koishekenov et al., 2022). We know of one rule-
based system for machine translation of an Algo-
nquian language – Plains Cree – which has been in-
tegrated into the itwêwina dictionary (Arppe et al.,
2022).

One important type of rule-based system, which
can provide at least a partial solution for machine
translation, are finite-state transducers (FSTs) or
morphological parsers more generally (Zhang et al.,
2024). Like all rule-based systems, FSTs have the
advantage of only requiring meta-linguistic knowl-
edge of morphophonological forms and rules and a
dictionary of stems to get off the ground — there
is no need for large collections of training data.1

As such, FSTs are now relatively commonplace for

1It should be noted that, for some languages, even meta-
linguistic descriptions in the form of grammars and dictionar-
ies is uncommon. At the extreme, such languages could be
seen not just as low-resourced, but unresourced when it comes
to documentation and description. For these languages, it is
still true that the task of creating a set of rules and collecting
word lists is a far more tractable task than creating parallel
corpora on the order of millions of tokens.
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North American Languages (e.g. Harrigan et al.,
2017; Bowers et al., 2017; Forbes et al., 2021; Ham-
merly et al., 2025). However, these systems gener-
ally produce abstract tags, rather than direct trans-
lations to another language such as English. In this
paper, we show how these tags can be used as an
intermediary form to guide rule-based translations.

2 Translation Approach

The system contains two main components: the
Template Building module and the Translation
module. The code for this project is publicly avail-
able in the OjibweTranslation repository (ELF-Lab,
2025).

2.1 Template Building module

The Template Building module has the main task of
analyzing Ojibwe dictionary data, which is based
on the Ojibwe People’s Dictionary (OPD; Nichols,
2012). This data is openly available for use and
adaptation by researchers and educators for non-
commercial use under a Creative Commons license
(Attribution-NonCommercial-ShareAlike 3.0 Un-
ported License), with the explicit goal "to make the
dictionary content available as a tool for Ojibwe
language revitalization, academic scholarship and
cultural awareness". Note, we have only released
a limited set of verbs in the public version of the
source code at the request of the editors of the OPD.

Our basic process is schematized in Figure 1.
We took dictionary data including the English-
language definition and used an LLM to build tem-
plates with relevant slots. For example, the Ojibwe
verb waabam defined in English as "see h/" (where
"h/" means "him/her") becomes "{{subject}} see
{{object}}". The purpose of building templates is
to make it easier for the Translation module to re-
place these slots with appropriate pronouns or other
information, according to the inflected verb.

Verbs in Ojibwe are separated into four basic
types based on valency and animacy. Valency refers
to whether a verb is intransitive (only a subject) or
transitive (both a subject and object). Animacy
restricts certain arguments of the verb based on
grammatical noun class. All nouns in Ojibwe are
grammatically categorized as “animate” or “inani-
mate”, a roughly conceptual split that puts humans,
animals, and most plants into one class (animate),
and everything else into the other (inanimate). Ani-
mate Intransitive (AI) verbs have an animate sub-
ject, Inanimate Intransitive (II) verbs have an inani-

Figure 1: Template Building Process

mate subject, Transitive Animate (TA) verbs have
an animate object (but the subject can be any ani-
macy), and finally transitive inanimate (TI) verbs
have an inanimate object (and again, subjects can
have any animacy).

In an early stage of the project, we attempted
to use a rule-based approach to create templates.
However, we quickly found that the significant in-
consistencies in the way dictionary entries were for-
matted made such an approach untenable. While
such inconsistencies do not at all get in the way of
normal use – this is not a critique of the dictionary
in general – this was a barrier for creating a sim-
ple set of rules that could work across all 15,000
verbs in our set. We therefore opted for an LLM
approach, which allowed for more flexibility by
creating examples and prompts, rather than hard-
and-fast rules.

Our ultimate implementation used the Groq API
provider, with a model named "llama3-70b-8192"
based on Meta’s Llama3. This particular approach
also has the advantage of ensuring data is not
passed on to a third party such as Meta (Groq
does not use or retain data from prompts), which
could potentially violate the license of the dictio-
nary, or more generally afoul of Indigenous data
sovereignty. In our case, the LLM is nothing more
than a tool to get a specific job done: the annota-
tion of thousands of dictionary entries. This job is
not possible to complete with a purely rule-based
approach (see above), and discussed later in the sec-
tion, would be multiple of orders of magnitude less
efficient if completed via purely human annotation.

We used the few-shot prompt strategy. The
prompt included: (i) The initial instruction to ask
the LLM analyze the context, subject and object;
(ii) 10 to 20 human written examples; and (iii) A
command to process new data. A sample prompt
used for processing VTA verbs is in Appendix 5.

For example, with the same definition "see h/",
we produce a transitive template "{{subject}} see
{{object}}". Using slots such as {{subject}} and
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{{object}} makes it possible to build more complex
sentences in the subsequent steps.

If the lemma definition has multiple meanings or
glosses we instructed the LLM to split the defini-
tion into multiple templates. For example, with the
word niimaakwa’, which have the definition "pick
it (animate) up or hold it (animate) out with
something stick-like", the system will produce the
following templates:

• verbs: [’pick’, ’hold’],

• templates:

– "{{subject}} pick {{object}} up"
– "{{subject}} hold {{object}} out with

something stick-like"

It is important to emphasize that, while our Tem-
plate Building module requires an LLM to extract
and build templates, it is an ahead-of-time opera-
tion, meaning that we need to build the dictionary
templates only once and export the templates to a
computer-readable data format (such as csv). We
do not need to run the template building process
every time we do translation. We only need the
exported data, which is stored locally, for trans-
lation in the subsequent steps. This increases the
efficiency of translation.

Template building took about 3 seconds per ex-
ample, which means about 12 hours of processing
time for about 15,000 verbs. In comparison, if the
task is to be done with a human annotator, it would
take about 5 minutes per example, or about 1,250
hours of working time—a process that would also
lead to high numbers of typos and other errors and
inconsistencies. The LLM-based template building
therefore resulted in an efficiency ratio of about 100
times, while maintaining favorable output quality.

2.2 Translation Module

The Translation module is a pipeline to transform
the input (an inflected Ojibwe verb) through several
steps to complete the final English translations. The
process is schematized in Figure 2.

Important to note is that verbs in Ojibwe are mor-
phologically marked for the person, animacy, and
number of all arguments (using up to four distinct
morphological slots), whether the predicate has a
positive or negative polarity, and an aspectual dis-
tinction known as mode. The verb complex also
contains certain morphologically dependent tense
prefixes. All of these elements are part of the target

Figure 2: Translation Process

Paradigms VTA, VTI, VAI(O), VII
Order Independent, Conjunct,

Imperative
Mode Neutral, Preterit, Dubitative
Tense Present, Definitive future,

Past, Future/wish
Negation Positive, Negative

Table 1: Supported verb properties. For each paradigm,
all possible argument combinations are supported.

for our translation. A summary of the verb proper-
ties that can be handled by the translation model is
given in Table 1.

Our translation module uses the following data
sources:

• The dictionary and template data, built
from previously mentioned Template Building
Module.

• The FST binary file (in ".att" or ".fomabin" for-
mat) contains the rules for Ojibwe inflection,
so that a FST parser can analyze the inflected
input.

At the core of the Translation module are then
the following operations:

• Morphological feature analysis: the
Ojibwe verb is parsed by the FST to an-
alyze and extract morphological features.
It returns all important linguistics infor-
mation such as the lemma, order, mode,
subject, object, tense, negation, etc. in
the list-of-tags format. For example, for
the verb "giwaabamin" ("I see you" in
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English), the FST parser returns the tag
waabam+VTA+Ind+Pos+Neu+1SgSubj+2SgObj,
which indicates the lemma "waabam" ("to see
somebody" in English), the verb paradigm
"VTA", the order "Independent", the polarity
"Positive", the mode "Neutral", the subject
"1st Singular", the object "2nd Singular". The
FST parser is integrated into the translation
system through a Python library called
"fst_runtime"(CultureFoundry, 2025) made
by CultureFoundry. The fst_runtime library
uses compiled binary data of OjibweMorph
(Hammerly et al., 2025) to process the Ojibwe
input word and returns the analyses back to
the translation system.

• Verb inflection: the inflection step considers
the main English verb (of the English def-
inition) in the infinitive form and the input
Ojibwe FST context, which contains the sub-
ject, the mode, the tense and polarity. Then a
set of custom rules is implemented in Python
code to convert the infinitive English verb
to the corresponding inflected English verb,
which will be used in the subsequent slot-
filling step. The sequence of FST tags to pro-
cess English verb inflection is generally tense,
then mode, then polarity (negation), then sub-
ject. To transform an infinitive verb, includ-
ing irregular verbs, into different tenses such
as past or perfect tense, it is done through
a Python package called "pyInflect"(Jascob,
2023). Some examples of how a verb might
be transformed depending on the context are
given in Appendix C, Table 4.

• Slot filling: based on the subject and object of
the sentence structure, it will replace the slots
with relevant information, for example {{sub-
ject}} → "he/she" for 3SgSubj, and {{ob-
ject}} → "me" for 1SgObj . The slot-filling
process is illustrated in Figure 3.

• Sentence building: This builds a complete
sentence from the template, using verb inflec-
tion and slot-filling operations. For example,
the template "{{subject}} see {{object}}" →
"He/she will not see me" for 3rd Singular sub-
ject, 1st Singular object, future tense, negative
polarity, neutral mode, independent order.

Again, the translation pipeline is entirely rule-
based, so it does not require direct use of LLMs.

Figure 3: Slot-Filling Illustration

As such, the system produces transparent and pre-
dictable results and we can easily modify the rules
to suit specific needs. A sample of translations is
provided in Appendix B.

3 Evaluation

We completed two types of tests: Speed tests and
translation accuracy tests.

3.1 Speed tests

For speed, our system processed a batch of 10
words for translation with an average speed of
around 700 millisecond / batch, which means about
70 millisecond / word. The hardware used is a lap-
top with 24GB RAM and AMD Ryzen 7 5800H
CPU, without using GPU (Graphical Processing
Unit). That our system can run on standard hard-
ware with limited computing power is a major ben-
efit to making the tool accessible.

Because Ojibwe is a morphologically complex
language and a single verb in Ojibwe can be trans-
lated into a full sentence in English. If the defini-
tion has multiple meanings, the output can contain
several sentences or phrases in English. Therefore,
the processing speed implies one Ojibwe verb input
and one or more English sentences output, rather
than one Ojibwe input word and one corresponding
English output word.

3.2 Translation accuracy tests

We created a test set of inflected Ojibwe verbs,
along with gold translations, from the University
of Toronto Ojibwe Textbook (Meltzer et al., 2022-
2023), available under the BY-NC-SA 2.5 CA. We
selected only inflected verbs from the provided
word list and performed simple data cleaning and
normalization on the gold translations, including:

• changing abbreviations such as "s/he" to
"he/she", etc.
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Number of verbs in test set 214
Number of successful

translated verbs
200

Percentage of successful
translation

93%

Mean ChrF score 0.82
Mean Semantic Similarity

score
0.93

Table 2: Evaluation scores

• removing punctuation

• removing extra information inside parenthe-
ses, such as "(ani.)", "(inc.)"

• keeping only one translation if there are mul-
tiple translations.

There are 214 inflected verbs included in the test
set—a small, but reasonable, number due to the
low-resource nature of Ojibwe. Our system was
able to provide a translation for 200 of the 214
verbs (93%). Some verbs cannot be translated be-
cause of missing definition or stem in the database
from the dictionary. Examples of comparisons be-
tween system and gold translations are illustrated
in Appendix D, Table 5

We first calculated the ChrF score (Popović,
2015). The score is a real number between 0.0
(no overlap between translations) and 1.0 (per-
fectly matched translations). We used NLTK sen-
tence_chrf function with parameters min_length=1
(unigram) and max_length=3 (3-gram) to calculate
ChrF score between system and gold translation.
If the system generates multiple translations, the
translation with highest score was selected. Among
the verbs that were successfully translated, the av-
erage score is 0.82, as summarized in Table 2.

We also performed a semantic similarity compar-
ison between the system and the gold translations
through the Sentence-BERT package (Reimers and
Gurevych, 2019). and the LaBSE (Language-
agnostic BERT Sentence Embedding) (Feng et al.,
2020) embeddings model. Semantic similarity is
useful in scenarios where the system and gold trans-
lations use synonyms, for example, "we will enjoy
the taste of things" versus "we will like the taste of
something". In this case, the semantic similarity
score would be high, while the ChrF score could
be considerably lower.

The semantic similarity score between two sen-
tences is a real number between 0.0 (completely

unrelated meanings) to 1.0 (perfectly aligned mean-
ings). If the system produces multiple translations,
the highest score was selected. Out of the suc-
cessfully translated verbs, the average semantic
similarity score is 0.93, as summarized in Table 2.

4 Applications

The translation package will be used in various
settings and purposes, which include:

• Ojibwe language learners, teachers, and
schools via a free web interface to analyze
and understand complex inflected verbs.

• Researchers to produce an automated trans-
lation of Ojibwe verbs for downstream tasks,
such as neural machine translation.

In addition to a ready-to-use Python package
that can be easily integrated into current popular
NLP pipelines, we also included a web application
(see Figure 4 in Appendix A) built on the NiceGUI
framework, so users such as teachers and students
can use it easily without coding, making it more
approachable to the general audience. We have yet
to widely and systematically test this interface, but
such testing is an aim of future work.

5 Future directions

There are a number of avenues for future work.
First, the current system only works at the individ-
ual word level, so cannot yet handle full sentences.
One potential rule-based way to augment the cur-
rent system to handle full sentences is through the
use of a constraint grammar to identify overt sub-
ject and object nouns, which could be fed to our
rule-based translation module. Second, we are not
yet able to translate from English to Ojibwe, nor
from Ojibwe to a language other than English. Ex-
panding the system for rules that work in the other
direction, or for other languages, is another priority.
Third, there is a small set of low-frequency verb
forms not yet handled by the system, as well as
the more general system of so-called lexical pre-
verbs (which behave much like adverbs) that are
not yet handled. Adding support for some of the
most common lexical preverbs and expanding re-
maining tenses and modes in the functional domain
is another direction for our future work. Finally,
while the data from the Ojibwe People’s Dictio-
nary is robust, adding more words and definitions
to improve coverage will be an ongoing task.
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6 Ethics Statement

The present work was conducted in the context of a
larger body of work by our research group to build
computational tools relevant to language revital-
ization of Ojibwe. Our team includes a member
of the Ojibwe community with linguistic training,
and we have engaged in both formal and informal
community consultation about our tools, including
elders and teachers. We are committed to strik-
ing the balance between practicing open science
and generating work that may find uses beyond
the immediate community we are serving on one
hand, while ensuring the integrity of the data and
respecting the elders and community members who
have created resources such as the Ojibwe People’s
Dictionary.

7 Limitations

The current system, although covered a wide range
of Ojibwe paradigms and various grammar aspects
such as order, mode, tense, etc., it still has some
notable limitations such as:

• It works at word level, in particular Ojibwe
verbs only. It does not yet have capability
to translate other word types such as nouns,
adjectives, etc. It is also not able to translate
at sentence level, i.e. a full Ojibwe sentence
to a full English sentence.

• Because of the diverse and potentially incon-
sistent format of the Ojibwe People’s Dictio-
nary definitions, some of the templates might
not be extracted and built properly. We have
not yet performed an exhaustive check on all
template data. Some unusual definitions can
lead to unusual templates, and in extreme case,
we can not rule out templates that are not
grammatically correct or do not make sense. It
has the potential to produce inaccurate or un-
grammatical translations in these cases. How-
ever, it is still likely to yield some meaningful
text in the translations in these cases.

• Because of rule-base translation process, and
it is not a neural translation model, therefore,
it does not remember or learn all dictionary
definitions. It requires external template data
to do translation.

• The current system can translate Ojibwe to
English, but is not yet able to translate English
to Ojibwe.

• It can translate Ojibwe to English as the target
language, but another target language, such as
French, is not yet supported.

• Although the system supports an extensive
grammar range of Ojibwe verbs, it does not
fully cover all aspects of the verbs yet. For
example, such as preterit-dubitative, which
means uncertainty about a past completed
event (Valentine, 2001) is not yet supported.

• Due to the low-resource nature of the Ojibwe
language, we have not yet built a larger gold-
standard test set to better evaluate the perfor-
mance and quality of the system.
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A Web Application interface

A screenshot of the built-in Web Application inter-
face Figure 4.

Figure 4: Web Application Interface

B Translation examples

Examples of Ojibwe verb inputs and their corre-
sponding translations are provided in Table 3

Ojibwe verb English translation
odaadawa’amaan he/she (proximate) goes

with him/her/it (obviative)
in a boat
he/she (proximate) goes
with them (obviative) in a
boat

aadawa’am (Please) go with him/her/it
(proximate) in a boat
(Please) go with them
(proximate) in a boat

abweninjii he/she (proximate) has a
sweaty hand

gaawiin gii-
abweninjiisiin

he/she (proximate) did not
have a sweaty hand

Table 3: Translation examples
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English
verb

Context Inflected
verb

be 3rd Singular Subject
("He/she"), present
tense, positive polarity

(he/she)
is

be 1st Plural subject
("We"), past tense,
negative polarity

(we) were
not

be 1st Singular subject
("I"), future/wish
tense, positive polarity

(I) want
to be

dance 3rd Plural subject
("They"), Dubiative
mode, past tense,
positive polarity

(They)
might
have

danced
dance 2nd Singular subject

("You"), neutral mode,
future tense, negative
polarity

(You) will
not dance

dance 1st Singular subject
("I"), preterit mode,
past tense, positive
polarity

(I) used
to dance

Table 4: Verb inflection examples

C English verb inflection examples

Examples of how some English verbs are trans-
formed and inflected according to the input Ojibwe
FST context (subject, tense, mode, negation, etc)
are provided in Table 4

D System versus Gold translation
examples

Examples of system (hypothesis) translations com-
pared with gold (reference) translations of inflected
Ojibwe verbs are included in Table 5. Note that
extra information inside parentheses was removed
in both gold and system translations before calcu-
lating ChrF and semantic similarity scores.

E Prompt used for VTA verbs

A screenshot of the prompt used to create tem-
plates for VTA verbs, with LLM model "llama3-
70b-8192" can be found in Figure 5.
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Ojibwe verb Gold translation System translation ChrF score Semantic
Similarity

score
nimbakade I am hungry I am hungry 1.0 1.0
gibakade you are hungry you are hungry 1.0 0.99
apatoo he/she runs he/she (proximate) runs in

a certain way
0.87 0.69

nimindid I am big I am big 1.0 0.99
wii-wiisini he/she want/will eat he/she (proximate) wants

to eat
0.65 0.95

izhaa he/she is going to a
certain place

he/she (proximate) goes
to a certain place

0.75 0.99

niwaabamaag I see them I see them (proximate) 1.0 1.0
nindizhaa I am going to a

certain place
I go to a certain place 0.71 0.99

Table 5: Gold versus System translations

Figure 5: Prompt used for VTA templates
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Abstract

The digital exclusion of endangered languages
remains a critical challenge in NLP, limiting
both linguistic research and revitalization ef-
forts. This study introduces the first compu-
tational investigation of Comanche, an Uto-
Aztecan language on the verge of extinction,
demonstrating how minimal-cost, community-
informed NLP interventions can support lan-
guage preservation. We present a manually
curated dataset of 412 phrases, a synthetic data
generation pipeline, and an empirical evalua-
tion of GPT-4o and GPT-4o-mini for language
identification. Our experiments reveal that
while LLMs struggle with Comanche in zero-
shot settings, few-shot prompting significantly
improves performance, achieving near-perfect
accuracy with just five examples. Our find-
ings highlight the potential of targeted NLP
methodologies in low-resource contexts and
emphasize that visibility is the first step toward
inclusion. By establishing a foundation for Co-
manche in NLP, we advocate for computational
approaches that prioritize accessibility, cultural
sensitivity, and community engagement.

1 Introduction

The decline of endangered languages represents
not only a linguistic loss (Low et al., 2022) but
also the erosion of invaluable cultural, historical,
and ecological knowledge (Tulloch, 2006; Cámara-
Leret and Bascompte, 2021; Sallabank and Austin,
2023). Despite growing advancements in language
technology, computational efforts overwhelmingly
favor widely spoken languages, leaving endangered
languages largely unsupported (Meighan, 2021;
Yang et al., 2025a; Jerpelea et al., 2025). Over 88%
of the world’s languages have minimal to no rep-
resentation in mainstream language technologies,

Contact other authors at: jalvarezc@my.canyons.edu,
d.d.karajeanes@student.tue.nl, aprad054@fiu.edu, jrut-
tan3@uwo.ca, seobrien@ucsd.edu, vasus@andrew.cmu.edu

Figure 1: Stylized overview of our exploration of NLP
applications for the endangered Comanche language.

exacerbating their digital marginalization (Rangel,
2019). This exclusion hinders linguistic research
and deepens the digital divide (Valijärvi and Kahn,
2023; Yang et al., 2025b), complicating preserva-
tion and revitalization efforts. Among these, Co-
manche, an Uto-Aztecan language, faces imminent
extinction, with fewer than 50 fluent speakers re-
maining (Chaika et al., 2024).

We present a case study on the Comanche lan-
guage, demonstrating that with minimal cost and
computational resources, it is possible to achieve
what large corporations and academic institutions
have largely neglected. As shown in Figure 1, we
contribute (1) a manually curated dataset, (2) syn-
thetic data generation pipeline for resource expan-
sion, and (3) an empirical evaluation of GPT-4o and
GPT-4o-mini in zero-shot and few-shot language
identification. Our findings highlight the potential
of large language models (LLMs) in low-resource
settings, offering insights into their applicability
for endangered language preservation. This work
marks the first-ever introduction of Comanche
into the NLP domain, laying groundwork for
future research and linguistic equity.
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Figure 2: Family tree for Uto-Aztecan Languages, with
Comanche highlighted.

2 Related Work

Efforts to preserve endangered languages, particu-
larly Native American languages, date back to at
least the early 20th century (Charney, 1993), with
early approaches relying heavily on linguistic doc-
umentation and literary preservation (Schwartz and
Dobrin, 2016). While these foundational efforts
paved the way, they were hindered by the scarcity
of available datasets and standardized benchmarks,
leading researchers to explore alternative strategies
for text processing (Lorenzo et al., 2024; Spencer
and Kongborrirak, 2025). Despite these advance-
ments, modern computational linguistics continues
to face significant challenges when working with
polysynthetic languages such as Comanche and
Apache, due to their intricate orthographic and mor-
phological structures (Kelly, 2020). In recent years
there have been promising community-led revital-
ization initiatives, including immersive education
programs, digital archives, and collaborations with
computational linguists (of Indian Affairs, 2023;
Schwartz et al., 2021).

Data scarcity remains a fundamental challenge
in NLP (Glaser et al., 2021). Unlike widely spoken
languages with abundant corpora, low-resource lan-
guages lack annotated datasets, limiting the effec-
tiveness of LLMs for preservation (Zhong et al.,
2024; Dinh et al., 2024). Few-shot prompting
has emerged as a promising solution, allowing
LLMs to generate synthetic data from minimal ex-
amples (Zhang et al., 2021), though its success
hinges on data quality. Transfer learning (Adimu-
lam et al., 2022) has also been explored to improve
low-resource NLP, but without robust evaluation
frameworks tailored for Indigenous languages (Shu
et al., 2024), achieving meaningful generalization
remains a challenge (Mager et al., 2023).

3 Native American Language Landscape

The linguistic diversity of Native American lan-
guages is vast, spanning multiple language fam-
ilies with distinct phonetic, morphological, and
syntactic properties. Despite this richness, many of
these languages are critically endangered, with flu-
ency declining due to historical policies of forced
assimilation, boarding schools, and sociopolitical
marginalization (Krauss, 1992). Language docu-
mentation efforts have attempted to counteract this
loss, but computational resources remain scarce,
and mainstream NLP models are ill-equipped to
process these languages effectively (Blasi et al.,
2022). The lack of digital resources further exac-
erbates the challenge, preventing these languages
from benefiting from advances in language tech-
nologies (U.S. Department of the Interior, 2022).

Comanche belongs to the Uto-Aztecan language
family, one of the largest language families in
the Americas, encompassing over 60 languages
spoken across the western United States, Mexico,
and Central America (Opler, 1943). While some
Uto-Aztecan languages, such as Nahuatl (Andrews,
2003), have relatively larger speaker populations
and a degree of digital presence, others, including
Comanche, face imminent extinction. As shown
in Figure 2, Comanche developed as a distinct lan-
guage after diverging from Shoshone in the 18th
century, evolving unique phonological and lexical
features (Casagrande, 1955). Today, with fewer
than 50 fluent speakers, Comanche lacks sufficient
linguistic resources for computational modeling.

4 Data

4.1 Manual Data Collection

To construct a foundational dataset for Comanche,
we conducted a systematic review of linguistic
resources, including academic literature, digital
archives, and historical records. Given the scarcity
of publicly available corpora, we aggregated and
curated data from 15 distinct domains (Appendix
B), ensuring consistency through transcription
and standardization. To enhance data reliabil-
ity, we cross-referenced linguistic materials with
community-driven documentation efforts, validat-
ing authenticity and linguistic accuracy. This struc-
tured dataset of 412 Comanche phrases, the first
digitalized dataset of its kind, serves as a crucial
resource for both language preservation and com-
putational linguistic research in Comanche.
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Figure 3: Data pipeline.

4.2 Synthetic Data Generation

Given the extreme scarcity of parallel Co-
manche–English text, we leveraged few-shot
prompting with GPT-4o to generate synthetic trans-
lations. Using a manually curated dataset of 100
Comanche–English sentence pairs, we split the
data into an 80% training set and a 20% test set.
During training, GPT-4o was provided examples
from the training subset and then prompted to gen-
erate translations for the test set (Appendix C). The
generated outputs were evaluated using normalized
Levenshtein similarity, ensuring a minimum qual-
ity threshold of 0.11 before incorporation into the
dataset. This controlled expansion strategy main-
tained linguistic integrity while demonstrating that
even minimal data can be effectively leveraged to
create valuable resources for endangered language
NLP. While the pipeline shown in Figure 3 is in
early stage, it underscores the potential of leverag-
ing NLP for endangered language documentation
and expansion. As data scarcity persists, synthetic
augmentation offers a scalable approach to bridge
resource gaps and support revitalization efforts.

5 Language Identification

While data collection and synthetic expansion are
crucial aspects of language preservation, identifica-
tion is equally essential. Despite supporting over
200 languages, Google’s LangID system (Caswell
et al., 2020) does not include a single Native Amer-
ican language, including Comanche, highlighting
the systematic exclusion of these languages from
mainstream computational resources. This absence
not only limits automatic language identification

1Given that Comanche has never been explored in NLP,
we set a baseline threshold of 0.1 due to the difficulty of the
task. As the pipeline matures, we will refine our evaluation
criteria and increase the required similarity score.

Figure 4: GPT-4o achieves a remarkable improvement
in language identification performance, with the help of
few-shot examples.

capabilities, but also further marginalizes endan-
gered languages in digital spaces, making their
preservation even more challenging.

While LLMs have demonstrated remarkable pro-
ficiency in high-resource language tasks, their abil-
ity to identify low-resource languages remains a
critical challenge. In our zero-shot prompting ex-
periments using a dataset of 412 Comanche entries,
GPT-4o achieved only 13.5% accuracy, correctly
identifying 56 instances. These results highlight the
broader issue that without explicit guidance, even
state-of-the-art models struggle to recognize endan-
gered languages. To address this limitation, we in-
troduced few-shot prompting with both Comanche
and English samples, training the model to actively
identify features of the Comanche language. For
this experiment, we used a sample of 100 randomly
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Figure 5: Effect of Few-Shot Examples on Comanche
Prediction Accuracy.

selected entries from our original dataset. Each
few-shot pair included one Comanche phrase and
a randomized English entry from the dataset, as
shown in Figure 4. With just one Comanche ex-
ample, GPT-4o achieved 91% accuracy in identi-
fication of Comanche. Extending to a three-shot
strategy consistently yielded 100% accuracy, as
shown in Figure 5. Notably, English identification
accuracy remained consistently high (97-100%)
across all experimental conditions. These findings
underscore the limitations of default language iden-
tification systems and demonstrate that even mini-
mal targeted prompting can significantly enhance
recognition capabilities. The stark performance
gap between Comanche and English underscores
the model’s inherent bias toward high-resource lan-
guages when tasked with identification. Our results
provide a scalable, low-resource approach for in-
tegrating endangered languages into NLP systems,
offering a pathway toward more inclusive compu-
tational language technologies.

6 Community Feedback

To ensure that our approach to NLP-driven lan-
guage preservation is both transparent and respect-
ful, we engaged with a community member of
Comanche and Rarámuri heritage through a semi-
structured interview. The interview provided in-
sights into the lived experiences of individuals con-
nected to endangered languages, highlighting both
the cultural significance of linguistic preservation
and the challenges posed by data scarcity.

The interviewee shared that although the Co-
manche and Rarámuri languages were not passed
down to him, he maintains a profound connection
to his Native American heritage. He recounted
a childhood experience in which he struggled to
communicate with members of a Rarámuri com-

munity in Chihuahua, Mexico, due to language
barriers2. His reflections highlight the critical role
that digital resources and computational methods
can play in language preservation. While exposure
to artificial intelligence and NLP technologies re-
mains limited in many Indigenous communities,
the potential for these tools to support language
revitalization is immense. Our study emphasizes
that responsible NLP research must engage directly
with affected communities, ensuring that techno-
logical interventions align with cultural needs and
ethical considerations.

7 Future Work

Future efforts will focus on expanding the manu-
ally curated Comanche dataset, refining the syn-
thetic data generation pipeline, and developing a
real-time language identification demo. Given the
largely oral nature of Comanche, we will also inves-
tigate audio-based approaches to support speech
recognition and transcription, as well as explor-
ing learning (Wang and Guo, 2019; Mangar et al.,
2025) and reading comprehension tasks (Zhang
et al., 2024). Additionally, we will actively en-
gage with more Comanche community members to
ensure our work remains aligned with their needs
and perspectives. We hope to eventually secure
the resources to conduct a deeper analysis of Co-
manche and other indigenous languages—work
that has largely been limited to high-resource lan-
guages—examining dimensions such as linguistic
features (Lee et al., 2024), implicit versus explicit
expression (Wang et al., 2025), persuasive strate-
gies (Wang et al., 2024; Yang et al., 2024) and
intellectual humility (Guo et al., 2024).

8 Conclusion

This study represents the first computational effort
to integrate Comanche into the NLP landscape, ad-
dressing critical gaps in language documentation
and technological accessibility. Through manual
data collection, synthetic data expansion, and em-
pirical evaluations of LLM-based language identifi-
cation, we demonstrate that even minimal resources
can yield meaningful improvements in language
modeling for endangered languages. While this
work marks an initial step, continued collaboration

2The interviewee recalled attempting to explain to local
Rarámuri residents that his disposable camera differed from
a Polaroid and would not produce an immediate photograph.
This miscommunication left a lasting impression on him, rein-
forcing the importance of language technologies.
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with Comanche speakers, expansion into audio-
based methods, and refinement of evaluation met-
rics will be essential to advancing these efforts. We
advocate for a NLP research paradigm that actively
includes Indigenous and low-resource languages,
ensuring that they are not only preserved but em-
powered through computational advancements.

Limitations

Despite the contributions of this study, several lim-
itations must be acknowledged. Firstly, the manu-
ally curated Comanche dataset remains small, con-
straining both model performance and generaliz-
ability. Future work must expand this dataset to
improve model robustness and alignment (Zeng
et al., 2025), as well as to prevent biases (Guan
et al., 2025). In addition, while synthetic data aug-
mentation offers a promising avenue for resource
expansion, the quality of generated translations is
inherently dependent on the prompting strategy
(Jian et al., 2022) and the capabilities of the un-
derlying language model. Further refinements to
the pipeline and more rigorous evaluation method-
ologies are necessary to ensure linguistic accuracy.
Moreover, our experiments focus primarily on text-
based language identification, overlooking the oral
tradition of Comanche. Future research should
incorporate audio-based approaches, such as auto-
matic speech recognition, to better align with the
language’s natural form. Lastly, our engagement
with community members, while valuable, repre-
sents only an initial step. Sustained collaboration
with Comanche speakers and language advocates
will be essential to ensuring that computational in-
terventions align with community priorities and
ethical considerations.

Ethics Statement

Our research adheres to ethical principles that pri-
oritize Indigenous data sovereignty, cultural sensi-
tivity, and responsible engagement. We collected
Comanche words, affixes, and phrases exclusively
from publicly available sources, ensuring trans-
parency in our data practices and proper attribution
of all resources. All relevant citations for the man-
ual dataset can be found in Appendix D. Consistent
with the principles outlined by Schwartz (2022), we
acknowledge that Indigenous languages are deeply
tied to cultural identity, historical continuity, and
community sovereignty. We explicitly recognize
the Comanche Nation as the rightful stewards of

their language and are committed to ensuring that
our work aligns with their goals of preservation and
revitalization. Our research seeks not only to docu-
ment but to actively contribute to the accessibility
and visibility of Comanche within the computa-
tional linguistics community. We emphasize the
importance of relational engagement with Indige-
nous communities, acknowledging that linguistic
data is not merely an artifact for academic study
but also a living expression of cultural heritage
(Appendix A).

Finally, we uphold ethical obligations of cog-
nizance, beneficence, accountability, and non-
maleficence. We remain committed to avoid-
ing harm, ensuring that our findings and datasets
serve as tools for language empowerment rather
than extraction. Future work will continue to in-
volve direct engagement with Comanche speak-
ers, fostering a collaborative research framework
that respects community agency and cultural pri-
orities. In the spirit of transparent and eth-
ical research, our full dataset and code have
been made available at (https://github.com/
comanchegenerate/ComancheSynthetic).
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A Appendix A

Figure 6: Map showing approximate locations
of Indigenous peoples of the Great Plains prior,
to displacement in the 19th century. Comanche
territory is depicted in the bottom-left region.
Source:https://www.britannica.com/place/
Great-Plains#/media/1/243562/330.

Figure 7: Comanche cultural artifacts.

Figure 8: Lloyd Heminokeky, Jr., Language Consul-
tant for the Comanche Nation Language Department,
hosts an event honoring Comanche Code Talkers, in-
cluding his grandfather, Technician Fifth Grade Welling-
ton Mihecoby, whose distinguished service is high-
lighted in the portrait beside him. Source: https:
//youtu.be/M_JO8C63Ins?si=uc8JzAiAX7sCrF9A.
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B Appendix B

Figure 9: Distribution of manually collected Comanche-
English phrases across 15 sources. The Comanche Na-
tional Museum, Webonary, and Facebook (via the Co-
manche Nation Language Department) contributed the
highest number of examples. This distribution under-
scores the variability in available linguistic resources
for Comanche.

Figure 10: The average token length per example differs
notably between Comanche (blue) and English (red).
Some sources, such as Quizlet and Youtube, contain
significantly longer Comanche phrases, while others,
such as LingvoWiki, show an inverse pattern due to the
presence of affixes and bound morphemes. These varia-
tions highlight source-specific differences, particularly
in how morphology and translation conventions impact
token length.

C Appendix C

Figure 11: Comparison of average characters per exam-
ple across various sources of English and Comanche.
Notably, the Comanche data from LingvoWiki appears
unusually short due to the presence of affixes in the col-
lected samples, which artificially lowers the character
count for that source.

Figure 12: Box plot distribution of token lengths in
Comanche and English phrases. Comanche phrases ex-
hibit a wider range of token lengths, with a median of
around 6 tokens per example, and an extended upper
quartile value, reflecting its polysynthetic structure. En-
glish translations, by contrast are more compact with
less variability.
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Figure 13: Comparison of English sentences with their corresponding Real Comanche translations and GPT-
generated Comanche translations.
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D Appendix D

Table 1: Online sources referenced to construct the Comanche-English dataset.

Cite Key Author (Year) Title URL
omniglotwriting Omniglot (n.d.) Comanche language, alphabet and pronuncia-

tion
https://www.omniglot.com/
writing/comanche.htm

omniglotphrases Omniglot (n.d.) Comanche phrases https://www.omniglot.
com/language/phrases/
comanche.htm

ucla1992 UCLA Phonetics Lab Archive
(1992)

Comanche word lists (1992) https://archive.
phonetics.ucla.edu/
Language/COM/

angelfire Angelfire (n.d.) Comanche language page https://www.angelfire.
com/creep2/fracod/
comanche.html

rosettaproject Internet Archive (n.d.) rosettaproject_com_morsyn-1 https://archive.org/
details/rosettaproject_
com_morsyn-1/page/n3/
mode/2up

cnlanguagefb Comanche Nation Language Dept.
(n.d.)

Facebook videos https://www.facebook.com/
CNLanguage/videos/

comanchemuseum Comanche National Museum and
Cultural Center (n.d.)

Comanche dictionary https://www.
comanchemuseum.com/
dictionary.html

nativelang Native Languages of the Americas
(n.d.)

Comanche language: Word sets https://www.
native-languages.org/
comanche_words.htm

glosbecomanche Glosbe (n.d.) English–Comanche dictionary https://glosbe.com/en/com
asjpcomanche ASJP (n.d.) COMANCHE https://asjp.clld.org/

languages/COMANCHE
webonarycomanche Comanche Dictionary Project

(n.d.)
Comanche webonary https://www.webonary.org/

comanche/
lingvoforum LingvoForum (n.d.) Comanche dictionary (LingvoForum Wiki) https://wiki.lingvoforum.

net/wiki/Comanche_
dictionary

quizletcomanche Quizlet (n.d.) Comanche phrases flashcards https://quizlet.
com/718424723/
comanche-phrases-flash-cards/

youtubecn Comanche Nation Language Dept.
(n.d.)

CNLanguage YouTube channel https://www.youtube.com/
@CNLanguage/videos
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Abstract

This work presents Py-Elotl, a suite of tools
and resources in Python for processing text in

several indigenous languages spoken in Mex-

ico. These resources include parallel corpora,

linguistic taggers/analyzers, and orthographic

normalization tools. This work aims to de-

velop essential resources to support language

pre-processing and linguistic research, and the

future creation of more complete downstream

applications that could be useful for the speak-

ers and enhance the visibility of these languages.

The current version supports language groups

such as Nahuatl, Otomi, Mixtec, and Huave.

This project is open-source and freely available

for use and collaboration1.

1 Introduction

Language technologies have become an integral

part of daily life for many people around the world.

We regularly interact with automatic translators,

voice assistants, AI agents, and writing tools, to

name a few. These advanced NLP technologies

(downstream applications) have only been possible

due to the gradual and systematic creation of foun-

dational resources and tools (upstream tasks). This

includes the creation of training corpora, linguistic

taggers/analyzers, and orthographic normalization

tools, among others, all of which play a crucial role

in enablingmore sophisticated language technology

applications.

For many hegemonic languages, these fundamen-

tal upstream tasks may appear to have already been

solved or are of lesser research interest. As a re-

sult, efforts often shift toward advancing more so-

phisticated technologies, such as large language

models (LLMs) capable of generating text, as in

commercial assistants like ChatGPT (OpenAI) or

Gemini (Google). However, for many other lan-

guages, there are still no tools that cover the most

1https://github.com/ElotlMX/py-elotl

Figure 1: Example of amorphological analysis (Nahuatl)

performed using Py-Elotl.

basic upstream tasks, so the landscape of language

technologies remains uneven (Joshi et al., 2020;

Hedderich et al., 2021; Ducel et al., 2022; Blasi

et al., 2022).

In order to advance toward a more linguistically-

diverse language technology landscape and en-

able more comprehensive applications for under-

resourced languages, it is crucial to start with the

fundamental building-blocks, or ”upstream tasks”.

To that end, this work presents a suite of tools

and resources for processing text in several indige-

nous languages spoken in Mexico. Py-Elotl, an
open-source Python library, supports several up-

stream tasks such as parallel corpus loading, ortho-

graphic normalization, and morphological analysis

(see Figure 1). The name elotl comes from the

Nahuatl word for “ear of fresh maize”.

This collaborative initiative aims to develop

essential resources to support language pre-

processing, linguistic research, and the future cre-

ation of more downstream applications that could

be useful for the speakers and enhance the visibility

of these languages.
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2 Related work

Although over 7,000 languages are spoken world-

wide, most remain largely overlooked in NLP re-

search (Magueresse et al., 2020). The Americas,

in particular, are home to immense linguistic di-

versity, where most of the indigenous languages in

the region face varying degrees of endangerment

(Moseley and Nicolas, 2010).

In recent years, the NLP community has increas-

ingly focused on the languages of the Americas,

promoting specialized forums (Mager et al., 2021b)

and shared tasks to advance machine translation,

the automatic creation of educational resources, and

other applications (Mager et al., 2021a; Chiruzzo

et al., 2024). These languages often exhibit high

internal diversity and a lack of standardization tradi-

tions due to sociopolitical factors, along with other

linguistic phenomena that make them particularly

challenging to process (Mager et al., 2018).

Previous works have shown that tokenization,

data normalization, and cleaning, as well as high-

quality corpora, are very important for develop-

ing systems for these languages, including ma-

chine translation (Vázquez et al., 2021; Attieh et al.,

2024). However, it is not that common to find pre-

processing tools readily available and easy to use.

Some Python libraries specialize in languages

spoken in the Americas. For example, Chana2 is a

Natural Language Processing (NLP) toolkit for the

Shipibo-Konibo language of Peru, offering tasks

such as lemmatization, Named Entity Recognition

(NER), and Part-of-Speech (POS) tagging. An-

other example is nahuatl-tools3, a Python package

that supports partial morphological analysis and

orthographic normalization for at least one Nahuatl

dialectal variant. Furthermore, Apertium (Forcada

et al., 2011), an open-source tool for rule-based

NLP tasks, provides repositories for several under-

resourced languages of the Americas4, including

Guarani, Tzeltal, K’iche’, Cusco Quechua, Apuri-

mac Quechua, Nahuatl, Otomi and Huave. The

morphological analyzers described in Section 4.3

are also published in Apertium.

Regarding commercial downstream applications,

machine translation systems have recently begun

supporting some Indigenous languages spoken in

the Americas. Google Translate now includes vari-

2https://pypi.org/project/chana/
3https://pypi.org/project/nahuatl-tools/
4https://github.com/apertium/

apertium-languages

eties of Zapotec, Nahuatl, Quechua, Guarani, Ay-

mara, Yucatec Maya, Q’eqchi’, and Inuktut. Mean-

while, Bing Translator supports translation for a

variant of Otomi and Yucatec Maya.

2.1 Digital adoption

The internet, and the digital technologies that under-

lie it, has become an essential tool for communica-

tion, with over 65 % of people in the Americas now

using it, and the digital divide between the U.S.

and Latin America shrinking rapidly (Martínez-

Domínguez and Mora-Rivera, 2020).

While internet adoption has been slow inMexico,

particularly in rural areas, there are indications of

a sharp increase in usage. Recent initiatives have

pledged to increase the availability of fiber-optic

internet access to all municipalities, and cellular ser-

vice is expanding in rural communities. Given the

high concentration of indigenous language speak-

ers in these areas, this growth suggests that a sig-

nificant and increasing number of indigenous lan-

guage speakers are gaining access to the internet.

These facts highlight the importance of prioritizing

language technology research and applications for

Mexican indigenous languages.

3 Languages supported by Py-Elotl

Mexico’s linguistic landscape. Besides Spanish,

the languages spoken in Mexico belong to 11 lin-

guistic families and 68 language groups. All 68 of

these groups hold the status of “national languages”

alongside Spanish. Despite this linguistic diver-

sity, education and mass media are predominantly

in Spanish, which places significant pressure on

indigenous languages. All of the indigenous lan-

guages of Mexico can be considered at risk of being

lost (INALI, 2012b).

Speakers of each language group are immersed in

distinct cultural contexts and particularities. How-

ever, they share similar conditions that represent a

technological challenge for NLP, i.e., significant

regional variations at many levels, including a lack

of consensus in the orthographic conventions.

In its current version, Py-Elotl provides vari-
ous functionalities for four language groups: Nahu-

atl, Otomi, Mixtec, and Huave. The first three are

among the most widely spoken in the country; how-

ever, many of their varieties face varying degrees of

endangerment (INALI, 2012a). Figure 2 illustrates

their geographical distribution. Next, we introduce

their characteristics and current status.
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Figure 2: Geographical distribution of Nahuatl, Otomi,

Mixtec, and Huave in Mexico.

Nahuatl is a group of languages present in sev-

eral regions of Mexico (around 1.6 million speak-

ers in total). It belongs to the Nahuan branch of

the Uto-Aztecan (or Yuto-Nahua) linguistic fam-

ily. This language family covers a vast territory;

it distributes across the USA, Mexico, and El Sal-

vador. Nahuatl is the Uto-Aztecan language with

the most southern geographical distribution, and

is spoken in 16 states of Mexico. Some sources

recognize 30 dialectal variations (INALI, 2008),

while others 28 (Lewis, 2009). Nahuatl has a rich

concatenative morphology with polysynthetic and

agglutinative tendencies. In particular, verbs can

agglutinate many affixes to encode, for example,

person and number of subject and objects, tense,

aspect, directionality, and reverence.

Mixtec is a group of languages spoken in central

and southern Mexico (~500,00 speakers). It be-

longs to the Mixtecan branch of the Oto-Manguean

linguistic family. Mixtec is spoken in three states

of Mexico: Oaxaca, Puebla and Guerrero.

This language exhibits the biggest dialectal vari-

ation in the country. According to INALI (2008), it

has 81 dialectal variants, while Ethnologue (Lewis,

2009) recognizes 52. Due to this, Mixtec is some-

times considered as a ’macro-language’.

One of its main characteristics is the presence

of tones. Most varieties distinguish three tones,

while some even four (Méndez-Hord, 2017; Men-

doza Ruiz, 2016; Palancar, 2016). Its morphology

is usually considered isolating/analytic. However,

it has the peculiarity that it actually marks many

grammatical distinctions, but they are encoded at

the suprasegmental level employing the tones.

Otomi is a group of languages spoken in central

Mexico (around 300,000 speakers).5 It belongs to

the Oto-Pamean branch of the Oto-Manguean lin-

guistic family (Barrientos López, 2004; Valiñas,

2020). Otomi is spoken in eight states of Mexico,

including Guanajuato, Querétaro, Hidalgo, Puebla,

Veracruz, Michoacán, Tlaxcala and Estado de Méx-

ico (Lastra, 2001).

INALI (2008) recognizes nine dialectal variants.

Ethnologue (Lewis, 2009) recognizes the same

number of variants; however, the reported variants

are not exactly the same as noted by Valiñas (2020).

Otomi has rich morphophonological phenomena

and an elaborated system of inflectional classes

(Palancar, 2004). Phonologically, it features a com-

plex vowel system with nine oral vowels and five

nasal vowels, as well as a three-tone distinction

(low, high, and ascending). Most of the observed

orthographic variations occur within the vowel sys-

tem.

Huave is a language spoken in the coastal region

of Oaxaca, near the Isthmus of Tehuantepec. It is a

language isolate classified within the Huavean lan-

guage family and has approximately 37,000 speak-

ers (Valiñas, 2020).

Sources differ on the number of dialectal vari-

ations, identifying between two and four distinct

varieties. Typologically, Huave exhibits tonal phe-

nomena, although tones are not as productive as

in other tonal languages. It is an agglutinative

language, where meaning is primarily conveyed

through the combination of stems with prefixes and

suffixes (Tyers and Castro, 2023).

4 Description of Py-Elotl

In this section we summarize the key components

that are currently available in Py-Elotl.

4.1 Corpus loader

The toolkit includes a parallel corpus loader for

three of the languages mentioned above. A parallel

corpus consists of sentences in a source language

paired with their corresponding translations in a

target language. This kind of corpus is essential for

developing translation technologies and conducting

comparative linguistic studies.

In Py-Elotl, the parallel corpora always include
Spanish as one of the languages, as it is relatively

common to find translations to and from Spanish

5http://cuentame.inegi.org.mx/hipertexto/todas_
lenguas.htm.
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when accessing digital resources for Mexico’s in-

digenous languages.

This module enables users to load a given par-

allel corpus directly into a Python data structure,

allowing for easy manipulation and analysis of par-

allel sentences. Additionally, each parallel sentence

includes metadata about its source document and

the dialectal variety in which it is written.

In all cases, the parallel corpora encompass var-

ious dialectal varieties, orthographic conventions,

and sources. Below, we describe the characteristics

of each corpus.

Spanish-Nahuatl. The data come from the

Axolotl parallel corpus (Gutierrez-Vasques et al.,

2016), one of the largest Spanish-Nahuatl parallel

corpora that is also available through a web search

interface 6. It compiles texts from diverse sources,

including short stories, history books, and recipe

books, among others. These sources cover several

dialectal variations, with Classical Nahuatl (nci)

being the most common. Additionally, it includes

Highland Puebla Nahuatl (azz), Morelos Nahuatl

(nhm), Central Nahuatl (nhn), Western Huasteca

Nahuatl (nhw), and Eastern Huasteca Nahuatl (nhe).

It is important to note that some sources are cur-

rently classified as ”unknown” (unk) for various

reasons, such as the combination of multiple di-

alects or difficulties in identification.

Spanish-Otomi. This parallel data comes from

the Tsunkua corpus7, which consists primarily of

translations from history books, dialogues, gram-

mars, and educational materials. Currently, the

corpus includes sources written in three dialectal

variations: Hñähñu/Mezquital Otomi (ote), Otomi

del Estado de México (ots), and Ixtenco Otomi

(otz), with the first being the most prominent.

Spanish-Mixtec The parallel corpus for this

language pair was built from educational sources,

grammars, and short stories. Although relatively

small, it encompasses a wide range of dialectal

variations, including Chalcatongo Mixtec (mig),

Magdalena Peñasco Mixtec (xtm), Ocotepec Mix-

tec (mie), Tezoatlán Mixtec (mxb), San Jerónimo

Xayacatlan Mixtec (mit), Northern Tlaxiaco Mix-

tec (xtn). This corpus, named kolo, is also available

through a web search interface8.

For a more comprehensive overview of the size

and distributions in the parallel corpora, see Table

1 and Figure 4. Additionally, see Figure 3 for an

6https://axolotl-corpus.mx/
7https://tsunkua.elotl.mx/
8https://kolo.elotl.mx/

Corpus #Parallel sentences Dialects

(ISO-639-3)

Axolotl (Spanish-

Nahuatl)

16K nci, azz,

nhm, nhn,

nhw

Tsunkua (Spanish-

Otomi)

5K ots, ote, otz

Kolo (Spanish-

Mixtec)

2K mig, xtm,

mie, mxb,

mit, xtn

Table 1: Parallel corpora currently available inPy-Elotl

Figure 3: Example of the parallel corpus loader in Py-
Elotl

example of using this feature in the Python library.

4.2 Orthographic normalization

Orthographic normalization is the process of con-

verting written text into a standardized form within

a language. While this is not a major issue for lan-

guages with well-established writing conventions,

it poses a significant challenge for many other lan-

guages. Documents written in languages like Nahu-

atl and Otomi often have multiple orthographic ten-

dencies in use, leading to spelling variation along-

side dialectal differences.

Orthographic normalization in Py-Elotl has

been implemented explicitly9 for Nahuatl and

Otomí. In both cases, finite-state transducers

(FSTs) are used to convert a non-normalized input

string, which may or may not conform to a par-

ticular orthographic standard, first to a phonemic

representation, and subsequently to a user-specified

orthographic norm for the language. Therefore, in

all cases, this is a two-step process: mapping source

text to a phonetic alphabet (IPA) and then generat-

9For Huave, there is no explicit orthographic normalization,
but the morphological analyzer supports some orthographic
flexibility in its input.
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Figure 4: Distribution of dialects for each of the three parallel corpora available in Py-Elotl.

ing the target orthography.

For Nahuatl, the input is expected to either

follow some combination of the existing writing

norms (e.g. k, c or qu for the phoneme /k/), or
common patterns observed in Nahuatl writing (e.g.

grapheme y for phoneme /i/ word-finally). For

the normalized output, four orthographic norms

are currently supported, including the orthography

often employed by the National Institute of Indige-

nous Languages (INALI) (INALI, 2018) and the

ACK orthography commonly used by academics

to write colonial-era Nahuatl (Karttunen, 1992). It

is important to note that, given the large amount of

linguistic variation within Nahuatl’s many variants,

a true “phonemic” representation is not possible.

Instead, we opt for a generic, approximate phone-

mic transcription that serves as input for the various

output orthographies.

Similarly, in the case of Otomi, the system

takes input text in a potential source orthographic

norm and should be able to convert it to any tar-

get orthographic norm. Currently, this module sup-

ports four orthographic standards. The transduction

rules were informed by a linguist’s expertise and

existing documentation (Hernández-Green, 2016).

Mezquital Otomi (Hñahñu) is the most widely spo-

ken variant and forms the basis of the writing stan-

dard proposed by (INALI, 2014). See Figure 5 for

an example of using the normalizer in the Python

library.

Adding other output orthographies is relatively

straightforward, and requires creating an FST that

maps the phonemic representation to the norm of in-

terest, and committing the FST in .att format. See

Table 3 and Table 2 for a more detailed description

of the available norms.

To get a sense of the performance of the Nahu-

atl orthographic normalizer, we used the Universal

Dependencies treebank for Western Sierra Puebla

Nahuatl, which for each token includes the orig-

inal orthography and a version written in the IN-

ALI norm. We manually converted the normal-

ized forms to the other three output orthographies,

deduplicating the original forms10, and excluding

punctuation, Spanish words, and named entities.

We then compared the manually-normalized words

to the output of the Py-Elotl normalizer given the

treebank’s original forms. The normalizer correctly

normalizes 98% of the 2,142 unique words for all

four of the output orthographies.

In the case of Otomi, as a preliminary evaluation,

we collected 1,282 word types written in the OTQ

and the OTS norm, respectively. Using Py-Elotl,
we converted them to the INALI norm: OTS→IN-

ALI , OTQ→INALI . We then compared the results

to a gold standard, finding that the normalizers cor-

rectly processed 81% of word types on average.

Performance was affected by code-switching and

ambiguity in the dataset, as the current rule set does

not yet cover these phenomena.

Given that the presence of named-entities and/or

code-switchingmaymean that certain words should

not be normalized or should undergo a different pro-

cess for normalization. As a first step to support this

potential complexity, the orthographic normalizers

in Py-Elotl offer the option to provide an excep-

tions list in the form of a dictionary that maps a

10We deduplicate the original forms in order to avoid in-
flated performance due to the frequent repetition of easy-to-
normalize common words such as the determiner/subordinator
in or the antecessive clitic o.
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Norm Description

INALI Norm used by the National Institute of Indige-

nous Laguages of Mexico

Ref. INALI (2018); Flores Nájera (2019),

SEP Norm used previously by the Secretary of

Public Education and for Indigenous Educa-

tion

Ref. Various

ACK Orthography popularized by Nahuatl scholars

J. Richard Andrews, Joseph Campbel, and

Frances Karttunen

Ref. Andrews (1975); Karttunen (1992)

ILV Norm developed by the community of San

Miguel Tenango (Western Sierra Puebla

Nahuatl) in collaboration of the Summer In-

stitute of Linguistics.

Ref. Márquez Hernández and Schroeder (2005)

Norm Example sentence

INALI [...]ihkwak walas mitsitas

SEP [...]ijkuak ualas mitsitas

ACK [...]ihcuac hualaz mitzitaz

ILV [...]ihcuac ualas mitzitas

Phones [...]iPkwak walas mitsitas

Table 2: A description of currently-supported ortho-

graphic norms for Nahuatl.

set of words to their preferred normalizations. One

possible application of this functionality is to pass a

list of common Spanish words so that they maintain

the Spanish orthography.

4.3 Finite-state morphological analyzers

The use of finite-state transducers for morphologi-

cal analysis has a long and rich history in the field of

NLP (Kornai, 1996; Beesley and Karttunen, 2003),

and is a particularly good option when there is lit-

tle annotated data with which to train data-driven

approaches such as deep neural networks, and can

even be useful as a means for generating training

data for such approaches (Moeller et al., 2018).

Py-Elotl aggregates free and open-source finite-
state transducer morphological analyzers, and cur-

rently supports five indigenous Mexican languages:

Three variants of Nahuatl (Classical Nahuatl11, the

analyzer for which comes from Tyers et al. (2023)

(which in turn leverages the extensive lexicon in

Escobar Farfan and Jonathan Irvine Israel (2019)),

Highland Puebla Nahuatl (Tyers and Pugh, 2023),

and Western Sierra Puebla Nahuatl (Pugh et al.,

2021)), San Mateo del Mar Huave (Tyers and Cas-

11 “Classical Nahuatl” is the name commonly used for the
historical literary variety of Nahuatl spoken in central México
during the early colonial period.

Figure 5: Example of orthographic normalization using

Py-Elotl. This functionality is currently available for

Otomí and Nahuatl. Not featured in the figure is the

.to_phones method that return the intermediate, phone-

mic representation.

Norm Description

INALI Norm designed by the National Institute of

Indigenous Laguages of Mexico

Ref. (Inali, 2014)

OTS Standard used in some texts from variants in

the State of Mexico

Ref. (De la Vega, 2017)

OTQ Standard proposed mainly for Querétaro vari-

ants

Ref. (Hekking and de Jesús, 1989)

RFE A phonetic alphabet developed for Spanish.

Some Otomi transcriptions follow this stan-

dard.

Ref. (Lastra, 1997)

Norm Example sentence

INALI [...]bijúgígó escuela pero ndichichithóhó

OTQ [...]bijúgígó escuela pero nditxitxithóhó

OTS [...]bikjúgígó escuela pero ndichichitjójó

RFE [...]bikhúgígó escuela pero ndičičithóhó

Phones [...]bikhúgígó eskwéla peRo nd1
>
tSi

>
tSithóhó

Table 3: A description of currently-supported ortho-

graphic norms for Otomi.

tro, 2023), and Otomí12.

While it is by no means a requirement, currently

all of the Py-Elotl morphological analyzers are

part of the Apertium project, and are regularly up-

dated to reflect recent changes. The package sup-

ports stand-alone FST morphological analyzers as

.att files. Since the aggregation of analyzers may

result in differing tagsets, we unify tagsets via a

rule-based mapping of each analyzer’s output to the

universal part-of-speech tags and universal morpho-

logical features used in the Universal Dependencies

project (Nivre et al., 2020).

12https://github.com/apertium/apertium-ote
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Language

group

Parallel Corpus Orthographic Normalizer Morphological Analyzer

Nahuatl ���� ���� ����

Huave - - ����

Otomí ���� ���� (����)

Mixtec ���� - -

Table 4: An overview of the different NLP resources and tools available for each language supported in Py-Elotl.
The parentheses around the elote emoji for the Otomí morphological analyzer is used to indicate the “prototype”

status of the system, since the coverage and performance of this analyzer has not been published.

5 Free Software

Py-Elotl is freely available as a Python package,

allowing users to integrate it into their workflow.

Additionally, they can collaborate and contribute

through open repositories. As a Free Software tool,

it grants users and communities the freedom to run,

copy, distribute, study, modify, and improve it. The

source code and builds are publicly accessible on

GitHub. Table 4 shows an overview of the current

functionalities supported.

Releasing source code, models, and data is con-

sidered good practice in areas like NLP to ensure re-

producibility. Some argue that this is especially im-

portant when working with endangered languages

due to the ethical implications, i.e., the risk of do-

ing cultural or linguistic appropriation of vulnera-

ble groups (Hämäläinen, 2021; Washington et al.,

2021).

Along a similar line, Aguilar Gil (2020) reflects

on how the practices of cooperation that the indige-

nous communities have carried out as means of sur-

vival could influence the development of technolo-

gies. It should not be a matter of vulnerable groups

receiving technology passively but encouraging an

intercultural dialogue in how we do technology.

She coins the term ”tequiologias” compatible with

the free and open-source software philosophy.

6 Conclusions

We introduced a suite of tools and resources fo-

cused on facilitating text processing for various

under-resourced languages spoken in Mexico. This

toolkit integrates: a) three parallel corpora with rep-

resentation of different dialectal variations within

the language groups; b) Orthographic normaliza-

tion tools where we took on the task of identifying

the main orthographic tendencies and wrote FST

technology to convert across different standards au-

tomatically; c) Morphological analyzers for several

dialectal variants that are also available through

Apertium.

Currently, we support the following language

groups: Nahuatl, Otomi, Mixtec, and Huave. How-

ever, adding resources and features for more lan-

guages is relatively straightforward. The toolkit

is available as a Python package, and the code is

openly accessible in public repositories to encour-

age the development of open and collaborative tech-

nologies.

The current scope of Py-Elotl focuses on up-

stream NLP tasks, including rule-based approaches,

as neural and statistical methods are often not en-

tirely applicable. To foster a more linguistically di-

verse landscape in language technologies and sup-

port under-resourced languages, we believe it is

essential to first establish strong foundational re-

sources.

Limitations

While we present this Python toolkit as a resource

for the languages of Mexico, our coverage is not

exhaustive. We currently focus on a few language

groups, some with large speaker populations within

Mexico. However, many other indigenous lan-

guages and dialectal variations remain underrep-

resented in this release. Expanding coverage to

include a broader range of languages and dialects is

an important goal for future development, requiring

further linguistic collaboration, data collection, and

community involvement

The morphological analyzers and orthographic

normalization modules used in this work are rule-

based, which may limit their flexibility to handle

phenomena such as code-switching, ambiguous

cases, and non-standard language use, which con-

stitute the linguistic reality many speakers of these

languages face.

Finally, the development of technology for under-

represented groups should not only focus on apply-
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ing the latest NLP techniques but also encouraging

diverse groups of work, in a way that the resulting

technologies and resources are really aligned with

the necessities and context of the speakers.
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Abstract 

This paper presents two finite-state 
transducer tools, which can be used to 
analyze or generate simple English verb 
and noun phrases, that can be mapped with 
inflected Plains Cree (nêhiyawêwin) verb 
and noun forms. These tools support 
fetching an inflected Cree word-form 
directly with an appropriate plain English 
phrase, and conversely providing a rough 
translation of an inflected Cree word-form. 
Such functionalities can be used to improve 
the user friendliness of on-line dictionaries. 
The tools are extendable to other similarly 
morphologically complex languages. 

1 Introduction 

Exemplifying with the pairing of a 
morphologically complex Indigenous language 
spoken on the Western plains of Canada and the 
corresponding morphologically simpler majority 
language, namely Plains Cree (nêhiyawêwin; ISO: 
crk) and English, this paper presents computational 
tools using finite-state transducer (FST) 
technology for analyzing and generating basic 
English phrases, as if they were complex inflected 
word-forms. When paired with an already existing 
FST computational morphological model for 
Plains Cree, these computational tools allow for 1) 
providing an inflected Plains Cree word-form that 
roughly matches the meaning and morphosyntactic 
features of a simple English phrase, and 2) 
generating a simple English phrase that matches 
the meaning and morphosyntactic features of an 
inflected Cree word-form. 

For analyzing and generating English phrases, 
both tools make use the FOMA compiler (Hulden 

 
1 Source: https://github.com/giellalt/lang-
crk/tree/main/src/fst/transcriptions 

2009) for Xerox-style finite-state transducer (FST) 
specifications (Beesley and Karttunen 2003). 1 
These FSTs are applied on the English definitions 
of Plains Cree entries in three bilingual Cree-to-
English dictionaries. These dictionaries are 1) 
nêhiyawêwin : itwêwina / Cree : Words (CW: 
Wolvengrey 2001), 2) Maskwacîs Dictionary of 
Cree Words (MD: Maskwachees Cultural College 
2009), and 3) Alberta Elders’ Cree Dictionary 
(AECD: LeClaire and Cardinal 2002). For 
analyzing and generating Plains Cree word-forms, 
we use the already existing finite-state 
morphological model (Snoek et al. 2014; Harrigan 
et al. 2017), which has been compiled with the 
Helsinki FST compiler (HFST: Lindén et al. 2011). 

The first tool noted above provides an 
alternative to presenting the results of analyzing a 
morphologically complex Cree word-form by 
presenting the morphosyntactic analysis tags, 
whether as is or in relabeled form (into plain 
English or plain nêhiyawêwin labels), as has been 
the standard previously in intelligent on-line 
dictionaries (e.g. Arppe et al. 2022: 22-23, 59-61). 
The second tool provides an alternative to finding 
an inflected word-form with the appropriate 
morphosyntactic features by looking up that form 
in a paradigm table, often quite daunting in their 
extent (Arppe et al. 2022: 19-24). These tools are 
already integrated to provide these two 
functionalities in the on-line Plains Cree – English 
dictionary, itwêwina (itwewina.altlab.app) 
(Arppe et al. 2022; Arppe et al. 2023; see also 
Appendix E in this paper), built with the open 
source morphodict intelligent dictionary platform, 
developed in the 21st Century Tools for Indigenous 
Languages (21C) project hosted by the Alberta 
Language Technology Lab (ALTLab). 2 

2https://morphodict.readthedocs.io/en/la
test/index.html 

Analyzing and generating English phrases with finite-state methods to 
match and translate inflected Plains Cree (nêhiyawêwin) word-forms 

 
Antti Arppe 

Alberta Language Technology Lab 
Department of Linguistics, University of Alberta 

arppe@ualberta.ca 
 
 
 
 

48

https://github.com/giellalt/lang-crk/tree/main/src/fst/transcriptions
https://github.com/giellalt/lang-crk/tree/main/src/fst/transcriptions
https://itwewina.altlab.app/
file:///Users/arppe/GDrive/ALTLab/Publications/itwewina.altlab.app
https://github.com/UAlbertaALTLab/morphodict
https://21c.tools/
https://21c.tools/
https://21c.tools/
https://altlab.ualberta.ca/
https://altlab.ualberta.ca/
https://altlab.ualberta.ca/
https://morphodict.readthedocs.io/en/latest/index.html
https://morphodict.readthedocs.io/en/latest/index.html


 
 
 

Nevertheless, one should note that mapping the 
English features with Cree features, and finding the 
Cree entry matching the English lexical content 
requires  software modules that are not covered in 
this paper.3 As far as we are aware of, itwêwina is 
the only implementation of a combined integration 
of both simple English phrase analysis  and 
generation in an on-line dictionary, at the same time 
effectively implementing the only translation 
system to/from Cree, though in a very restricted 
form. General machine translation solutions have 
been developed, of course, for majority and other 
languages, in particular well-resourced ones. 
However, the current state-of-the-art approaches 
that such MT systems rely on require large amounts 
of parallel corpus data; the closest to this in the 
North American context that one has come for 
Indigenous and polysynthetic languages has been 
for the pairing of Inuktitut and English (Littell et al. 
2018; Knowles et al. 2020; Le and Sadat 2020; 
Microsoft Translator 2021; Caswell 2024). 

Originally, the morphosyntactic features that 
are covered in the above two tools were based on 
those included in the so-called extended paradigms 
for nouns and verbs, as specified for the online 
itwêwina dictionary4. For nouns, these are based on 
unpublished complete paradigm layouts provided 
by Arok Wolvengrey (p.c.); for verbs, these are also 
largely based on published paradigms provided by 
Wolvengrey (2011: 393ff, Appendices A and B). 
For nouns, these extended paradigms include all 
the possible inflectional features, namely singular, 
plural, obviative, locative and distributive forms, 
for the non-possessed word-forms as well as with 
all possible possessors. For verbs, these extended 
paradigms include all the possible person and 
number combinations for subjects, as well as 
objects, when applicable (only for transitive 
animate verbs). For all possible subject-object 
combinations, the most common cases of 
tense/aspect/mood (expressed by prefixes known 
as preverbs) are included, namely the unmarked 
case (often referred to as the present tense, usually 
translated as “s.t. happens” or “s/he does s.t.”), the 

past (kî-, “s/he did s.t.”), future definite (ka-,  “s/he 
will do s.t.”), future prospective (wî-, “s/he is going 
to do s.t.”), and the infinitive/irrealis (ka- and ta-, 
“for s.o. to do s.t.”) tenses/moods. In addition, all 
subjunctive, aka future conditional forms 
(translated usually as “when s.o. does s.t.”), as well 
as imperative forms in both the immediate and 
delayed cases are included (translated as “(you) do 
something now” or “(you) do s.t. later”, 
respectively). 

Later on, the set of morphosyntactic features 
has been expanded (only for English verb phrase 
generation) to include, not only those that are 
relevant for Plains Cree, but also other languages 
in the Algonquian and Dene language families. 
This has led to covering negated (“s/he does not do 
s.t.”) and progressive forms as well as dual (e.g. 
“we both”) and distributed plural (e.g. “each and 
every one of us does s.t.”) and indirect object 
arguments (e.g. “s/he gives s.t. to us” or “s/he does 
s.t. for us”) for verbs.5 Nevertheless, one should 
note that the English phrase types that can be 
analyzed and generated by the tools presented here 
are only a small and quite restricted subset of the 
entire set of possible English constructions, even 
though the selected subset can be considered as the 
most common of English simple construction 
types, with the highest relevance for the most 
common inflected Cree noun and verb word-forms. 

2 Implementation – Analysis 

2.1 Analysis of English verb phrases 
The analysis (and generation) of English verb 
phrases, relies on two factors. Firstly, English 
personal pronouns indicating subjects, objects, and 
possessors are mostly distinct from each other, with 
the exception of the second person you and third 
person neuter it. This allows for the identification 
of these arguments and their relevant syntactic 
roles in simple phrases with a single predicate; 
when one or more of such verbal arguments can be 
identified, that is interpreted to indicate a verbal 
phrase to be matched with a Plains Cree verb form.

 
3https://github.com/UAlbertaALTLab/morph
odict/tree/main/src/morphodict/phrase_tr
anslate 
4https://github.com/UAlbertaALTLab/morph
odict/tree/main/src/morphodict/paradigm/
layouts 
5 The English verb phrase generator can be extended to 
other languages, provided that their morphosyntactic 
features can be mapped to available English auxiliary 

constructions, and the English dictionary definitions follow 
a templatic structure similar to the three Cree lexical 
resources referred to in this paper. E.g. for Tsuut’ina (ISO: 
srs; Dene language family), its Imperfective, Perfective, and 
Progressive verbal aspects can be mapped to the English 
Future Definite, Past, and Present Progressive tenses, 
respectively, and the Repetitive subaspect to the English 
Repetitive adverbial construction (with “again and again”). 
We have initially explored this with encouraging results. 
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Tense/aspect/modality 
feature(s) 

Initial 
zone 

Subject/ 
Existential 

Predicate zone Object/ Reflexive Final zone 

Present  we help>0 you  
Past  we help>ed you all  
Future+Definite  we will help you  
Future+Prospective  we are going to help you all  
Imperative+Immediate / Delayed let you and us help him now/later 
Imperative+Immediate+Negation do not let you and us help her now 
Infinitive for us to help you  
(Future) Conditional when we help you all  
Present (Existential)  there is light  
Present+Negation (Existential)  there is not light  
Present (Copula)  it is red   
Present+Negation  we do not help you  
Present (Copula)  we are ready   
Present+Negation (Copula)  we are not ready   

Table 1. Examples of various English verb constructions, split into the various templatic zones with the help of 
subject/existential and object (reflexive) markers (in blue). The parts of the Predicate zone indicating Tense/Mood 

are marked in red. Analyses of the above verb phrases are shown in Appendix A.

Secondly, combined with the relatively strict word 
order of English, these subject and object personal 
pronouns allow for the partitioning of English 
phrases into a templatic structure with an initial, 
predicate, and final zone. 

In the predicate zone, immediately after the 
subject pronoun (or existential marker) and before 
the object pronoun, when available, usually the first 
word is either 1) an auxiliary verb (e.g. will or do, 
does, or did, or the copula am/is/are/was/were, by 
itself or as part of an auxiliary phrase, e.g. 
am/are/is/was/were going to), or 2) a finite verb 
form (e.g. help, helps, or helped). This enables the 
determination of the tense, aspect, and modality of 
a phrase. The initial zone, preceding the first 
appearance of a personal pronoun indicating the 
subject, enables the identification of 
imperative/permissive constructions (and their 
negation), future conditional, and infinitival 
constructions, indicated by the initial elements let, 
when, and for, respectively. Generally, the initial 
personal pronoun would be in subject form, e.g. “I 
do s.t.” or “when we do s.t.”, but in the case of an 
initial zone preposition for or the auxiliary verb let, 
the initial personal pronoun will take the object 
form, in e.g. “for me to do s.t.” or “let us do s.t.”. 
The final zone is mainly used for the identification 
of the immediate or delayed subtypes of imperative 
constructions introduced above, as well as 
repetitive forms, indicated by the adverb 
constructions again and again or repeatedly. 
Examples of elements in these zones for the verb 
phrase template, with their linguistic analyses for 
tense/aspect/modality, are provided in Table 1 
above. 

In this current implementation, personal 
pronouns and certain other nominal expressions 
(i.e. ‘someone’ and ‘people’ for unspecified 
subjects in Plains Cree) which are identified as 
arguments are converted into flag diacritics, of the 
P-flag type that only sets the value of a flag diacritic 
variable, without checking for any constraints. 
These flags will then each represent a subject, 
direct object, indirect object, or reflexive feature. 
An example of this for the regular subject pronouns 
is given below in (1). 

One may firstly notice that for certain 
multiword subject expressions, such as ones 
corresponding to the Plains Cree further obviative 
feature (sometimes referred to as the 5th person), 
alternative versions are recognized. Secondly, 
longer subject constructions are attempted to be 
matched before shorter ones in separate regular 
expressions that are then composed together, to 
ensure only a single maximal match. Thirdly, the 
targeted subject constructions are expected to be 
demarcated with boundary characters defined as 
the regular expression Bx, consisting of phrasal 
punctuation characters, the space character, and the 
input boundary (both initial and final). Finally, we 
apply a convention where the second person 
pronoun “you” is interpreted as singular (+2Sg) 
when occurring by itself, and, when occurring with 
“all” as “you all”, as the (exclusive) plural (+2Pl). 
 

(1) regex [ {yet another} | {yet others} | 
{he/she/they over there} | {he or she or 
they over there} | {she or he or they over 
there} | {he, she, or they over there} | 
{she, he, or they over there} -> 
"@P.subject.5Sg/Pl@" || Bx _ Bx ] 
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.o. [ {another} | {others} | {he over 
there} | {she over there} | {they over 
there} | {he/she/they} | {he or she or 
they} | {she or he or they} | {he, she, or 
they} -> "@P.subject.4Sg/Pl@" || Bx _ Bx 
] 
.o. [ {it} -> "@P.object.0Sg@" || Bx _ " 
" .#. ] 
{you all} -> "@P.subject.2Pl@" || Bx _ Bx 
,, 
{you} -> "@P.subject.2Sg@" || Bx _ Bx ,, 
... 
{it} -> "@P.subject.0Sg@" || Bx _ Bx ,, 
... ]; 
define Subject 
 

Furthermore, matched elements in the initial zone 
are converted into P-type flag diacritics 
representing the associated modality features. In 
the predicate zone, matched auxiliary verbs and 
auxiliary phrases as well as the negative adverb not 
are similarly converted into P-type flag diacritics. 
Sometimes, the interpretation of the subject 
pronouns is combined with a scrutiny of relevant 
elements in the initial zone, a fragment of which is 
exemplified below in (2) for the infinitival phrases, 
initiated with “for …”. 
 

(2) regex [ ... 
[ {for you all to} -> "@P.subject.2Pl@" 
"@P.tense.Inf@" || .#. _ " " ,, 
{for you and us to} | {for you and we to} 
| {for you and me to} | {for us and you 
to} | {for we and you to} | {for me and 
you to} -> "@P.subject.21Pl@" 
"@P.tense.Inf@" , 
... ] .o. 
[ {for me to} -> "@P.subject.1Sg@" 
"@P.tense.Inf@" || .#. _ " " ,, 
{for you to} -> "@P.subject.2Sg@" 
"@P.tense.Inf@" || .#. _ " " ,, 
... ]; 
define ReverseSubject 
 

All these conversions result in removing the 
function words from the output, and leaving only 
the lexical content words that will be used in the 
subsequent English-to-Cree search. In conjunction 
with this, finite non-auxiliary verb forms that occur 
in the very beginning of the predicate zone are 
analyzed as to their tense (present, past, or 
infinitive) and an appropriate P-type flag diacritic 
is added, with the verb standardized into the bare 
infinitive form. Here, for irregular verbs a set of 
155 tuplets of past tense and the corresponding 
infinitive forms are used (specified as 
input:output pairs in a LEXC file); all other, 
regular verb forms are analyzed using regular 
expressions recognizing the regular 

suffixes -(e)s, -(e)d, and -ing, and removing such 
suffixes to provide the bare infinitive/stem form. 

Overall, the English verb phrase analyzer 
consists of a number of constituent regular 
expressions such as the ones for Subject and 
ReverseSubject presented above, as well as 
regular expressions for standardizing the input. 
These are then composed together in a specific 
order, which is intended to result in appropriate 
matches. For verb phrases, the ordering is 
presented below (3). For the most part, this is self-
explanatory, in particular for identifying the 
various argument elements and analyzing the 
predicate zone. Nevertheless, one first specifies 1) 
the alphabet on which the English phrase analyzer 
operates on (which applies for both verbal and 
nominal phrase types), followed by 2) the insertion 
of an additional final space to satisfy the boundary 
requirements for many of the argument-marking 
component regular expressions, and then 3) the 
standardization of certain forms as well as masking 
apostrophes  in possessed forms, before 4) undoing 
contractions such as “don’t” as “do not”, followed 
by 4) the resurrection of the apostrophe for 
possessed word-forms. 
 

(3) Letters+ → InsertFinalSpace → Standardization 
→ Contractions → ResurrectApostrophe → Negation → Past 
→ ReverseSubject → Reciprocal → Subject → Reflexive 
→ Object → 1DuO → 2SgO → 2DuO → 2PlO → 3SgO 
→ 3DuO → 4SgPlO → 5SgPlO → 0SgO → XO → XPlO 
→ Tense → Imperative → Progressive → Repetitive 
→ VerbClass → VerbAnalysis  
 

The next constituent regular expressions from 
Negation through Repetitive should be self-
explanatory, except for the rule sequence 1DuO → 
2SgO → 2DuO → 2PlO → 3SgO → 3DuO → 4SgPlO 
→ 5SgPlO → 0SgO → XO → XPlO, which concerns 
the reinterpretation of certain ambiguous argument 
types as an object, if the argument in question is 
already preceded in the phrase by a subject 
argument. Furthermore, the next-to-last regular 
expression uses the occurrence or absence of 
identified subject and object arguments and their 
semantic types to determine the Plains Cree verbal 
part-of-speech corresponding to the English 
phrase, based on transitivity of the predicate and 
animacy of the arguments (as an II, AI, TI, or TA 
type of verb). This allows for matching the correct 
type of Cree verb entry for the English phrase. 

Finally, all the aforementioned P-type flag 
diacritics determine the generation of 
corresponding analysis tags. In fact, all the 
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theoretically possible analysis combinations are 
generated, but the correct analysis is filtered by 
matching R-type (for Require) flags; the resultant 
tags are output after the standardized lexical 
content words using the final regular expression 
VerbAnalysis. A simplified example of the 
structure of the input and output and the 
intervening intermediate form with the P-type flags 
is shown in (4a). After that, the English analysis 
output is converted into input matching the tags 
used by the Cree generator FST, resulting in an 
inflected Cree word-form approximating the 
original English phrase (4b). 
 

(4a) I am going to see you all 
→ @P.subject.1Sg@ @P.tense.Fut@ see 
@P.object.2Pl@ 
→ see +V+TA+Fut+1Sg+2PLO    
(4b) → PV/wî+wâpamêw+V+TA+Ind+1Sg+2PLO 
→ kiwî-wâpamitinâwâw 
 

One should note that mapping the English tags into 
Cree ones and finding the Cree entry matching the 
English lexical content makes use of a morphodict 
software module and specifications that are not 
covered here.6 

2.2 Analysis of English noun phrases 
Similar to verbs, the analysis (and generation) of 
English noun phrases relies on a relatively fixed 
word order for the nominal head and locative 
prepositions, and otherwise on certain identifiable 
modifiers. The maximally complex noun phrase 
that we try to analyze is limited by what can be 
mapped to an inflected Plains Cree nominal word-
form, examples of which are presented in Table 2. 

The noun which is the head of the noun phrase 
is expected to be found at its end, identifiable by an 
immediately following punctuation character 
understood as separating multiple noun phrases, or 
a string final boundary; A Plains Cree noun can 
express either the singular or plural number or 
obviation, but not both. For the purposes of English 
noun phrase analysis, plural number can be 
expressed either morphologically with the suffix –
(e)s on the final word interpreted as a noun, or with 
several attributes (“many”, “few”, “several”, or 
“couple of”) occurring as the first element of the 
noun phrase, while initial articles or indefinite 
pronouns (“a”, “an”, or “one”) are used to denote a 
singular number. Obviation can be expressed by 

 
6 For the tag mappings between Cree and English, see: 
https://github.com/UAlbertaALTLab/morpho

adding the phrase “over there” after the final noun, 
which will override any preceding expression of 
number.  In addition, a noun phrase can be initiated 
with an optional locative preposition, either “in” or 
“on”, or the optional distributive locative 
preposition “among”, both of which in Plains Cree 
are again mutually exclusive with singular or plural 
number or obviation. In addition, one can indicate 
an optional possessor with English possessive 
pronouns, or certain nouns (“someone’s” or 
“people’s”) standing in for the unspecified 
possessor. Furthermore, one can optionally signal a 
diminutive form by using any of the modifying 
attributes “little”, “lesser”, “smaller”, or 
“younger”, though currently this is not used to 
create corresponding Cree noun forms. 
 

Locat-
ive 

Possess
-or 

Num
-ber 

Dimin
-utive  

Noun 
head 

Obv-
iation 

  one  bear  
  many  bear>s  
 another   bear over 

there 
 my one  book  
 my  little book  
in  a  book  
among    bear>s  
in my many  book>s  
 my 

other 
 little tree over 

there 
Table 2. A sample of English noun phrases 

corresponding to Plains Cree noun forms, and their 
templatic structure. Analyses are shown in Appendix B. 
 

Similar to verbs, the English noun analyzer consists 
of a number of constituent regular expressions that 
are applied in a sequence shown below (5). The 
first regular expression NounPl2Sg analyzes the 
final word of the phrase expecting that to be a noun, 
and if this appears to be a plural form, either having 
either of the regular -s or -es suffixes or being one 
of the enumerated 79 pairings of irregular plural 
forms with their singular counterparts, a P-type flag 
indicating plural number is affixed and the plural 
form replaced by the corresponding singular form. 
This is followed by two regular expressions 
VerbPhrase and NounPhrase, used to disallow 
a noun phrase analysis if any of the personal 
pronouns representing subjects or objects are 
present. After this, a succession of regular 
expressions converts various function words into 
corresponding flags indicating number, obviation, 

dict/tree/main/src/crkeng/resources/phra
se_translate 
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location, diminutivization, and possession, where 
their actual order in the noun phrase has little role. 

As one might well write a phrase combining a 
locative preposition and any of the markers of 
number or obviation, as these are converted into P-
type flag-diacritics, only the value of the last flag 
will remain in effect. An exception is implemented 
with the regular expression DistrVsPl, with 
plural flags deleted after an initial distributive 
preposition, since that construction is usually 
translated into English with a plural noun form, e.g. 
“among the Americans” for kihci-môhkomâninâhk, 
even though the corresponding Cree noun form is 
underspecified in terms of its number. 

The next-to-final regular expression 
NounClass outputs a tag (+N) indicating a noun 
analysis, whereas the final regular expression 
NounAnalysis outputs analysis tags 
corresponding to the P-type flag-diacritics 
generated earlier. Again, all the theoretically 
possible combinations of noun analysis tags are 
output, with R-type flags filtering the appropriate 
correct analysis. One should note that one cannot 
currently map an English noun phrase to the two 
Plains Cree animacy types, as English has no such 
morphosyntactically expressed distinction. 
 

(5) NounPl2Sg →  VerbPhrase → NounPhrase 
→ NumberObvLocDistr → Diminutive → Possession 
→ DistrVsPl → NounClass → NounAnalysis 
 

Importantly, the noun analyzer described here is 
treated as disjunct to the verb analyzer described 
earlier, resulting in a single finite-state analyzer for 
English phrases. The (uncompressed) size of the 
resultant compiled FOMA binary file is 24.4 MB. 

3 Implementation – Generation 

3.1 English verb phrase generation 
The easy identifiability of the subject and object 
personal pronouns and the associated zones in a 
simple English verb phrase, as described above in 
the analysis of such phrases to present a general 
templatic structure, also enables the manipulation 
of the subject and object pronouns as well as the 
tense, aspect, and modality of the predicate in such 
a phrase, allowing for the generation of new 
phrases matching the morphosyntactic features 
expressed by an inflected Cree word-form. Indeed, 
an examination of English definitions in the three 
bilingual Plains Cree-to-English dictionaries of 
which we have access to their content in electronic 

form shows that these all follow particular 
structures and expressions that support such 
manipulation. Examples from CW, MD, and 
AECD for the three Cree entries, wîcihêw, 
nisitohtam, and mispon, are given below in (6-8). 
 

(6) wîcihêw (to help s.o.) 
• s/he helps s.o., s/he assists s.o. (CW) 
• s/he provides welfare to s.o. (CW) 
• s/he assists s.o. in childbirth, s/he serves as a midwife to 

s.o. (CW) 
• He helps him. (MD) 
• He aids him. (MD) 
• They help him. (MD) 
• s/he assists her/him or them (AECD) 
• s/he participates (AECD) 
(7) nisitohtam (to understand [s.t.]) 
• s/he understands (CW)  
• He understands (MD)  
• s/he understands s.t. (CW) 
• s/he understands it (AECD) 
(8) mispon (to snow) 
• it snows, it is snowing, there is falling snow, there is a 

snowfall (CW) 
• It is snowing. (MD) 
• it snows, or it is snowing (AECD) 
 

While the indication of subjects and objects above, 
in red and blue, respectively, varies between the 
three dictionary sources, with “s/he” in CW and 
AECD vs. “He” in MD for animate subjects, and 
“it” or “there” throughout for the inanimate 
subjects/existential marker, and “s.o.” in CW vs. 
“her/him” or “them” in AECD vs. “him” in MD for 
animate objects (whether for direct or 
prepositional) and “s.t.” in CW vs. “it” in AECD 
and MD for inanimate objects, the use of specific 
conventions, e.g. “s/he” or “him/her”, in fact makes 
their identification easier than for the English 
phrase analysis. Also, the main finite verbs in each 
of the definitions, underlined above, practically 
always immediately follow the subject marker, 
which substantially facilitates their manipulation 
and/or the insertion of various auxiliary verb 
constructions immediately after the subject marker, 
sometimes in conjunction with an additional 
element appended in the initial zone preceding the 
subject, to convey a broad range of tense, aspect, 
and modality features. Finally, in all three sources 
both commas and semi-colons are almost 
invariably used only to delineate different senses, 
further clarifying where the initial zone/subject is 
to be found in any of the definitions above. 
 

(9) Input → itNonSubjectMarking → Standardization 
→ VerbInflection2 → ModalAuxiliary 
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→ Tag2FlagConversion → VerbInflection → IrregularVerbs 
→ AuxiliaryPhrase → BeAuxiliaryPhrase → PhrasePrefix 
→ PhraseSuffix → Relativization → BeInflection 
→ IObjectConversion → SubjectConversion 
→ ObjectConversion → ReflexiveConversion 
→ PossessiveConversion → itNonSubjectUnmarking 
→ EngInf2Inf → EngPrt2Prt → EngPrf2Prf 
→ EngProg2Prog → EngPhon → RemoveSuffixBoundary 
 

The actual implementation of the manipulation of 
the English definitions again consists of a sequence 
of often quite complex regular expressions, 
enumerated above in (9). The application of these 
regular expressions depends on the assumed 
templatic structure of the base definition phrase, as 
exemplified earlier above in (6). In general, at 
various positions in the template the regular 
expressions either 1) identify elements as particular 
arguments or modifiers with place-holder markers 
which are eventually converted into the desired 
target form, or 2) insert elements to convey the 
desired tense, modality, and polarity. 

As the very first thing, various tags indicating 
the desired manipulation, in terms of the subject 
and direct object as well as tense, aspect, and other 
modalities including negation, are expected to 
precede the English definition that is to be 
manipulated. These tags are converted into P-style 
flag-diacritics that can be used to select and filter 
the desired manipulation. The order and optionality 
of the full set of possible tags is enumerated in the 
first regular expression, named Input, shown here 
in (10) below. A detailed overview of the possible 
tags available for English verb phrase generation, 
with their combinatorics and exponents, is 
presented in Appendix C. 
 

(10) regex [ (Clause | Modality) [ 
TenseAspect | Auxiliary ] Subject 
(DirectObject) (IndirectObject) 
(Progressive) (Repetitive) (Negation) 
Letters+ ] ; 
define Input 
 

After this, the regular expression named 
Standardization is used to identify and replace 
with unambiguous multicharacter symbols the 
various argument markers for the subject or 
existential “there”, the possessive and reflexive 
markers that should correspond with the subject, 
the possible direct object and indirect object 
markers, and the copula verb “is”, so that they 
cannot be confused with the subsequent 
manipulations. This is followed by a sequence of 
regular expressions from VerbInflection2 

through BeInflection, which either 1) insert 
various auxiliary verbs or longer auxiliary 
constructions, sometimes in co-ordination with an 
prepended element in the initial zone before the 
subject/existential marker or at the end of the 
phrase (before the sense-demarcating punctuation), 
or 2) convert the finite copula verb or finite regular 
verb, occurring immediately after the subject 
marker, into the appropriate forms which are 
needed for agreement with the auxiliary verb 
constructions, i.e. present or past tense, present 
(progressive) or past participle, or the bare 
infinitive form. Importantly, the entire set of these 
alternative constructions are always generated, but 
they are marked with sets of R-type flag diacritics 
that indicate which initial tag-based P-type flag 
diacritics they are allowed/required to co-occur 
with, resulting in (ideally) only one of the 
generated manipulations getting filtered for final 
output. To simplify encoding, many P-type and R-
type flags, as well as D-type flags (for disallowing 
contexts) are grouped into named sets that 
explicitly enumerate the conditions where the 
particular variant English verb-form is the 
appropriate one. 
 

Auxiliary 
Construction 

Flags 

wants to @R.tense.Int@ @D.neg@ 
@D.prog@ RsubjectPrs3Sg 

want to @R.tense.Int@ @D.neg@ 
@D.prog@ DsubjectPrs3Sg 

does not want to @R.tense.Int@ @R.neg.Neg@ 
@D.prog@ RsubjectPrs3Sg 

do not want to @R.tense.Int@ @R.neg.Neg@ 
@D.prog@ DsubjectPrs3Sg 

wants to be @R.tense.Int@ @D.neg@ 
@R.prog.Prog@ RsubjectPrs3Sg 

want to be @R.tense.Int@ @D.neg@ 
@R.prog.Prog@ DsubjectPrs3Sg 

does not want to be @R.tense.Int@ @R.neg.Neg@ 
@R.prog.Prog@ RsubjectPrs3Sg 

do not want to be @R.tense.Int@ @R.neg.Neg@ 
@R.prog.Prog@ DsubjectPrs3Sg 

Table 3. The 8 possible realizations of the Future 
Intentional auxiliary phrase, with associated flags. 

 

Furthermore, in a step beyond the verb phrase 
analyzer, the various auxiliary verbs and 
constructions are organized as completely written 
out sets of constructions following 4-8 patterns, 
depending on the possible variation arising for each 
tense/aspect/modality feature and negation; these 
constructions are then inserted as single “pre-
fabricated” chunks between the first subject-
marking pronoun and the immediately following 
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predicate zone. Due to diverging patterns between 
copular and regular finite verbs, two sets of 
constructions are specified. Crucially, each 
construction determines what form of the finite 
verb (or copula) is required (to follow the auxiliary 
construction). This templating approach turned out 
absolutely necessary in order to allow for the 
efficient maintenance of the verb phrase generator, 
and it has also proven to enable the easy addition 
of new modalities, in comparison to the jungle of 
flag-diacritics that arose from initially trying to 
insert the exponents of various features 
individually one by one. An example of the set of 
constructions for various variants of the future 
intentional modality is shown in Table 3 above.  

After the generation and insertion of all the 
possible variants, the various subject, object, and 
other multicharacter markers are converted with 
the regular expressions from 
IObjectConversion through 
itNonSubjectUnmarking into the pronouns or 
nouns specified in the original tags. Then, the 
regular expressions from EngInf2Inf through 
EngProg2Prog provide the correct forms for 
irregular or regular English verbs occurring in the 
CW dictionary, while the subsequent regular 
expression EngPhon deals with the orthophonemic 
variation in the case of all the remaining regular 
verbs, and the final regular expression 
RemoveSuffixBoundary cleans up the results. 
An example of the results of English phrase 
generation, with a first person singular subject and 
a third person plural object (when applicable), in 
the future prospective tense, is shown below in (11-
13) for the English definitions provided above (in 
6-8), with subject/object/existential markers in blue 
and the inserted auxiliary construction in red. 

The FOMA-compiled English verb phrase 
generator reaches 30.6 MB in (uncompressed) size. 
One should again note that the full implementation 
involves a morphodict code module, with 
mappings between Plains Cree word-form analysis 
tags to English phrase generation tags, which is not 
discussed here (but see Footnote 7 above). 
 

(11) niwî-wîcihâwak (to help s.o.) 
• I am going to help them, I am going to assist them (CW) 
• I am going to provide welfare to them (CW) 
• I am going to assist them in childbirth, I am going to serve 

as a midwife to them (CW) 
• I am going to help them. (MD) 
• I am going to aid them. (MD) 
• I am going to help them. (MD) 
• I am going to assist them (AECD) 

• I am going to participate (AECD) 
(12) niwî-nisitohtên (to understand [s.t.]) 
• I am going to understand (CW) (MD)  
• I am going to understand something (CW) (AECD) 
(13) wî-mispon (to snow) 
• it is going to snow, it is going to be snowing, there is going 

to be falling snow, there is going to be a snowfall (CW) 
• It is going to be snowing. (MD) 
• it is going to snow, or it is going to be snowing (AECD) 

3.2 English noun phrase generation 
Similar to the verbs, the structure of the English 
definitions in the three Plains Cree-to-English 
dictionaries is convergent, with 
commas/semicolons used to distinguish different 
senses. But in contrast to verbs, our task is both 
simpler and more difficult, in that we only need to 
identify a single anchor word in each noun 
phrase/sense, namely the noun head, but there is no 
unambiguous marker word we can rely on 
throughout; while empirical investigation of the 
definitions indicate this to be mostly either the 
word immediately preceding a postmodifying 
prepositional or relative phrase, or otherwise the 
final word preceding the sense-demarcating 
punctuation character or the end of the definition, 
not all prepositions initiate a postmodifying phrase. 
An example of English definitions for okimâw 
“chief” is provided below in (14), with the head 
noun marked underlined in bold-face. 
 
(14) okimâw “chief”: 
• chief, leader, head person, man of high position (CW) 
• king (CW) 
• boss (CW) 
• one's superior (CW)  
• manager (CW) 
• A chief. (MD) 
• A man in high position. (MD) 
• a leader on a job site, i.e.: a boss (AECD) 
• government leader, manager (AECD) 
 

Anyhow, the generation of English noun phrases 
that can be matched with the inflectional features 
available for Plains Cree noun forms is organized 
similar to the verb phrase generation described 
above, but it is overall substantially simpler, and 
currently has not been partitioned into named 
constituent regular expressions. One needs only 
specify one among the mutually exclusive features 
for either singular or plural number, obviation, 
locative or distributive form, followed by an 
optional possessor and optional diminutivization. A 
detailed overview of the possible tags available for 
English noun phrase generation with their 
exponents is presented in Appendix D. 
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As with the verbs, the tags specifying these 
features precede the definition to be manipulated, 
and are first converted into P-type tags. Then, any 
initial articles or possessive pronouns in the 
original English definition are removed. After this, 
an optional modifier “little” indicating a diminutive 
form can be prepended to the remaining noun 
phrase, which in turn can be prepended with an 
optional possessive pronoun, followed by the 
pronoun “other” in the case of an obviative form. 
Finally, the possible alternatives among the 
number/obviation/location complex are added: 
either the locative or distributive preposition, “in” 
or “among”, is prepended at the very beginning, or 
an indefinite article for singular number (which 
combines into “another” in the case of obviation), 
or the plural suffix –(e)s is added to the word at the 
end of the noun phrase marked by a final string 
boundary or punctuation separating senses, or if the 
noun phrase ends with a postmodifying phrase 
starting with “of”, “for”, “with”, “among”, or 
“who”, then to the word immediately preceding 
these prepositions or relative pronoun. For some 88 
irregular English plural nouns the appropriate 
forms are enumerated, while for the remaining 
pluralized nouns regular orthophonemic rules are 
applied. As with the verbs, the complete set of all 
possible outcomes are generated with associated R-
type flags, which allow for the selection of the one 
desired noun phrase which matches the P-type 
flags specified by the initial tags. An example of 
creating plural first-person-singular possessed 
forms of the definitions above is shown here in (15) 
(with the incorrect generations struck-through). 
The FOMA-compiled English noun phrase 
generator reaches 56.9 MB in (uncompressed) size. 
 
(15) nitokimâmak “chief”: 
• my chiefs, my leaders, my head persons, my men of 

high position (CW) 
• my kings (CW) 
• my bosses (CW) 
• my one's superiors (CW)  
• my managers (CW) 
• my chiefs. (MD) 
• my man in high positions. (MD) 
• my leader on a job sites, i.e.: my bosses (AECD) 
• my government leaders, my managers (AECD) 

4 Evaluation 

To evaluate the English phrase generation, 
focusing on verbs, with greater complexity, a 
combination of the extended Plains Cree layouts, a 
Plains Cree corpus, and the English definitions in 

the three dictionaries was used to attempt to 
generate 2253 English phrases corresponding to the 
Cree morpho-syntactic features for each word-
form cell in all these verb paradigms. A quantitative 
scrutiny showed the English phrase generation was 
able to generate a manipulated phrase for 2151 
(95.5%) of the verb cells, taking 0.457s on a 
MacBook Pro with an Apple M4 Max CPU. A 
comprehensive manual evaluation of the generated 
phrases is under way, but preliminary results for the 
first 1500 phrases indicate that 1252 (83.5%) are 
fully well-formed. For evaluating English phrase 
analysis, we used the aforementioned generations 
to create 5430 simple English verb phrases, which 
were then run through the analyzing transducer. For 
4268 (78.6%) of these phrases, the transducer 
provided exactly the same set of morphosyntactic 
features as were used to generate the phrase. 

A qualitative evaluation of the remaining 
unsatisfactory behavior suggests that this is due to 
co-ordinated predicate constructions (“Xs and/or 
Ys”) not yet covered by the verb phrase generator, 
structural ambiguity of some high-frequency verbs 
(e.g. “lie/lied” vs. “lie/lay”), and missing some 
orthographical variants of the subject and object 
markers in the English definitions in the three 
dictionaries. Another point of improvement 
concerns the identification and removal of some 
forms of parenthetical content in the English 
definitions, usually marked with bracketing, which 
can confuse the phrase transductors, if missed. 

5 Conclusion 

This paper presented rule-based finite-state 
transducers for analyzing and generating simple 
English phrases, matching the most common 
inflected Plains Cree verb and noun word-forms. 
These transducers have been incorporated in the 
on-line intelligent Plains Cree-English dictionary, 
itwêwina, using the morphodict platform (see 
Appendix E for example screenshots). Combined 
with a matching Plains Cree morphological 
transducer and mappings between the English and 
Plains Cree features, this in effect results in 
restricted machine translation between the two 
languages. The morphosyntactic features covered 
by these English phrase transducers have been 
extended beyond Cree to cover ones apparent in 
other Algonquian and Dene languages. While not 
explored in detail in this paper, this can in principle 
enable the implementation of the same 
functionalities for other similar languages. 
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Limitations 
The English phrases that the tools presented in this 
paper can analyze and generate are restricted to 
constructions roughly matching the inflected Cree 
word-forms contained in so-called extended 
paradigms. One must keep in mind that these 
recognized constructions are only a very small 
subset of all possible constructions in English; 
while the most common Cree word-forms are 
covered, many rarer inflected word-forms are not. 
Perhaps more importantly, the generated English 
phrases should be considered only as rough 
approximate translations of the corresponding Cree 
word-forms, and should not be used as a 
replacement for consulting fluent speakers for 
translations. 

The compiled data structures resulting from the 
finite-state approach employed in this paper, when 
combining both the analysis/generation of English 
phrase structure and of certain English word-forms 
within these constructions, can end up being 
prohibitively large (in hundreds of megabytes or 
even bigger), which will be challenging to integrate 
within other applications, and may be slow to look 
up. Features that are necessary, such as keeping 
track of already seen elements (memory) and the 
precise identification of word and phrase 
boundaries, are cumbersome to implement in 
finite-state specifications, requiring flag-diacritics 
that are notoriously difficult to parse and debug. 
Based on some preliminary trials, procedural 
coding approaches (e.g. with Python) would appear 
to provide an alternative that can implement all the 
desired features incorporated in the finite-scale 
models discussed in this paper, and beyond, while 
at the same time being sufficiently fast and not 
exploding required memory. 

Ethics Statement 

The on-line Plains Cree-English dictionary 
described in this paper has been developed in 
order to support the explicit objectives of Cree 
language communities to support their language 
instruction, maintenance, and revitalization 
activities. The functionality presented in this 
paper has been fine-tuned based on feedback from 
various individuals in Cree-speaking 
communities. 
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Appendix A. Example analyses of English verb phrases in Table 1. 
Initial zone + 
Subject/Existential + 
Predicate zone + 
Object/Reflexive + 
Final zone 

English 
analysis: 
Lexical 

English analysis: 
Morphosyntax 

Cree FST generation tags Cree verb 
form 

we help>0 you help +V+TA+1Pl+2SgO wîcihêw+V+TA+Ind+1Pl+2SgO kiwîcihitinân 
we help>ed you all help +V+TA+Prt+1Pl+2PlO PV/kî+wîcihêw+V+TA+Ind+1Pl+2PlO kikî-

wîcihitinân 
we will help you help +V+TA+Def+1Pl+2SgO PV/ka+wîcihêw+V+TA+Ind+1Pl+2SgO kika-

wîcihitinân 
we are going to help you 
all 

help +V+TA+Fut+1Pl+2PlO PV/wî+wîcihêw+V+TA+Ind+1Pl+2PlO kiwî-
wîcihitinân 

let you and us help him 
later 

help +V+TA+Del+21Pl+3SgO wîcihêw+V+TA+Imp+Del+12Pl+3SgO wîcihâhkahk 

do not let you and us 
help her now 

help +V+TA+Imm+21Pl+3SgO+Neg namôya+Ipc 
wîcihêw+V+TA+Imp+Imm+12Pl+3SgO 

namôya 
wîcihâtân 

for us to help you help +V+TA+Inf+1Pl+2SgO PV/ka+wîcihêw+V+TA+Cnj+1Pl+2SgO ka-wîcihitâhk 
when we help you all help +V+TA+Cond+1Pl+2PlO wîcihêw+V+TA+Fut+Cond+1Pl+2PlO wîcihitâhki 
there is light is light +V+II+0Sg kîsikâw+V+II+Ind+3Sg kîsikâw 
there is not light is light +V+II+0Sg+Neg namôya+Ipc kîsikâw+V+II+Ind+3Sg namôya 

kîsikâw 
it is red is red +V+II+0Sg mihkwâw+V+II+Ind+3Sg mihkwâw 
we do not help you help +V+TA+1Pl+2SgO+Neg namôya+Ipc 

wîcihêw+V+TA+Ind+1Pl+2SgO  
namôya 
kiwîcihitinân 

we are ready is ready +V+AI+1Pl kwêyâtisiw+V+AI+Ind+1Pl nikwêyâtisinân 
we are not ready is ready +V+AI+1Pl+Neg namôya+Ipc kwêyâtisiw+V+AI+Ind+1Pl namôya 

nikwêyâtisinân 

 

Appendix B. Example analyses of English noun phrases in Table 2. 
Number / Locative + 
Possessor +  Diminutive + 
Noun head + Obviation 

English 
analysis: 
Lexical 

English analysis: 
Morpho-Syntactic 

Cree FST generation tags Cree noun form 

one bear bear +N+Sg maskwa+N+A+Sg maskwa 
many bear>s bear +N+Pl maskwa+N+A+Pl maskwak 
bear over there bear +N+Obv maskwa+N+A+Obv maskwa 
my one book book +N+Px1Sg+Sg masinahikan+N+I+Px1Sg+Sg nimasinahikan 
my little book book +Dim+Px1Sg+Pl masinahikan+N+I+Der/Dim+N+I+Px1Sg+Pl nimasinahikanisa 
in a book book +N+Loc masinahikan+N+I+Loc masinahikanihk 
among bear>s bear +N+Distr maskwa+N+A+Distr maskonâhk 
in my many book>s book +N+Px1Sg+Pl masinahikan+N+I+Px1Sg+Pl nimasinahikana 
my other little tree over 
there 

tree +N+Dim+Px1Sg+Obv mîtos+N+A+Der/Dim+N+A+Px1Sg+Obv nimîcosimisa 
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Appendix C. A detailed overview of the tags and their exponents for the English verb 
phrase generator (optional argument types in parentheses).7 8 

(Clause) 
 

Tense 
Aspect9 
 

Subject (Direct 
Object) 

(Indirect 
Object) 

(Progressive) (Repetitive) (Negation) 

Rel+: who; 
which 
Cnj+: as 
 

Prs+: -(e)s 
Prt+: -(e)d 
Def+: will 
Fut+: is 
going to 
Int+: wants 
to 
Cond+:when 
Inf+: for s.o. 
to … 
Imm+: let 
s.o. … now 
Del+: let s.o. 
… later 
Prf1+: has 
done s.t. 
Prf2+: had 
done s.t. 
 

0Sg+: it 
1Sg+: I 
2Sg+: you 
3Sg+: 
he/she 
1Du+: we 
both 
2Du+: 
you both 
3Du+: 
they both 
1Distr+: 
each and 
every one 
of us 
2Distr+: 
each and 
every one 
of you 
3Distr+: 
each and 
every one 
of them: 
0Pl+: they 
1Pl+: we 
21Pl+: 
you and 
we 
2Pl+: you 
all 
3Pl+: they 
4Sg+: 
another 
4Pl+: 
others 
4Sg/Pl+: 
yet 
an/other(s) 
5Sg/Pl+: 
yet others 
X+: 
someone 
XPl+: 
people 

0SgO+: it 
1SgO+: me 
2SgO+: you 
3SgO+: 
him/her 
1DuO+: us 
both 
2DuO+: you 
both 
3DuO+: them 
both 
1DistrO+: 
each and 
every one of 
us 
2DistrO+: 
each and 
every one of 
you 
3DistrO+: 
each and 
every one of 
them 
0PlO+: them 
1PlO+: us 
21PlO+: you 
and us 
2PlO+: you all 
3PlO+: them 
4Sg/PlO+: 
an/other(s) 
5Sg/PlO+: yet 
an/other(s) 
XO+: 
someone 
XPlO+: 
people 

1SgIO+: to me 
2SgIO+:  to you 
3SgIO+: to 
him/her 
1DuIO+: to us 
both 
2DuIO+: to you 
both 
3DuIO+: to 
them both 
1PlIO+: to us 
21PlIO+: to you 
and us 
2PlIO+: to you 
all 
3PlIO+: to them 
4Sg/PlIO+: to 
an/other(s) 
5Sg/PlIO+: to 
yet an/other(s) 
XIO+: to 
someone 
XPlIO+: to 
people 

Prog+: be … 
-ing 

Rept+: 
again and 
again; 
repeatedly 

Neg+: not 

(Modality) 
Obl2+: has 
to 
Nec2+: 
needs to 
Abl2+: is 
able to 
Perm2+: is 
allowed to 
Int2+: 
wants to 
Hab+: 
keeps on 
Init+: starts 
Fin+: 
finishes 

Auxiliary 
Obl+: must  
Nec+: needs 
to 
Abl+: can 
Perm+: may 
Int+: wants 
to 
Poss+: could 
Rec+: 
should 
Pred+: 
would 

 
7 The features used for English verb phrase generation are a superset of the features available for English verb phrase 
analysis. Furthermore, the tags for English verb phrase analysis are similar to the ones for English verb phrase generation, 
with the analysis tags preceded by a plus sign (e.g. +1Sg or +Prt) and all the tags following the English core lexical content 
resulting from the analysis (e.g. ”I slept well” → sleep well +Prt+1Sg), whereas the generation tags are followed by a 
plus sign and all the tags precede the English core sentence frame that is to be manipulated (e.g. Prt+1Sg+s/he sleeps 
well → ”I slept well”). 
8 Example with maximal types of generation tags: Abl2+Fut+1Sg+2SgO+3PlIO+Prog+Rept+Neg+s/he 
transfer s.o. to s.b. → ”I am not going to be being able to transfer you to them again and again”. 
9 Features for Tense/Aspect and Auxiliary (i.e. simple modality, which consists of auxiliary verbs which cannot be further 
inflected) are mutually exclusive, whereas features for Tense/Aspect or Auxiliary can be combined with features for Modality 
(which are periphrastic constructions where the first element is treated as the finite verb that can be fully inflected). 
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Appendix D. A detailed overview of the tags and their exponents for the English noun 
phrase generator (optional argument types in parentheses).10 11 

Number/ Obviation 
 

(Diminutive) (Possession) 

Sg+: a(n) 
Pl+: -(e)s 
Obv+: an/other … -s  
 

Dim+: little 
 

Px1Sg+: my 
Px2Sg+: your 
Px3Sg+: his/her 
Px1Pl+: our 
Px12Pl+: your and our 
Px2Pl+: your 
PxPx3Pl+: their 
Px4Sg/Pl+: another’s/others’ 
PxX+: someone’s 

Locative/ Distributive 
Loc+: in 
Distr+: among 
 

 

  

 
10 The features used for English noun phrase generation are (currently) equivalent to the features available for English noun 
phrase analysis. Furthermore, the tags for English noun phrase analysis are similar to the ones for English noun phrase 
generation, with the analysis tags preceded by a plus sign (e.g. +Pl or +Px1Sg) and all the tags following the English core 
lexical content resulting from the analysis (e.g. ”my little black books” → black book +N+Dim+Px1Sg+Pl), whereas 
the generation tags are followed by a plus sign and all the tags precede the English core phrase frame that is to be 
manipulated (e.g. Pl+Dim+Px1Sg+ a black book → ”my little black books”). Importantly, in noun phrase generation 
a space character is currently required after the tags, before the phrase to be manipulated. Note also that the order of tags 
differs between noun phrase analysis, i.e. (Diminutive) (Possession) Number/Locative,  and noun phrase 
generation, i.e. Number/Locative (Diminutive) (Possession). 
11 Examples with maximal combinations of generation tags: Obv+Dim+Px12Pl+ a black book → “our and our other 
little black book(s)”; Loc+Dim+Px4Sg/Pl+ a black book → “in another's/others' little black book”. 
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Appendix E. Screenshots of itwêwina, with the English phrase analysis and generation 
integrated, exemplified with searches with “I helped you” and its approximate Cree match 
kikîwîcihitin (with inflectional morpheme boundaries marked with middle-dots). 
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Abstract

Morphological Segmentation is a major task
in Indigenous language documentation. In this
paper we introduce a novel statistical algorithm
called Morphemo to split words into their con-
stituent morphemes, and we compare its perfor-
mance to five other methods for morphological
segmentation, including large language models
(LLMs). We use these tools to analyze Bribri,
an under-resourced Indigenous language from
Costa Rica. Morphemo has better performance
than the LLM when splitting multimorphemic
words, mainly because the LLMs are more con-
servative tend to leave words under-analyzed,
which gives them an advantage with monomor-
phemic words. In future work we will use these
tools to tag Bribri language corpora, which
currently lack morphological segmentation. A
Python implementation of Morphemo is pub-
licly available.

Resumen

Segmentación morfológica del Bribri con
métodos no-supervisados, supervisados y
basados en modelos grandes del lenguaje.
La segmentación morfológica es una tarea im-
portante en la documentación de lenguas indí-
genas. En este artículo presentamos un nuevo
algoritmo estadístico llamado Morphemo, que
divide las palabras en sus respectivos morfemas.
Además, comparamos el desempeño de Mor-
femo con cinco otro algoritmos, incluyendo
modelos grande de lenguaje (LLM). Usamos
estas herramientas para analizar el bribri, una
lengua indígenas de bajos recursos de Costa
Rica. Morphemo tiene mejor rendimiento al
dividir palabras multimorfémicas, sobretodo
porque los LLMs es más conservadores y dejan
más palabras sin analizar, lo que a su vez les
da una ventaja al lidiar con palabras monomor-
fémicas. En el futuro usaremos estas herramien-
tas para anotar corpus de lengua bribri, que en
este momento carecen de segmentación mor-
fológica. Finalmente, liberamos una versión en
Python de Morfemo, disponible públicamente.

1 Introduction

Natural Language Processing can be a useful tool
to accelerate the documentation of Indigenous lan-
guages. Numerous ‘bottlenecks’ make the work
considerably more time-consuming than for ma-
jority languages (Seifart et al., 2018), and easing
these bottlenecks can free up the time of linguists,
language teachers and activists to perform their
time-critical work towards language teaching, revi-
talization and reclamation.

In this paper we have two goals. First, we will
study how a probability-based statistical algorithm
can provide good performance in the task of mor-
phological segmentation. Second, we will also
study how Large Language Models (LLMs) per-
form this task, and their advantages and disadvan-
tages compared to statistical methods.

1.1 Morphological Segmentation in
Indigenous Languages

Morphological segmentation is a key aspect of
linguistic documentation, and the highest-priority
task when performing interlinearized annotation of
minority-language data (Moeller, 2025). In Indige-
nous languages this task is particularly complicated
because the paucity of data makes it difficult to
train automated segmentation tools.

Much past work on low-resource languages has
taken an unsupervised learning approach (Ham-
marström and Borin, 2011; Kurimo et al., 2010;
Khandagale et al., 2022; Eskander et al., 2020).
This is often preferred or, in some cases, required
because it eschews the need for a labeled corpus
of data for training, which is particularly difficult
to develop for low-resource languages. Mott et al.
(2020) examined the effectiveness of existing un-
supervised models (models that only train on unla-
beled data) cross a range of low-resource languages
with 2000 tokens. They found average F1 scores
were generally between 0.2 to 0.6, with a mean be-
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low 0.5. However, even this limited success must
be tempered by the reality that much of these sys-
tems’ accuracy derives from their correct prediction
of monomorphemic words.1 Put another way, the
system is good at analyzing words without a mor-
pheme boundary, in which the system is correct
simply by not segmenting. When performing mor-
phological segmentation, it is imperative that a tool
can actually segment a multimorphemic word into
its constituent morphemes.

A semi-supervised model trains on both labeled
and unlabeled data. This can allow a small set of
annotated data to supplement a significantly larger
collection of unannotated data. Comprising on the
limits of data collection and the need for effec-
tive segmentation, recent scholarship has focused
on semi-supervised systems (Kohonen et al., 2010;
Ruokolainen et al., 2016). For instance, for English,
Finnish, and Turkish, a semi-supervised approach
achieved F1 scores of 0.8 to 0.9, despite the anno-
tated data comprising less than 1% of the overall
dataset (Ruokolainen et al., 2014). Although these
datasets have hundreds of thousands of unlabeled
tokens, significantly greater than the Bribri corpus
that will be used here (see section 2.3 for details),
they demonstrate effectiveness with approximately
1000 labeled tokens.

There is some recent work on using LLMs for
morphological segmentation (Weissweiler et al.,
2023; Ács, 2025), and for segmentation of low-
resource languages in particular. For example,
ChatGPT-4o (Hurst et al., 2024) has shown mor-
pheme segmentation accuracies between 13% and
50% for languages like Lezgi and Uspanteko (Ginn
et al., 2024).

1.2 Bribri Morphology and NLP
Bribri is a Chibchan language spoken in Southern
Costa Rica and northern Panama. It has a estimated
total of 7000 speakers (INEC, 2011), and it is classi-
fied as a vulnerable language (Sánchez Avendaño,
2013), given that many children in the commu-
nity no longer speak it. The language has a rela-
tively high number of written resources compared
to other languages in its family. It has a gram-
mar (Jara, 2018), an online and a print dictionary
(Margery, 2005; Krohn, 2021), two textbooks (Con-

1Monomorphemic words are words with a single identifi-
able meaningful unit, for example, ‘run’ in English. Contrast
this with multimorphemic words, where multiple meaningful
units can be identified, such as ‘running’ or ‘runner’ which
are each composed of ‘run’ and some other component (‘-ing’
or ‘-er’) that indicates tense or a person who does the action.

stenla et al., 2004; Jara Murillo and García Segura,
2013), an oral corpus (Flores-Solórzano, 2017a,b),
and several schoolbooks (Sánchez Avendaño et al.,
2021a,b) and books with traditional stories trans-
lated into Spanish and English (García Segura,
2016; Jara Murillo and García Segura, 2022).

Bribri is a morphologically inflectional language.
Table 1 has examples of nominal, verbal and adjec-
tival suffixes. The first word, alìnuk ‘to be cooked’,
has suffixes for the middle voice and the infinitive.
The second word is the pronoun ie’pa ‘they’, with
the plural suffix -pa attached to the 3rd person sin-
gular pronoun. The third word, bua’ë ‘very good’,
is an adjective with an intensifier suffix.

Word Morphemes Meaning
1. alìnuk al+ìn+uk ‘to be cooked’
2. ie’pa ie’+pa ‘they’
3. bua’ë bua’+ë ‘very good’

Table 1: Examples of Bribri inflectional suffixes for
verbs, nouns and adjectives

In addition to inflectional suffixes, Bribri has
numerous derivational suffixes (Jara, 2018). Table
2 shows examples of derivation for nouns, verbs
and adjectives. The first two are nouns: bríbriwak
‘Bribri (person)’ has the suffix {-wak} ‘person’;
the second word, kalö̀io ‘pants’ has the noun kalö̀
‘foot, leg’ and the suffix {-io} ‘wearable (thing)’.
Words #3 and #4 are verbs. The word shkö̀kka
‘to climb’ is composed of the verb shkö̀k ‘to walk’
and the directional suffix {-ka}, ‘upwards’, so this
word literally means ‘to up-walk’. Verb #4, kùkwa
‘to find’, is made up of the verb kùk ‘to pull’ and
the directional suffix {-wa} ‘inwards’, and so it
literally means ‘to in-pull’. Finally, the fifth word
is the adjective dawèie ‘sick’, made up of the noun
dawè ‘sickness’ plus a suffix that forms adjectives.

Word Morphemes Meaning
1. bríbriwak bríbri+wak ‘Bribri person’
2. kalö̀io kalö̀+io ‘pants’
3. shkö̀kka shk+ö̀k+ka ‘to climb’
4. kùkwa k+ùk+wa ‘to find’
5. dawèie dawè+ie ‘sick’

Table 2: Examples of Bribri derivational suffixes for
nouns, verbs and adjectives

Finally, Bribri exhibits compounding and redu-
plication as morphological processes. Table 3
shows examples of such words. The word kalö̀tök
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is a compound of the word kalö̀ ‘foot, leg’ and the
verb tö́k ‘to hit’. The second word, tsìrtsir is the
plural form of the adjective ‘small’, and it is a par-
tial reduplication of tsìr ‘small’ (notice how the
second part has a different tone). The third word,
máshmash ‘orange (color)’, is a partial reduplica-
tion of the adjective màtk ‘red’.

Word Morphemes Meaning
1. kalö̀tök kalö̀+t+ök ‘to dance’
2. tsìrtsir tsìr+tsir ‘small’ (pl.)
3. máshmash másh+mash ‘orange (color)’

Table 3: Examples of Bribri compounding and partial
reduplication

There has been work on Bribri NLP, including
speech recognition for Bribri and its sister language
Cabécar (Coto-Solano, 2021; Coto-Solano et al.,
2024), and forced alignment for Bribri, Cabécar,
and Malecu, another Chibchan language (Coto-
Solano and Solórzano, 2016; Solórzano and Coto-
Solano, 2017; Coto-Solano et al., 2022). There has
also been work on machine translation (Feldman
and Coto-Solano, 2020; Kann et al., 2022; Jones
et al., 2023; Ebrahimi et al., 2024) and the study
of semantics through embeddings (Coto-Solano,
2022). There are also tools to extend the usage of
the language, such as keyboards (Solórzano, 2010)
and digital dictionaries (Krohn, 2020).

Additionally, there has been previous NLP work
on Bribri morphology. Chiruzzo et al. (2024)
worked on morphological prediction for the cre-
ation of language learning tools, and Karson
and Coto-Solano (2024) worked with morpholog-
ical tagging using UFEATS (de Marneffe et al.,
2021), reaching a precision of 80%. Flores-
Solórzano (2019) used an FST to annotate a
corpus (Flores-Solórzano, 2017a). For example,
the word mèkeka ‘to put (something) in (some-
thing in an upward direction)’ produces the output
ame+V+Imp1Tran+Imp2+Dir[ascenso]. Here we
will focus on segmentation per se, so that we can
get an output form like m+è+ke+ka, where the root,
the thematic vowel, the imperfect aspect and the
directionals are separated automatically.

2 Methodology

In order to test the segmentation of Bribri mor-
phemes, we will compare the performance of our
novel, statistical algorithm (Morphemo) to an un-
supervised algorithm (BPE), a semi-supervised al-

gorithm (Morfessor), and to direct prompting from
a commercial LLM algorithm (Claude 3.7 Sonnet).
We will train and test the algorithms using two
pre-existing corpora for Bribri.

2.1 Morphological Segmentation Algorithms

We chose byte-pair encoding, or BPE (Gage, 1994)
as a baseline due to its completely unsupervised
nature. We used a sample of unlabeled Bribri text
to train the BPE tokens (more information about
this data in section 2.3). We compare this to the
semi-supervised method used in Morfessor (Virpi-
oja et al., 2013), where pre-labeled Bribri words
were used for the training. For example, Morfessor
saw shk+èn+a for shkèna ‘hello’.

We then selected an LLM-based algorithm to
compare these statistical methods with state-of-the-
art deep learning techniques. The selection of a
specific model was not straightforward, and it will
be described further in section 4.3 below, but, after
a preliminary exploration of the performance of
several models, Claude 3.7 Sonnet (Feb 19, 2025)
was selected (Anthropic, 2025).

We used three types of LLM evaluation. (1) In
the Zero shot condition, we provided the LLM with
a file that contained the list of words to split (the
test set), and a prompt asking the system to split
the words into morphemes (see Appendix A for the
prompts). (2) In the Few shot condition, we up-
loaded three files: (a) the unlabeled test set, which
contains a list of words to split, (b) the unlabeled
training set, a longer list of words, without any
morpheme boundaries (e.g. shkèna), and (c) the la-
beled training set, where the words do have marked
boundaries (e.g. shk+èn+a). We upload this data
to provide a suggestion for how to label the words
with their morpheme boundaries. Along with this
upload, we provided a prompt for the system to
try to learn from the training sets and apply that
to the test set. (3) Finally, in the Few shot plus
unlabeled condition, we uploaded the same three
files, plus a fourth file with unlabeled, monolin-
gual Bribri text from the AmericasNLP collection
(Ebrahimi et al., 2022), with a total of 20 thousand
additional words. 20 thousand was the maximum
size allowed by the context window. We hypothe-
size that the added text will allow the LLM to gain
further understanding of the patterns in Bribri text
and therefore increase its performance.
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2.2 Morphemo Algorithm

We will compare the algorithms above to our novel
algorithm we are calling Morphemo.2 This semi-
supervised, N-gram-based algorithm is geared to-
wards morphological segmentation in low-resource
settings. Using Bayesian inferences, it examines
each point in the word between two characters.
Let’s consider a two character sequence with the
characters NM. Considering the N-grams both be-
fore N and after M at that point, as well as the
current number of assigned morpheme boundaries
nb at the time of calculation, an estimate of the
likelihood of a non-morpheme boundary is:

fp(NM) = P (M |N) ∗ P (N |M) ∗ P (nb) (1)

This is to say, the probability of a non-boundary
is the probability of M following N, multiplied by
the probability of N preceding M, multiplied by the
probability that a word of the same length as our
word will have nb boundaries.

Then, using a slightly altered formula to consider
the likelihood of a morpheme boundary b given N
and M, the boundary likelihood is:

fm(NM) = P (b|N) ∗ P (b|M) ∗ P (nb + 1) (2)

This is to say, the probability of a boundary be-
tween N and M is the probability of a boundary
after N, multiplied by the probability of a boundary
before M, multiplied by the probability that, given
the length of the word, it would have nb+1 bound-
aries. Once these probabilities are calculated, the
system can decide to apply a boundary or not.

This dual forward and backward-facing N-gram
approach is designed to capture the intuition that a)
certain n-grams may disproportionately precede a
morpheme boundary and b) certain n-grams may
disproportionately follow a morpheme boundary,
such as common verbal inflections or derivation
and compound suffixes. Lastly, the term at the
end of the model is meant to prevent the model
from both over- and under-segmentation, by prefer-
ring boundary insertion steps toward the average
number of morphemes for the given word’s length.
Admittedly, these are broad generalizations that
avoid many nuanced morphological features. But

2A Python implementation of Morphemo can
be downloaded at https://github.com/Celsian4/
bribri-morphology

they were chosen to give a system trained on little
data the best chance of succeeding.

The model trains on both the unlabeled and la-
beled data by building frequency tables. The un-
labeled data is used to note the occurrence of se-
quences of n-grams in the language as a whole (this
is used for the P(N|M) and P(M|N) in the above
functions). The labeled data is used to generate
a similar table but with an additional morpheme
boundary character, providing a more specific view
into the frequency of certain n-grams near mor-
pheme boundaries (this is used for the P(N|b) and
P(b|M) in the above functions). Additionally, the
labeled data is used to tabulate the number of mor-
phemes per word (for P(nb)).

2.3 Data and Evaluation

The algorithms described above were trained using
two types of data. First, the labeled data came from
a set of 1410 words in the Universal Dependen-
cies TreeBank in Coto-Solano et al. (2021). These
words (and the sentences they come from) were
chosen from the oral corpus (Flores-Solórzano,
2017a) and from the Constenla et al. (2004) and
Jara Murillo and García Segura (2013) textbooks,
and they represent a realistic distribution of Bribri
morphology.

The words were manually segmented into mor-
phemes by the authors of this paper, one of whom
is a linguist trained in the Bribri language. A ran-
dom 80% of the words were used for training (1128
words), and the remaining 20% were left aside for
testing (282 words). This procedure was repeated
20 times, so the results are reported for 20 itera-
tions of training/testing of each algorithm. In the
case of Morphemo and Claude 3.7, the labeled
data was supplemented with unlabeled, monolin-
gual Bribri data from the AmericasNLP machine
translation corpus (Ebrahimi et al., 2022). This was
85816 words for Morphemo, and only 20000 due
to prompt-size restrictions.

We chose F1, a combination of precision and
recall, to represent the results (β=1). For each of
the models we calculated three variations of F1: (1)
The F1 for all of the words, regardless of how many
morphemes they have, (2) the F1 but only for the
monomorphemic words in the gold-standard, and
(3) the F1 but only for the multimorphemic words
in the gold-standard. We do this to distinguish
the performance of the system when understanding
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more complex morphological configurations.3

In the case of BPE, we trained the model using
the 80% splits of the TreeBank’s unlabeled data,
and then evaluated it using the remaining 20% of
the TreeBank’s (manually labeled) data. For Mor-
fessor, we used the 80% of the labeled data, and the
remaining 20% for the evaluation. As for Claude
Zero Shot, we only used the 20% evaluation sets,
but in Claude Few Shot we gave the model both
the labeled training data and the evaluation set, and
in the Claude Few shot + Unlabeled, we loaded
labeled training data, the evaluation set, plus ad-
ditional unlabeled text. Finally, for Morfemo, we
gave it the unlabeled test sets.

3 Results

Table 4 shows the average F1 for the algorithms
studied, divided by their performance for all the
words in the test set, for its monomorphemic words,
and for its multimorphemic words. Figure 1 shows
the medians and the distribution of these results.

From the results in table 4, the BPE, Morfes-
sor and Zero Shot Claude 3.7 had similar results
for morphological segmentation (around F1=57).
Morphemo has higher performance (F1=68), but
the Few Shot Claude 3.7 results have the highest
accuracy (F1=78). This pattern also holds for the
monomorphemic words, but not so for the words
with more than one morpheme.

A statistical analysis was conducted to study the
differences between monomorphemic and the mul-
timorphemic words. A two-way ANOVA was used
to study the interaction of the algorithm (6 levels:
BPE, Morfessor, Claude 3.7 Zero Shot, Claude 3.7
Few Shot, Claude 3.7 Few Shot plus unlabeled data,
and Morpheme) and the type of metric (2 levels:
monomorphemic and multimorphemic words),4

with F1 as the independent variable. This ANOVA
revealed that there is a significant interaction be-
tween these variables (F(5,228)=46, p<0.00001).

A Bonferroni pairwise correction was used to
further study the relationship between Morphemo
and Claude 3.7. Claude 3.7 using Few Shot is
better than Morphemo when the segmentation of

3When calculating F1, morphemes were considered inde-
pendently, such that a non-exact match would not be counted
as entirely inaccurate. This was done to acknowledge that,
particularly in morphologically complex languages, all-or-
nothing performance is unrealistic to expect from morphologi-
cal segmentation programs. As such, partial accuracy is worth
recognizing.

4The "all words" condition was excluded to preserve the
assumption of independence in the ANOVA.

all of the words is considered (∆F1=10.3), and it
is significantly better for monomorphemic words
(∆F1=14.9, p<0.00005). This is also true of Claude
3.7 Few Shot when it gets the additional unlabeled
data; it is better for all words (∆F1=16.6) and it
is significantly better for monomorphemic words
(∆F1=16.6, p<0.00001).

The pattern, however, is very different for multi-
morphemic words. When we compare Morphemo
to the Few Shot model, the F1s for both methods
are virtually identical in how they tag multimor-
phemic words, and in fact the Morphemo’s aver-
age F1 is better (F1Morphemo=59.6, F1Claude=57.2).
There is no significant difference between their
means (p=0.99), but there is a considerable dif-
ference in variance. Claude has a standard devia-
tion more than three times larger (SDF1:Claude=15.0,
SDF1:Morphemo=4.2). When analyzing multimor-
phemic words, the results for the Claude F1 can
be as high as 94, but they can also be as low as
18. With Morphemo, on the other hand, the multi-
morphemic F1 ranges from 53 to 78. This implies
that the results from Morphemo are more reliable
overall.

Morphemo’s advantage when labeling multimor-
phemic words is even more pronounced when com-
pared to Claude 3.7 with Few Shot plus the un-
labeled data. Morphemo is significantly better
(∆F1=17.2, p<0.00001). Moreover, Claude shows
an even wider range of F1 values, from 15 to 72,
but with a median of 36 and an average of 42.

In summary, out of all the algorithms tested, Mor-
phemo has the best performance when analyzing
multimorphemic words.

4 Discussion

In the following section we will further analyze
the difference between the statistical method Mor-
phemo and the LLM-based morphological segmen-
tation, as well as explain how the LLM was chosen
for the comparisons in the paper.

4.1 Morphemo versus LLM-Methods
The most notable pattern in the results is that Mor-
phemo, which has a relatively fast training time
(1.42 seconds for loading and training on a sin-
gle CPU) and no neural language model, matched
and sometimes outperformed the LLM.5 This is a

5This model also has the advantage of using much less
processing time and power. The usage of excessive power by
artificial intelligence is a important concern for our field, given
that Indigenous communities and other minoritized communi-
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Figure 1: F1 for morphological segmentation of Bribri. (ZS: Zero Shot, FS: Few Shot, FS+Unlabeled: Few Shot
plus additional file with unlabeled monolingual Bribri text).

Algorithm All words Monomorphemic words Multimorphemic words
BPE 53.6 ± 2.0 53.1 ± 2.4 51.1 ± 3.6
Morfessor 58.6 ± 2.4 70.0 ± 2.6 28.9 ± 4.8
Claude 3.7 (Zero) 59.0 ± 10.9 73.0 ± 13.2 22.4 ± 7.7
Claude 3.7 (Few Shot) 78.0 ± 6.9 85.5 ± 8.8 57.2 ± 15.0
Claude 3.7 (FewShot+Unlabeled) 75.0 ± 6.0 87.5 ± 8.1 42.4 ± 17.0
Morphemo 67.7 ± 2.1 70.9 ± 3.1 59.6 ± 4.2

Table 4: F1 mean and standard deviation for morphological segmentation of Bribri using unsupervised, semi-
supervised and LLM-based algorithms

pattern that is still observable in low-resource lan-
guage work, lending support to the continued use
of statistical tools for the preparation of resources
in low-resource settings.

In order to further understand the prediction pat-
terns of Morphemo and Claude Few Shot, we ran-
domly selected five test sets to conduct a closer ex-
amination. In this sample, the gold-standard Bribri
words had 1.39 ± 0.03 morphemes. (The multi-
morphemic words had 2.36 ± 0.05 morphemes).
When we compare each gold-standard word with
their respective predictions from Morphemo and
Claude Few Shot, we can see that Morphemo pre-
dicted 0.33 ± 0.04 more morpheme boundaries
than it should have, whereas Claude predicted 0.11
± 0.15 fewer boundaries than it should. In other
words, Claude seems to be more conservative. This
helps it overall in this particular language because
most of the words are monomorphemic (206 ±
6) and only about 27% of each sample is multi-
morphemic (76 ± 6). We predict that, in settings
with morphologically richer languages, Morphemo

ties feel the impact of climate change first and more intensely
(Maldonado et al., 2016).

might outperform Claude overall.

4.2 Types of morphemes and performance

The next question might be: Does the type of mor-
pheme make a difference? Do the systems have
different behaviors depending on whether they are
analyzing roots or affixes, be they inflectional or
derivational?

First we’ll examine the affixes. For this calcula-
tion we will focus on a single, randomly selected
test set, and we’ll compare the predictions of Mor-
phemo and Claude 3.7 Few Shot. We selected a
single type of inflectional morpheme, the infinitive
marker (-ök, -uk) because of its relative frequency.
Out of 282 words in the test set, 14 had infinitive
markers. Both Morphemo and Claude predicted 13
out of 14 correctly.

We also studied a type of derivational morpheme,
the directionals, examples of which can be found
on items #3 and #4 of table 2 above. There were
6 directionals in the test set, and Claude had more
of them correct (5 out of 6). The difference be-
tween the two was the word mèkettsa ‘to give’, lit-
erally, “to put outwards". Here the correct division
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is m+è+ke+ttsa, with the directional suffix {-ttsa}
‘outwards’. Claude produced mè+ke+ttsa, where
the suffix is intact (but the root {m} is not separate
from the thematic vowel {–é}). On the other hand,
Morphemo got the root right, but mistakenly broke
up the suffix and produced m+è+ke+t+tsa. Table
5 below summarizes these numerical patterns here.
In short, Claude might have an advantage here be-
cause it was less aggressive in splitting uncommon
derivational suffixes apart.

Type of morpheme Morphemo Claude
Inflectional (n=14) 93% 93%
Derivational (n=6) 67% 83%

Table 5: Percentage of correctly segmented morphemes
for inflectional (infinitive) and derivational (directional)
suffixes in one randomly selected test set. “Claude" is
Claude 3.7 (Few Shot).

The sample only had two examples of reduplica-
tion. Both of them were oversplit by Morphemo,
and one of them was split correctly by Claude:
The word molótsmolóts ‘really tasty’ has the com-
plete reduplication molóts+molóts. Claude split
the word correctly, but Morphemo oversplit the
word and produced mol+ó+ts+mol+ó+ts.

The real difference between the two algorithms
can be seen when we analyze the segmentation
of the roots. We analyzed the first 120 words of
the randomly selected test set studied above and
counted the number of mono and multimorphemic
words that were analyzed correctly. Table 6 shows
a summary of these patterns.

Morphemes in word Morphemo Claude
One (n=78) 71% 89%
More than one (n=42) 83% 45%

Table 6: Percentage of roots in one randomly selected
test set that were predicted correctly, for monomor-
phemic words (just the root) and multimorphemic words
(the root plus affixes). “Claude" is Claude 3.7 (Few
Shot).

When faced with monomorphemic words,
Claude tends to be more conservative, and therefore
gets more of them correct (89%, versus 71% for
Morphemo). For example, the verb tso ‘to be, exist’
shouldn’t be split, but Morphemo tried splitting it
into ts+o. This could be because there are verbal
conjugations that are a suffix {–o}, and Morphemo
overgeneralized from that pattern.

On the other hand, when the algorithms try to

find the roots in multimorphemic words, the situ-
ation reverses. Claude only gets 45% of the roots
right, whereas Morphemo can accurately segment
83% of them. There are common verbs like dë’
‘to go’ and sú ‘to see’ whose root is only the first
consonant, and which should be split d+ë’ and s+ú.
This type of one-phoneme root occurs in other com-
mon words (e.g. (a)múk ‘to put’, tö́k ‘to hit’), and
Claude consistently fails at these kinds of verbal
splits. Claude also fails to separate common deriva-
tional suffixes. For example, the word dlásháwö
‘ginger (food)’ should be dláshá+wö. The second
morpheme means that something is spherical, and
it is a reduced, morphologized version of the free
root wö̀ ‘sphere’. Morphemo did get the separation
between the two correct.

4.3 Selection of LLM

One important aspect of this paper is that Claude
was chosen from a group of LLMs because it
provided the most consistent answers. The same
prompts and inputs were used with ChatGPT-4o
(Hurst et al., 2024), Llama 3.2 11b (Meta AI, 2024)
and Mistral 7b (Jiang et al., 2023). ChatGPT re-
fused to provide outputs for about half of the splits,
which is, after all, a desirable behavior for an LLM
dealing with an Indigenous language it doesn’t
know. However, sometimes it would provide ex-
planations for its (incorrect) splits, instead of just
providing a list, and this made the processing dif-
ficult. As for Mistral, it would attempt to offer
code to solve the problem instead of offering solu-
tions. Sometimes this code would be runnable, but
sometimes it contained hallucinations that made it
unworkable for the problem. The output of Llama
was perhaps the most difficult to process. It pro-
duced hallucinated lists, and then simply halluci-
nated additional text. Appendix B has examples of
LLM outputs for these systems.

4.4 Testing Morphemo for Extremely
Low-Resource Settings

Finally, we were interested in pushing the low-
resource conditions to understand how the algo-
rithm behaves with even less data, and how it came
to behave the way it does with Bribri. In order
to do this, we performed additional experiments
where we manipulated the size of the training data.
As described in section 2.2, Morphemo uses two
sources of data for training: (i) labeled data and (ii)
unlabeled monolingual data. Morphemo uses these
two sources to calculate its probabilities. Therefore,
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by changing how much training input there was,
we could study the algorithm’s reaction to lower
volumes of data.

In the first experiment, we changed the size of
the labeled training data. We started with the same
20 training/test sets from the previous experiment,
but, for each of them, we used 7 partitions contain-
ing {25, 50, 100, 200, 500, 1000, 1128} randomly
selected labeled words, chosen from the total of
1128 available labeled training examples. The un-
labeled data was either kept at its maximum (large)
size (85816 words), or artificially capped to be
small (100 words) in order to simulate extremely
low-resource conditions. The test set remained the
same for all of the evaluations (282 words). Figure
2 shows the results.

In the second experiment, we changed the size
of the unlabeled data. We split the unlabeled train-
ing set into 10 partitions of {50, 100, 200, 500,
1000, 5000, 10000, 20000, 50000, 85816} words,
chosen at random from the 85816 words available.
These were paired with the 20 labeled training sets,
which were either provided as they are (large, 1128
words), or capped (small, 100 words). These were
used to train Morphemo models and they were eval-
uated on the same 20 test sets (282 words). Figure
3 shows the results.

Table 7 summarizes the results. There are several
trends that can be observed. First, when there is lit-
tle labeled training data, adding unlabeled doesn’t
help. The blue line in figure 3 refers to labeled
training data kept extremely low. No matter how
much unlabeled data is added, the trend remains
the same. For example, when the labeled data is
nLabeled=100 and the unlabeled is nUnlabeled=50, the
F1 is 70.0. Adding more unlabeled data, up to
nUnlabeled=85816, only increases F1 up to 70.6.

A second trend is that adding labeled training
data improves the analysis of multimorphemic
words, regardless of how much unlabeled train-
ing data there is. In figure 3, when the labeled
data is nLabeled=25, the F1 for multimorphemic
words is very low, F1=9.9 for nUnlabeled=100, and
F1=10.4 for nUnlabeled=85816. As labeled data is
added the multimorphemic performance contin-
ues to improve, up to a maximum of F1=59.6 for
nLabeled=1128 and nUnlabeled=85816. The size of the
unlabeled dataset also makes a difference here. If
the unlabeled data is kept small (nUnlabeled=50), the
multimorphemic F1 is 11 points lower (F1=48.5).
The unlabeled data contributes to learning mor-
pheme splits, but most of the learning is coming

from the labeled data.
A third trend is that there is a trade-off between

the aggressiveness of the algorithm and its accu-
racy with monomorphemic words. In section 4.1
we hypothesized that Claude is more conservative
in splitting words. This is also the behavior we ob-
serve when Morpheme gets very little training data.
If both the labeled and unlabeled training data are
kept low, then the monomorphemic F1 is extremely
high (F1=91.5), but the multimorphemic F1 is ex-
tremely low (F1=9.9). This benefits the general
F1 because this Bribri sample is mostly composed
of monomorphemic words (73% versus 27% mul-
timorphemic). Adding data, up to the available
maximum of 1128/85816 labeled and unlabeled
words, reduces the F1 to 67.7, but this is because
Morphemo has improved almost 50 points when
splitting multimorphemic words (F1=59.6), while
only losing 20 points when analyzing monomor-
phemic words (F1=70.9). By adding data the sys-
tem has become more aggresive. This penalizes
the monomorphemic words, but greatly helps when
analyzing words with more than one morpheme.
The penalty for monomorphemic words becomes
larger when the unlabeled data is small; this type
of data seems to add as a “brake", helping Mor-
phemo understand the behavior of words with a
single morpheme.

In summary, we hypothesize that the algorithm’s
behavior might help analyze languages which tends
towards a higher number of morphemes per word,
and that higher volumes of labeled data would help
it understand those morpheme boundaries better
than current LLMs. We hope to continue testing
this hypothesis in future work.

5 Conclusions

In this paper we studied the problem of morpho-
logical segmentation in Bribri, a language from
Costa Rica. We focused on two specific meth-
ods. We looked at a statistical-based algorithm
called Morphemo, which has better performance
when splitting multimorphemic words. We also
studied how LLMs behave when tackling this prob-
lem. By using Claude 3.7, we provide evidence
that LLMs tend to be conservative with segmen-
tation, and even if they have problems extracting
roots in multimorphemic words, they have better
performance if the sample is mostly made up of
monomorphemic words. These two findings con-
tribute to our knowledge of how computer algo-
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Figure 2: Changes in Morphemo F1 as more labeled training data is added. The unlabeled training data is kept at
two sizes: The full available set (n=85816) and a small, randomly selected subset (n=100) to simulate extremely
low-resource conditions.

Figure 3: Changes in Morphemo F1 as more unlabeled training data is added. The labeled training data is kept at
two sizes: The full available set (n=1128) and a small, randomly selected subset (n=100) to simulate extremely
low-resource conditions. The x-axis is shown at a logarithmic scale.

Labeled words Unlabeled words All words Monomorphemic words Multimorphemic words
25 100 68.9 ± 2.4 91.5 ± 2.5 9.9 ± 4.6
25 85816 68.4 ± 2.8 90.6 ± 2.9 10.4 ± 8.5
100 50 70.0 ± 3.2 85.0 ± 2.8 30.8 ± 9.5
100 85816 70.6 ± 2.7 86.0 ± 3.7 30.4 ± 8.0
1128 50 47.6 ± 5.1 47.3 ± 7.6 48.5 ± 3.6
1128 100 52.9 ± 5.4 53.9 ± 8.3 50.4 ± 4.4
1128 85816 67.7 ± 2.1 70.9 ± 3.1 59.6 ± 4.2

Table 7: Morphemo F1 for different combinations of labeled and unlabeled training data sizes.

rithms interact with under-resourced languages and
their morphology.

Future work should include combining these
two approaches to improve the performance of the
segmentation task. If LLMs can be informed or
modified based on the typological properties of the
language, this could help boost their performance.
Conversely, the results here speak to the continued
relevance of statistical methods when working with
datasets from low-resource languages.

Limitations

The algorithms presented here were trained on writ-
ten Bribri, and can only accept text as their input.
Because most speakers do not write the language,
the system’s usability may be hindered for other
applications. Furthermore, the majority of data that
we wish to tag in Bribri is oral narratives. More-
over, Bribri lacks a single standardized orthography.
Instead, multiple Latin alphabet orthographies are
currently in use to represent the language, only one
of which is present within this dataset. To ensure
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wide applicability, an input system that can easily
accept and interpret all orthographies would need
to be included in a Bribri-directed version of the
Morphemo morphological analyzer in the future.

The Morphemo algorithm needs to be tested
against other algorithms and LLMs. One potential
avenue for NLP work in Bribri is to construct a rule-
based segmentation tool (e.g. Lucas et al. (2024)),
where the specific rules of Bribri morphemes could
be hard-coded programatically or induced using
machine-learning.

Finally, using an LLM might not be a possibility
with languages whose data should not be put in
writing, or used in a way that could be accessed
by software companies. In such a circumstance,
only locally-run software could be a possibility for
morphological segmentation.

Ethics Statement

The models studied in this paper were trained and
tested on openly available materials published by
Costa Rican institutions, such as the University of
Costa Rica, and in shared tasks such as Americ-
asNLP. These materials are available online, and
it can be presumed that they are already part of
the training sets of the LLMs included in this pa-
per. However, the issue of data sovereignty would
emerge if a community wanted to use a commercial
LLM to process restricted data. This would poten-
tially render the LLM-based methods unusable.

The models are being produced to aid in the de-
velopment of corpora, which will occur in collab-
oration with Bribri community members studying
the linguistics of their language.
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A LLM Prompts

The following are the prompts provided to Claude
3.7 for the inference of Bribri morphemes. The
first is the prompt for the zero shot processing:

I need your help to break
down words into morphemes. I
will give you a text file
with words; the text file
is “test-corpus-06.txt". Each
line has a word. I need
you to divide those words into
morphemes, separating them with
the symbol “+”. Please split
those words and print them
in a list, without any other
explanation text. They are from
a language called Bribri. Please
try your best, even if the task
is difficult and you’re not sure
about the answer.
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The second prompt is for the few shot processing,
where the system gets an unlabeled training test, its
corresponding labeled solution, and an unlabeled
test set.

I need your help to break
down words into morphemes. I
will give you a text file
with words; the text file
is "test-corpus-02.txt". Each
line has a word. I need
you to divide those words into
morphemes, separating them with
the symbol “+”. Please split
those words and print them
in a list, without any other
explanation text. I will also
give you an example of the input
and the output. The input is in
"train-corpus-02.txt", and the
output is in "train-gold-02.txt".

The third prompt is for the few shot plus unla-
beled condition. Here the LLM gets the training
and test files, and an additional, unlabeled monolin-
gual Bribri set (20 thousand words) so that it can
infer more data about the language.

I need your help to break
down words into morphemes. I
will give you a text file
with words; the text file
is "test-corpus-02.txt". Each
line has a word. I need
you to divide those words into
morphemes, separating them with
the symbol “+”. Please split
those words and print them
in a list, without any other
explanation text. I will also
give you an example of the input
and the output. The input is in
"train-corpus-02.txt", and the
output is in "train-gold-02.txt".
You can also use the data in
"bribri-unmarked-corpus.txt" to
support your hypotheses. I
don’t need code. I just
need you to split the words
in "test-corpus-02.txt" into
morphemes, with the support of
the other files.

B LLM Output Examples

Figures 4 and 5 show output examples from Llama
3.2 11b and Mistral 7b.
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Figure 4: Sample Llama output

Figure 5: Sample Mistral output
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Abstract
This paper presents the winning submission
of the RaaVa team to the AmericasNLP 2025
Shared Task 3 on Automatic Evaluation Met-
rics for Machine Translation (MT) into Indige-
nous Languages of America, where our system
ranked first overall based on average Pearson
correlation with the human annotations. We in-
troduce Feature-Union Scorer (FUSE) for Eval-
uation, FUSE integrates Ridge regression and
Gradient Boosting to model translation quality.
In addition to FUSE, we explore five alternative
approaches leveraging different combinations
of linguistic similarity features and learning
paradigms. FUSE Score highlights the effec-
tiveness of combining lexical, phonetic, seman-
tic, and fuzzy token similarity with learning-
based modeling to improve MT evaluation
for morphologically rich and low-resource lan-
guages. MT into Indigenous languages poses
unique challenges due to polysynthesis, com-
plex morphology, and non-standardized orthog-
raphy. Conventional automatic metrics such
as BLEU, TER, and ChrF often fail to cap-
ture deeper aspects like semantic adequacy and
fluency. Our proposed framework, formerly
referred to as FUSE, incorporates multilingual
sentence embeddings and phonological encod-
ings to better align with human evaluation. We
train supervised models on human-annotated
development sets and evaluate held-out test
data. Results show that FUSE consistently
achieves higher Pearson and Spearman correla-
tions with human judgments, offering a robust
and linguistically informed solution for MT
evaluation in low-resource settings.

1 Introduction
MT has made significant advancements in recent years,
largely driven by neural machine translation (NMT)
models (Lyu et al., 2024). However, evaluating the qual-
ity of translations remains a major challenge, particu-
larly for low-resource Indigenous languages.Traditional
MT evaluation metrics such as Bilingual Evaluation
Understudy (BLEU) (Papineni et al., 2002a) Transla-
tion Edit Rate (TER) (Snover et al.) , and Character

*Work does not relate to position at LinkedIn.

n-gram F-score (ChrF) (Popović) rely on surface-level
token overlap, which fails to capture semantic correct-
ness, fluency, and linguistic structure—critical factors
in evaluating translations for morphologically rich and
polysynthetic languages. Indigenous languages, such
as Bribri, Guarani, and Nahuatl, exhibit unique linguis-
tic characteristics that pose challenges for conventional
MT evaluation (Chen et al., 2023). These languages
often lack standardized orthography, leading to multiple
valid translations (Aepli et al., 2023). They feature
lexical complexity, including polysynthesis and noun in-
corporation, which makes word segmentation and align-
ment with reference translations difficult (Tyers and
Mishchenkova, 2020). They also rely on phonetic vari-
ations, making strict token-level matching unreliable.
Due to these factors, existing evaluation metrics strug-
gle to provide reliable assessments of translation quality
for Indigenous languages. While metrics such as BLEU
and ChrF focus on exact token matches, they fail to
account for phonetic and semantic similarities in mor-
phologically rich languages.
Recent learning-based MT evaluation methods have
demonstrated improved correlation with human judg-
ments by incorporating semantic information from neu-
ral embeddings (Mathur et al., 2019), (Gumma et al.,
2025). However, these methods are not specifically
designed for Indigenous languages, which require addi-
tional phonetic and structural considerations.

Our approaches integrate multiple linguistic and
computational features, including lexical similarity us-
ing Levenshtein distance (Levenshtein, 1966), pho-
netic similarity using Metaphone (Philips, 1990) and
Soundex encoding (Russell, 1918), semantic similarity
using sentence embeddings from LaBSE (Feng et al.,
2022), and fuzzy token similarity to handle morpholog-
ical variations (Kondrak, 2005). We train a linear re-
gression model on human-annotated translation scores,
optimizing feature weights to maximize alignment with
human evaluation (Callison-Burch et al., 2006). Our
results demonstrate that FUSE achieves higher Pearson
and Spearman correlation (Spearman, 1904) with hu-
man evaluations compared to traditional MT metrics.
In this paper, we propose FUSE, a machine learning-
based MT evaluation metric tailored for American In-
digenous languages. The complete architecture of FUSE
is illustrated in Figure 1, showcasing its integration of
lexical, phonetic, semantic, and fuzzy similarity fea-
tures with hybrid regression modeling. It incorporates

77



phonetic similarity features, addressing a critical gap
in existing evaluation metrics. The model optimizes
feature weighting using regression models trained on
human scores, leading to improved correlation with
human evaluation. We validate our metric on Spanish-
to-Indigenous language translations, demonstrating su-
perior performance over BLEU, TER, and ChrF.

2 Related Work

2.1 Rule-Based Metrics

Traditional rule-based evaluation metrics such as BLEU,
TER, and ChrF (Popović, 2015) rely on surface-level
matching between candidate and reference translations.
BLEU computes n-gram precision, but often fails to
capture semantic adequacy or fluency, especially for
morphologically rich languages (Papineni et al., 2002b).
TER introduces edit-based alignment with support for
word reordering but lacks deep linguistic modeling
(Snover et al., 2006). ChrF improves robustness through
character-level n-gram matching, making it better suited
for languages with orthographic variation, though it
still struggles with paraphrastic and semantic variation
(Popović).

2.2 Embedding-Based Metrics

Embedding-based metrics use contextual word or sen-
tence representations to capture deeper semantic infor-
mation. BLEURT (Sellam et al., 2020) fine-tunes pre-
trained BERT models on human-annotated MT qual-
ity data to produce sentence-level scores. COMET
(Rei et al., 2020) builds on multilingual transformers
like XLM-R (Conneau et al., 2020) and incorporates
both source and reference embeddings. TransQuest
(Ranasinghe et al., 2020) uses Siamese BERT (Reimers
and Gurevych, 2019a) networks to predict quality by
comparing sentence pairs. These models outperform
rule-based metrics in high-resource settings but remain
data-hungry and often overlook features critical to low-
resource or orthographically diverse languages.

2.3 Learning-Based Metrics

Learning-based metrics leverage supervised training on
human-annotated translation quality data. Many of these
metrics also incorporate contextual embeddings as input
features. For example, COMET (Rei et al., 2020) uses
multilingual transformer embeddings (XLM-R) (Con-
neau et al., 2020)trained on direct assessment scores to
predict translation quality. Similarly, BLEURT (Sel-
lam et al., 2020) fine-tunes BERT for MT evaluation
tasks, while TransQuest (Ranasinghe et al., 2020) uses
a Siamese architecture to model sentence-level similar-
ity. These models achieve high correlation with human
judgments in high-resource settings but often underper-
form in low-resource conditions due to their reliance on
large training data and lack of sensitivity to phonetic or
orthographic variation.

2.4 Quality Estimation (Reference-Free Metrics)
Quality Estimation (QE) aims to assess translation qual-
ity without relying on reference translations. Systems
like QuEst++ (Specia et al.) and recent neural QE mod-
els predict quality directly from source and hypothesis
pairs. These models are especially useful in scenarios
where references are unavailable or infeasible to gen-
erate. However, QE models also require substantial
training data and have limited evaluation in the context
of morphologically rich or under-resourced languages,
such as those considered in this work (Sindhujan et al.,
2025).

3 Datasets
For our experiments, we utilize the datasets provided
by the AmericasNLP 2025 Shared Task 3 on Machine
Translation Metrics. This shared task focuses on the
evaluation of automatic metrics for translations from
Spanish into three Indigenous languages: Guarani,
Bribri, and Nahuatl. Each dataset is split into train-
ing and test subsets, where the training data is used to
build and tune our models, and the test set is used for
final evaluation. The specific sizes of the training and
test sets for each language are detailed in Table table 1

Table 1: Data information.

Dev Set (#samples) Test Set (#samples)

Guarani Dataset 100 200
Bribri Dataset 100 200
Nahuatl Dataset 100 200

4 Proposed Methods
To address the limitations of conventional MT evalu-
ation metrics for Indigenous languages, we propose a
series of feature-rich and learning-based methods that
incorporate phonetic, lexical, and semantic similarity.
Below, we detail six distinct approaches explored in our
study, each building on progressively more sophisticated
techniques.

4.1 Approach 1: Lexical and Phonetic Baseline
This baseline combines character-level lexical overlap
using Jaccard similarity with phonetic similarity de-
rived from Metaphone encodings. The Jaccard similar-
ity operates on character trigrams, while the phonetic
component captures pronunciation-level resemblance.
The final score is a weighted sum (70% lexical, 30%
phonetic), scaled to match BLEU-style ranges. While
simple, this baseline is robust against minor spelling
variations and phonetic drift. The final score is com-
puted using the following equation:

Score = 100× (α · J(r, h) + β · P (r, h))

where J(r, h) is the character trigram Jaccard simi-
larity, P (r, h) is the phonetic similarity based on Meta-
phone encodings, and α = 0.7, β = 0.3 are fixed
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Reference

Hypothesis

Lexical Similarity
(Damerau-Levenshtein)

Phonetic Similarity
(Metaphone + Soundex)

Semantic Similarity (LaBSE
Embeddings)

Fuzzy Similarity
(Token Sort Ratio)

Min-Max
Scaler

Ridge Regression
(For Semantics)

Random Forest
(Fluency)

Final Score
Score = 0.6 × Semantics + 0.4 ×

Fluency

Pearson and Spearman
Correlation

Figure 1: FUSE architecture combining linguistic features with hybrid regression for MT evaluation.

weights. where r and h denote the reference and hy-
pothesis translations respectively, α = 0.7, β = 0.3

4.2 Approach 2: Feature-Enriched Similarity
(DistilUSE)

In this approach, we compute a similarity score that
integrates three core dimensions: lexical, phonetic, and
semantic similarity. Lexical similarity is captured us-
ing normalized Damerau-Levenshtein distance, which
quantifies surface-level edits between the reference (r)
and hypothesis (h). Phonetic similarity is derived from
Double Metaphone encodings (Yacob, 2004), compar-
ing pronunciation-alike sequences. Finally, semantic
similarity is computed using cosine similarity between
sentence-level embeddings from the multilingual model
(Reimers and Gurevych, 2019b). This method provides
a more robust, language-agnostic similarity measure by
incorporating both surface-level and deep semantic fea-
tures. The final score is computed as a weighted sum of
the three components:

Score = 100× (α ·L(r, h) + β ·P (r, h) + γ · S(r, h))

where L(r, h) is the normalized Damerau-
Levenshtein similarity, P (r, h) is phonetic similarity
based on Metaphone, and S(r, h) is semantic similarity
based on DistilUSE sentence embeddings. The weights
are set as α = 0.5, β = 0.2, and γ = 0.3.

4.3 Approach 3: Weighted Similarity Aggregation
In this approach, we combine four different similarity
metrics to evaluate the similarity between a reference
string r and a hypothesis string h. First, we compute the
Levenshtein Similarity, which measures edit distance
at the character level using the Damerau–Levenshtein
algorithm. Next, we compute Phonetic Similarity by
concatenating the Double Metaphone and Soundex en-
codings of each string, and then measuring their se-
quence matching ratio. We also incorporate Fuzzy Sim-
ilarity, which leverages token sorting and matching to
handle different word orders and morphological varia-
tions. Finally, we capture deeper Semantic Similarity

by encoding each string into a high-dimensional embed-
ding using a pre-trained SentenceTransformer model
and then computing the cosine similarity of these em-
beddings. Once these four metrics are obtained, we
combine them in a weighted manner. Specifically, the
Levenshtein, phonetic, semantic, and fuzzy similarities
are each multiplied by a respective weight, and then
summed. Finally, the result is multiplied by 100 to yield
a score in a BLEU-like (0–100) range. These metrics
are then combined with weights α, β, γ, δ, and scaled
to produce a final score in a BLEU-like range:

Score(r, h) = 100× (α · L(r, h) + β · P (r, h)

+ γ · S(r, h) + δ · F (r, h)),

where L(r, h) is the Levenshtein similarity, P (r, h) is
the phonetic similarity, S(r, h) is the semantic similarity,
and F (r, h) is the fuzzy token similarity. The default
weights are α = 0.45, β = 0.15, γ = 0.30, and δ =
0.10.

4.4 Approach 4: Data-Driven Weighted Similarity
via Regression

This approach employs a data-driven method to com-
bine multiple similarity metrics by learning optimal
weights through linear regression (Kuchibhotla et al.,
2019). For each pair of reference and hypothesis
strings (r, h), we extract four similarity features: lex-
ical similarity L(r, h) based on normalized Damerau–
Levenshtein distance, phonetic similarity P (r, h) com-
puted using a combination of Metaphone and Soundex
encodings, semantic similarity S(r, h) derived from co-
sine similarity of LaBSE sentence embeddings (Chi-
moto and Bassett, 2022), and fuzzy token similar-
ity F (r, h) based on the normalized token sort ratio.
These four features form the input vector X(r, h) =
[L(r, h), P (r, h), S(r, h), F (r, h)]. Two separate linear
regression models are trained using human-annotated
semantic and fluency scores as targets. The first model
learns weights wsem to predict semantic quality, while
the second learns weights wflu for fluency. The final
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similarity score is computed by taking the average of
the two predicted scores:

Score(r, h) = 0.5 · w⊤
semX(r, h) + 0.5 · w⊤

fluX(r, h).

In this equation, X(r, h) is a four-dimensional feature
vector containing the similarity scores for a given ref-
erence–hypothesis pair. The vector wsem contains the
regression coefficients learned to best align with human
semantic scores, while wflu captures the weights that
best reflect fluency judgments. The dot product w⊤X
computes a weighted combination of the similarity fea-
tures, and averaging the two predictions ensures that
both semantic adequacy and fluency are equally em-
phasized in the final score. This adaptive formulation
allows the metric to closely approximate human evalua-
tion criteria across multiple languages and translation
conditions. This regression-based formulation enables
the metric to adaptively reflect human preferences for
both meaning preservation and linguistic quality across
languages, rather than relying on manually tuned fixed
weights.

4.5 Approach 5: Hybrid Regression with Ridge
and Random Forest

In this approach, we have extended the data-driven
framework of earlier methods by incorporating a hy-
brid regression strategy. It combines both linear
and non-linear modeling techniques to predict human-
annotated semantic and fluency scores. For each refer-
ence–hypothesis pair (r, h), we extract a feature vector
X(r, h) = [L(r, h), P (r, h), S(r, h), F (r, h)], where L
is the normalized Damerau–Levenshtein similarity, P is
the phonetic similarity using Metaphone and Soundex,
S is the semantic similarity from LaBSE embeddings,
and F is the fuzzy token sort ratio.

To ensure training stability and improve performance,
the feature matrix is normalized using Min-Max scal-
ing. A Ridge regression model is then trained to predict
semantic scores, producing a weight vector wsem, while
a Random Forest regressor is trained in parallel to pre-
dict fluency scores non-linearly. The final metric score
is computed as a weighted average of the two model
outputs—60% from the Ridge regression prediction and
40% from the Random Forest prediction:

Score(r, h) = 0.6 · w⊤
semX̃(r, h) + 0.4 · RF(X̃(r, h)),

where X̃(r, h) is the normalized feature vector,
w⊤

semX̃(r, h) is the Ridge regression output for seman-
tic quality, and RF(X̃(r, h)) is the fluency score pre-
dicted by the Random Forest model. This hybrid model-
ing strategy leverages both the interpretability of linear
models and the flexibility of non-linear models to more
accurately capture human evaluation patterns.

4.6 Approach 6: Ensemble Regression with Ridge
and Gradient Boosting

In this approach, a hybrid ensemble method is em-
ployed by combining both linear and non-linear re-
gression models to more accurately reflect human
judgments of translation quality. For each refer-
ence–hypothesis pair (r, h), a feature vector X(r, h) =
[L(r, h), P (r, h), S(r, h), F (r, h)] is computed. Here,
L(r, h) is the normalized Damerau–Levenshtein simi-
larity capturing character-level overlap, P (r, h) is the
phonetic similarity derived from a combination of Meta-
phone and Soundex encodings, S(r, h) is the cosine
similarity between LaBSE sentence embeddings repre-
senting semantic similarity, and F (r, h) is a fuzzy token
similarity score based on the token sort ratio. All fea-
tures are normalized using Min-Max scaling for training
stability. A Ridge regression model is trained to pre-
dict semantic scores, producing a weight vector wsem.
In parallel, a Gradient Boosting Regressor (GBR) is
trained to model fluency scores non-linearly. The final
score is computed by taking a weighted ensemble of the
predictions: 70% from the Ridge-based semantic score
and 30% from the GBR-based fluency score:

Score(r, h) = 0.7 ·w⊤
semX̃(r, h)+0.3 ·GBR(X̃(r, h)),

where X̃(r, h) is the normalized feature vector. The
term w⊤

semX̃(r, h) denotes the semantic score predicted
by the Ridge model, and GBR(X̃(r, h)) is the fluency
score estimated by the Gradient Boosting Regressor.
This ensemble approach benefits from the interpretabil-
ity and generalization of Ridge regression while lever-
aging the non-linear modeling power of boosting tech-
niques, resulting in a metric that aligns more closely
with human judgments across diverse language pairs.

5 Implementation Details
We apply six different approaches to evaluate machine
translation quality across three Indigenous languages:
Bribri, Guarani, and Nahuatl. For each approach, ref-
erence and candidate translations are processed in both
development and test sets. The necessary similarity fea-
tures are computed, and scores are generated using the
corresponding approach-specific computation or model.
These scores are written to output files per language for
downstream evaluation.
Approach 1 is applied on both development and test
sets by generating similarity scores using a predefined
method and storing the outputs. Approach 2 uses
a slightly refined computation method and produces
scores for the same data splits. Approach 3 generates
feature vectors and computes similarity scores using
a static weighted formula. In Approach 4, similarity
features are extracted and a linear regression model is
trained on the development set using human-annotated
scores; the learned weights are then applied to both
development and test sets. In Approach 5, semantic
and fluency scores are predicted using separate models
trained on the normalized feature set, and their outputs
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are combined. Approach 6 follows a similar strategy but
uses a gradient boosting model in place of the fluency
regressor. In each case, output scores are saved for both
development and test sets.

5.1 Evaluation
Evaluation is conducted by computing Pearson and
Spearman correlation coefficients between the predicted
scores and human annotations for both semantic and
fluency dimensions. This is done separately for each
language and each approach. The results are compared
against standard metrics such as BLEU, ChrF, and TER.
Our findings show that learned and ensemble-based ap-
proaches consistently achieve higher correlation with
human judgments, particularly in low-resource settings
where traditional metrics are less reliable.

6 Results
On the development set, Approach 5 achieves the high-
est overall performance, attaining the best average
Spearman (0.8001) and Pearson (0.8455) correlations
across all three language pairs. This variant, visual-
ized in Figure fig. 1, employs a hybrid model combin-
ing Ridge regression (for semantic scoring) and Ran-
dom Forest regression (for fluency), benefiting from the
interpretability of linear models and the flexibility of
ensemble-based non-linear modeling. Notably, it out-
performs all other approaches on the Bribri language,
likely due to its ability to capture intricate phonetic
and lexical variability through feature learning. Ap-
proach 6, which replaces the fluency model with Gradi-
ent Boosting, performs comparably well—achieving top
correlations for Guarani (Pearson: 0.8667) and Nahu-
atl (Spearman: 0.8216, Pearson: 0.8331)—suggesting
that boosting methods are effective at modeling com-
plex relationships in morphologically rich languages. In
contrast, traditional feature-weighted approaches (Ap-
proaches 1–3) yield moderate results due to the absence
of supervised weight optimization or the exclusive use
of linear models, which limits their capacity to model
non-linear dependencies. These development results are
summarized in Table 2.
On the held-out test set, a similar trend is observed: Ap-
proach 5 (RaaVa 2) achieves the highest average correla-
tion with human annotations, ranking first in the shared
task. As shown in Table 3, this consistency across both
development and test sets highlights the generalization
capability of the ensemble architecture and validates the
inclusion of phonetic, semantic, lexical, and fuzzy fea-
tures. These findings further underscore the importance
of integrating diverse linguistic signals with adaptive
feature learning for MT evaluation in orthographically
variable and low-resource Indigenous languages.

7 Conclusion
In this work, we present FUSE, a supervised, feature-
based metric designed to evaluate MT into Indigenous
languages of the Americas, with a focus on Bribri,

Guarani, and Nahuatl. Recognizing the limitations of
traditional string-based metrics such as BLEU and ChrF
when applied to languages with high morphological
complexity and phonological variation, our approach
combines lexical, phonetic, semantic, and fuzzy match-
ing features. We further improve alignment with human
judgment by learning language-specific weights through
regression models trained on annotated semantic and
fluency scores. Our experiments demonstrate that FUSE
significantly outperforms standard metrics in terms of
correlation with human evaluation, particularly by cap-
turing phonetic and semantic nuances that conventional
metrics overlook. Moreover, our methodology general-
izes effectively to unseen test data, making it a viable
tool for automatic MT evaluation in low-resource and
linguistically diverse settings. We hope this work en-
courages further research into learning-based evaluation
metrics for underrepresented languages and highlights
the importance of linguistically informed design in mul-
tilingual NLP.
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Abstract

Quechua is a low-resource language spoken by
more than 7 million people in South America.
While Quechua is primarily an oral language,
several orthographic standards do exist. There
is no universally adopted writing standard for
Quechua, and variations exist across dialects
and regions; its current writing is based on
how it is uttered and how the sound is written.
Quechua is a family of languages with similar-
ities among the seven variants. The lack of a
parallel dataset has reduced the opportunities
for developing machine translation. We investi-
gated whether increasing the current Quechua
Parallel dataset with synthetic sentences and
using a pre-trained large language model im-
proves the performance of a Quechua machine
translation. A Large language model has been
used to generate synthetic sentences to extend
the current parallel dataset. We use the mt5
model to fine-tune it to develop a machine trans-
lation for Quechua to Spanish and vice versa.
Our survey identified the gaps in the state of
the art of Quechua machine translation, and our
BLEU/Chrf++ results show an improvement
over the state of the art.

1 Introduction

In this paper we present the submission of the Uni-
versidad Católica San Pablo to the Workshop on
Natural Language Processing (NLP) for Indige-
nous Languages of the Americas (AmericasNLP)
2025 Shared Task on machine translation systems
for Indigenous languages. We participated in two
directions: Spanish to Quechua and Quechua to
Spanish.

Quechua is an indigenous language from the
south of Peru that has expanded to Bolivia, Chile,
and Ecuador. It is an indigenous language fam-
ily with 7 variations and almost 8 to 10 million
speakers. Quechua is actively used in Peru and
Bolivia and is the official language of the Peruvian,
Bolivian, and Ecuadorian governments.

Quechua is a phonetic language where each let-
ter represents a specific sound. Quechua is well-
studied linguistically and does have defined gram-
matical rules. Each Quechua dialect has its own
semantics and vocabulary. Quechua is an aggluti-
native language where a prefix or suffix is added
to the root of a word to create a new word with a
different meaning. Quechua writing is as it sounds
and according to the utterance and listener.

A parallel dataset restricts machine translation
(MT). In the case of Quechua, the most used re-
source is the JW300 (Agić and Vulić, 2019), which
presents 2 Quechua variants: Ayacucho Quechua
(quy), Cuzco Quechua (quz), and the Bolivian va-
riety of Quechua (que). There are also scarce re-
sources with few parallel sentences.

There is a clear need to develop a machine trans-
lation and other tools to support Quechua speakers,
and current proposals do not achieve an appropri-
ate machine translation. The current research and
development of a Quechua MT lacks of an appro-
priate parallel dataset, making it more challenging
to develop an Quechua MT.

The AmericasNLP Shared Task on Machine
Translation into Indigenous Languages has been
promoting the research of 11 indigenous languages,
including Quechua, from 2021 to 2024. The Amer-
icasNLP Shared Task is a competition for research
on machine translation. The AmericasNLP Shared
Task is based mostly on the Quechua Ayacucho
(quy) variant. The Shared Task is framed on a
given dataset and open resources, including pre-
trained models. The focus has been to translate
Quechua–Spanish; to our knowledge, no other re-
search has translated English into Quechua and
Quechua into English.

The benchmark for a MT of Spanish (es) to
Quechua (quy) has been set on The AmericansNLP
2024 as follows: chrF of 28.81 developed by
Helsinki (Vázquez et al., 2021) and ChrF of 34.01
developed by Sheffield (Gow-Smith and Villegas,
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2023) for the test set and 28.78, 30.22 respectively
for the development set.

We aim to identify if extending the JW300
(Agić and Vulić, 2019) Parallel dataset by generat-
ing synthetic sentences in English would improve
the machine translation performance. In addition,
we want to identify if using a Large Language
Model would improve the machine translation per-
formance.

The following sections present a review of the
state of the art, our method, and our results and
Conclusion section.

2 Related Work

2.1 Early antecedents

Rios (2015) developed a hybrid machine translation
for Spanish to Cuzco Quechua. The MT is a clas-
sical rule-based supported by statistical modules.
Rios also developed a Quechua text normalisation
to rewrite Quechua texts in different orthographies
or dialects to standard orthography. Rios developed
a Quechua dependency treebank and spell checker.
Achieving a BLEU score of 57.98 for words and
63.13 for morphemes. Rios’ work includes the use
of verb morphology (Rios and Göhring, 2013) and
rule-based(Rios and Göhring, 2016).

The AVENUE project at the Language Technolo-
gies Institute (Llitjós, 2005) had developed an MT
which would be used to translate Quechua if a Par-
allel dataset exist. The AVENUE is a statistical
machine translation. One extension of AVENUE
had developed a Quechua Parallel dataset, which
reached 1,700 sentences. As a result, a Quechua
Morphology Analyzer to assist the MT was devel-
oped by Llitjós et al. (2005).

Vilca also developed a morphological analyzer
(Vilca et al., 2009), Huarcaya Taquiri (2020) devel-
oped the first transformer model for an MT Spanish
to Quechua Chanka with an outstanding BLEU
score of 39.5 using the JW300 Parallel dataset
(Agic and Vulic, 2019). Quechua Chanka is also
know as Quechua Ayacucho (quy).

2.2 Quechua’s resources

There are few resources of a Parallel dataset of
Quechua, and the following parallel dataset is well
established: the most used is the JW300 (Agic and
Vulic, 2019), which presents 3 Quechua variants:
Ayacucho Quechua (quy), Cuzco Quechua (quz).

The following parallel dataset are small repos-
itories in which the validity of the Quechua

variant is not clear: Sentences extracted from
the official dictionary of the Minister of Edu-
cation (MINEDU)(AmericasNLP, 2021), Huar-
caya(Moreno, 2021), Oncevay(Arturo and Diego,
2021), the Peruvian(Congreso de la República del
Perú, 2008) and Bolivian(Ministerio de la Presiden-
cia de Bolivia, 2012), constitutions (Tiedemann,
2012), Wikipedia crawls(Tiedemann, 2020) and
The JHU Bible parallel dataset (McCarthy et al.,
2020).

Well-know Quechua dictionaries, Quechua Span-
ish and Spanish Quechua produced by Calvo Pérez
(2007), Calvo works for the recognition and nor-
malization of the Quechua language and its harmo-
nization with the Spanish language. Calvos’s dic-
tionary holds 51233 Quechua and 74395 Spanish
words. The website Runasimi.de (2006) provides a
dictionary of several Quechua variants to German,
English, Spanish, Italian and French.

2.3 State of the art of Quechua machine
translation

Table 1 shows the best MT score for es->quy held
by BSC (Garcia Gilabert et al., 2024) in the Ameri-
casNLP 2024 Shared Task. For quy->es the score
is held by Chen and Fazio (2021) focusing on a
morphologically guided segmentation.

The state of the art concerning Quechua machine
translation has its own limitations. The pertinent
literature does not show a clear development and
presents outlier results that are not viable to achieve
like Huarcaya Taquiri (2020) reports a 39.50 BLEU
score in the JW300 dataset(Agić and Vulić, 2019).
Similarly, Ebrahimi and et. al. (2022) report 68.00
BLEU score for en -> quy using the same dataset.
There are two logical conclusions: the results are
inconclusive or use an incorrect interpretation of
the BLEU score.

The BSC team (Garcia Gilabert et al., 2024)
achieved the highest performance in the Quechua
language. Their approach focused on fine-tuning
the NLLB-200 for Quechua and Guarani, inparallel
datasetting data from multiple sources and applying
a rigorous cleaning process. They experimented
with two model sizes, 3.3B and 1.3B, finding that
the larger model only improved Quechua results.
In particular, fine-tuning NLLB 1.3B with LoRA
yielded a new benchmark score of 38.21 ChrF++
for Quechua, the highest among all submissions.

Other teams also contributed innovative ap-
proaches to the AmericasNLP 2024 Shared Task.
The NordicAlps team (Attieh et al., 2024), based on
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Author BLEU ChrF Direction of Translation
AmericasNLP 2024 BSC (Task) 4.85 38.21 es ->quy
AmericasNLP 2024 BSC (NLLB-3.3B) 4.07 36.39 es ->quy
AmericasNLP 2024 Baseline dev. - 30.22 es ->quy
AmericasNLP 2024 Baseline test - 34.01 es ->quy
Gow-Smith and Villegas (2023) 4.61 39.52 es ->quy
Vázquez et al. (2021) 5.38 39.40 es ->quy
NLLB Team et al. (2022) 1.3B parameter - 29.2 es ->quy
Thesis: (Huarcaya Taquiri, 2020) 39.50 0.24 es ->quy
Ebrahimi and et. al. (2022) Baseline 1.58 0.33 es ->quy
Ebrahimi and et. al. (2022) XLM-R Large +MLM 68.00 - es ->quy
Chen and Fazio (2021) 23.70 - quz ->es
Ortega et al. (2020) Morfessor 20.30 - qu ->es
Ortega et al. (2020) BPE-Sennrich 22.90 - qu ->es
Oncevay (2021) Pairwise 8.20 30.90 quy ->es
Oncevay (2021) Multiling. 4.23 37.80 es ->quy
Ortega et al. (2021) es,qu,fi 22.60 - quz ->es
Ortega et al. (2021) es,qu,fi,cni 17.00 - quz ->es
Ortega et al. (2021) es,qu,cni 20.10 - quz ->es

Table 1: State of the art of Quechua machine translation

the Helsinki system (De Gibert et al., 2023), used
various tokenization strategies, with their BPE-
MR model ranking first in five languages. The
DC_DMV team (Degenaro and Lupicki, 2024)
worked with two approaches using the NLLB-
200 and the Mamba-based model, obtaining the
second-best result for Quechua with the NLLB
model. Meanwhile, the University of Edinburgh
(Iyer et al., 2024) fine-tuned Llama-2 7B, Mistral
7B, and MaLA-500 using LoRA but did not achieve
outstanding performance.

Due to the nature of the Quechua and its lack of
writing rules, there are attempts to use morphologi-
cal tools to normalise the Quechua (Ebrahimi and
et. al., 2022) (Chen and Fazio, 2021) (Ortega et al.,
2020) (Ortega et al., 2021); prefixes and suffixes
are used to normalise (Ortega et al., 2020), and text
normalization to keep under control the text pass to
a Neural Network (Vázquez et al., 2021). There are
interesting approaches, but those rules are like if
someone is building the grammar and syntaxes of
the Quechua. Reported results range from 17 to 24
BLEU scores; most proposals do not use the ChrF,
which might help corroborate the results. Some
proposals use variations of the JW300 (Agić and
Vulić, 2019) and in most cases, the dataset used is
small and domain-constrained.

There are clear limitations to the development
of Quechua machine translation. The first is the

variety of Quechua dialects or variations. The sec-
ond is the lack of writing rules, which causes the
same pronounced word to be written differently.
The last limitation is the lack of a Parallel dataset;
all research is based on the JW300 parallel dataset,
and no efforts are made to develop a new dataset
even though there are 11 million Quechua speakers.
Most of the testing is based on Opus biblical, a Pe-
ruvian magazine article, testing in a close domain.
(Mager and et. al, 2021).

The present work tries to develop a machine
translation based and extending the Parallel dataset
with syntactic sentences. Tens of Indigenous lan-
guages exist in Western South America, some of
which are in the process of extinction, and others
have disappeared. We aim to preserve the Quechua
and make it available to Quechua speakers.

3 Method

3.1 Data sources

Our sources of parallel dataset are shown in Table
5. Most of the data are based on the JW300 paral-
lel dataset (Agić and Vulić, 2019). (Calvo Pérez,
2007) is a dictionary, and the sentences have been
extracted almost manually. All our data has been
cleaned up by removing irrelevant text, extract-
ing only sentences in lowercase, and keeping only
characters a-z and ñ. Data has been shuffle, and we
reserve 85% for training and 15% for testing. The
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JW300 was only used for que <-> en MT.

3.2 Parallel dataset Expansion
parallel dataset expansion is primarily based on
the generation of synthetic sentences. This method
consists of taking a sentence from a high-resource
language such as Spanish or English, applying a
POS and replacing words in the original sentence.
We will use two approaches: Wordnet and based
on LLM.

Based on WordNet, each sentence will be
scanned to identify the parts of the speech. The
subject and verb of the sentence will be selected.
Using WordNet, similar words will be identified
based on the four types of similarity defined by
WordNet: synonyms, similar, hypernyms, and hy-
ponyms. The new words, subject and verb, will
be identified. Synthetic sentences are generated
by combining the new words. The combination
will be progressive, changing one word, then two,
and then three. Several subsets of synthetic sen-
tences are generated depending on the degree of
combinatorics.

Based on LLM, each sentence will be parsed
(POS) to identify the parts of speech. The subject
and/or verb of the sentence will be selected. Us-
ing an LLM, the word (subject or verb) will be
replaced with another semantically similar word in
the context of the sentence. The answer sentence
within the LLM answer will be extracted (clean the
answer).

MT like mt5-small are sensitive to the direction
of the translation. Asymmetric model supports
this assumption (Santisteban and Tejada-Cárcamo,
2015). We will train the model in both directions.

The objective is to evaluate the machine trans-
lation for Quechua based on the expanded parallel
dataset. Two transformer models will be used, the
base Transformer model by (Vaswani et al., 2023)
and a pre-trained multilingual MT5-small (Xue
et al., 2021).

3.3 Generation of synthetics sentences
Two different approaches were used for synthetic
sentence generation. Initially, an English dataset
was processed using WordNet, where part-of-
speech (POS) tagging identified the first noun. This
noun was then replaced using WordNet and Phi-
3 (Abdin et al., 2024), resulting in two synthetic
sentences. For example, given the sentence "pay
attention to how you listen", the POS tagging se-
lected the word "pay". The synthetic sentence

Quechua Original Clean Synthetic
que 135,068 131,430 *
quy 114,408 111,655 111655
quz 128,252 125,341 121,480

Table 2: English synthetic sentences generated

generated with WordNet was "wage attention to
how you listen", while Phi-3 produced "focus on
how you listen". The prompt used is as follows:
”Replace ’word’ in ’sentence’ with another word
while maintaining the semantic meaning”.

In the second approach, a Spanish dataset was
used without prior POS tagging. Instead, Phi-3.5
(Abdin et al., 2024) was prompted to replace either
a verb or a noun in the given sentence while pre-
serving its semantic meaning. For instance, start-
ing with "aproveche momentos en que estén rela-
jados.", Phi-3.5 generated "aproveche momentos
de calma" This adjustment improved the quality of
the generated sentences while maintaining coher-
ence. The prompt used is as follows: ”Reemplaza
un ’sustantivo’ o ’verbo’ por otro semantica-
mente similar en la oracion: "{oracion}". dame
la primera oracion alternativa. respuesta corta. sin
explicacion”.

4 Tests and Results

4.1 English-Quechua

For en->qu and vice versa, we only used the JW300
parallel dataset in English (Agić and Vulić, 2019).
We used Phi3-mini due to its compact size and aver-
age performance compared to other larger models.

4.1.1 Synthetic Generation Results
Generation with Wordnet lacks of quality. It is
unable to find a suitable synonym; it also fails to
take the word’s context into account, rendering the
new sentence meaningless. The evaluation was
empirical, based on a review of sentences.

A more satisfactory result was obtained regard-
ing the synthetic sentences generated with Phi3-
mini. It takes the word’s context into account and
can replace the verb, connectives, etc., associated
with some nouns, resulting in synthetic sentences
with better semantic meaning. Some sentences
did not generate any results due to the absence
of a noun in the sentence. The original parallel
dataset increases with the synthetic sentences by
96%, almost doubling the size of the original paral-
lel dataset.
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Dataset Sense BLEU ChrF

JW300

en quy 3.64 32.92
quy en 5.70 23.43
en quz 3.82 31.03
quz en 5.49 22.54

JW300 Clean

en quy 2.68 33.87
quy en 4.98 23.60
en quz 3.17 31.70
quz en 5.42 23.76

JW300 Extended
en quy * *
quy en 5.22 23.35
en quz 5.67 29.24
quz en 3.08 31.51

Table 3: MT5-small trained in English

4.1.2 Training the Transformer Models

Two models were used for training: the basic
(untrained) transformer model by (Vaswani et al.,
2023) and the MT5-small model by (Xue et al.,
2021), which is a large, pretrained multilingual
text-to-text transformer.

For the choice of tokenizers in the case of the
MT5-small transformer, the model was trained us-
ing a word tokenizer for both the source and target
languages. Retraining the model requires using
the same tokenizers. In the case of the base trans-
former, since this model is trained from scratch,
we chose a word tokenizer for English and a BPE
tokenizer for Quechua.

Hyperparameters for MT5-small are as follows:
batch size 8, learning rate 2e-5, seq_len 512,
epoches 30, dmodel 512. For base Transformer
are batch size 32, learning rate 1e-4, seq_len 128,
epoches 30, dmodel 512.

4.1.3 Transformer Model Training Results

The fine-tuning of the MT5-small was tested as
shown in Table 3 and 4. For the base transformer,
we can see the output of both the model trained
with the original parallel dataset and the model
trained with the expanded parallel dataset.

Table 3 shows The training of MT5-small with
different datasets. JW300 is the basic one (no data
processing). JW300 Clean, without punctuation
marks, verses, and others. JW300 Extended, the
clean parallel dataset plus the synthetic parallel
dataset. Trained in both directions, from the source
language to the target language. BLEU (sacre-
BLEU) and ChrF metrics. Using two Quechua
languages: Ayacucho Quechua (quy) and Cuzco

Sense BLEU ChrF

JW300 Clean
en quz 1.89 28.88
en quy 1.92 29.40

JW300 Expanded
en quz 1.83 28.46
en quy 1.83 28.52

Table 4: Basic Transformers with synthetic data

Figure 1: Numbers of synthetic sentences generated in
Spanish from the original Spanish parallel dataset

Quechua (quz), and English (en). Synthetic paral-
lel dataset generated with Phi3-mini.

As show in 4 the training the Base Transformer
with different datasets. JW300 Clean, without
punctuation marks, verses, and others. JW300 Ex-
tended, the clean parallel dataset plus the synthetic
parallel dataset. Trained in both directions, from
the source language to the target language. BLEU
(sacreBLEU) and CharF metrics. Using Cuzco
Quechua (quz) and Ayacucho Quechua (quy), and
English (en). Synthetic parallel dataset generated
with Phi3-mini.

The base Transformer and the MT5-small ob-
tained lower scores in both metrics when training
with the expanded parallel dataset than with the
original. This drop in metrics may indicate that
the generated synthetic sentences are not of good
quality.

4.2 Spanish-Quechua

The Quechua-Spanish parallel dataset is from 7
sources. Those that could not be identified by the
Quechua used were marked as Southern Quechua.
A total of 457,562 entries were obtained for the new
original parallel dataset, divided into three groups,
“quz", “quy", and “qu", as shown in figure 1

4.2.1 Training the Transformer Models
The base transformer model (Vaswani et al., 2023)
and the MT5-small (Xue et al., 2021) were used,
with the same hyperparameters and tokenizers as
in the english-Quechua phase. In the case of the
MT5-small, the model was fine-tuned using a word
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Author File Quechua quantity

REPU-CS-2021

Constitution (REPU-CS-2021) quz 812
Handbook quy 2,297
Lexicon quy 6,154
Regulation quz 217
Webmics quy 980

Portocarrero Emotion analysis - 1,722

AmericasNLP 2024

Dict_misc quy 8,955
Minedu quy 643
JW300 quy 115,620
JW300 quz 124,833

Julio Calvo Perez Spanish Quechua Dictionary Vol. 2 sur 20,606
JRXYZ Various books - 140,878
Llamacha audio transcription sur 698

Runasimi
dictionary quy 10,986
dictionary quz 22,162

Table 5: Spanish-Quechua parallel dataset.

tokenizer. In the case of the base transformer we
chose a BPE tokenizer.

4.2.2 Transformer Model Training Results
Two different sets were used: a validation set and a
testing set. The validation set comes from the same
original and expanded parallel dataset. The testing
set is a parallel dataset provided by AmericasNLP
2024 to compare models.

Table 6 shows the model results for the original
parallel dataset, and table 7 shows the expanded
parallel dataset. A clear improvement was observed
with the expanded parallel dataset over the original
in both BLEU and ChrF. Although the scores are
low compared to the best scores from Americas-
NLP 2024. Considering resource constraints like
vanilla transformer without pre-training and MT5-
small fine-tuned on a domestic GPU (NVIDIA
GeForce GTX 1070), results highlight opportuni-
ties for further progress.

5 Conclusion

Synthetic generation of sentences in English did
not improve the machine translation. This is be-
cause the WordNet technique to generate synthetic
sentences was not reliable. On the other hand, us-
ing Phi3.5 to generate synthetic sentences improves
the MT, particularly in Spanish-Quechua.

Our finding shows that expanding the paral-
lel dataset with synthetic sentences improves the
performance of the MT, even if we use a pre-
trained transformer (MT5-small) or base trans-

former model and even though we run our model
on a domestic GPU (NVIDIA GeForce GTX 1070).

Identification of the Quechua varieties is still an
open problem. It is natural for Quechua speakers,
but to our understanding, there are no steps for
language identification.

Fluency in the sentences is absent in all current
proposals, which needs to be addressed. Fluency
would be evaluated by its readability, rhythm, pac-
ing, and the way the sentence structure mirrors
natural speech patterns.

Limitations

The parallel dataset is small and domain-
constrained, expanding it with synthetic sentences
does not guarantee the expansion of the MT in
other domains. Despite the existence of millions of
Quechua speakers.
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Abstract
This paper describes George Mason Univer-
sity’s submission to the AmericasNLP 2025
Shared Task on Machine Translation into In-
digenous Languages. We prompt a large lan-
guage model (LLM) with grammar reference
materials to correct the translations produced
by a finetuned Encoder-Decoder machine trans-
lation system. This hybrid approach leads to im-
provements when translating from the indige-
nous languages into Spanish, indicating that
LLMs are capable of using grammar materials
to better handle a previously unseen-during-
pretraining language.1

1 Introduction

Machine translation (MT) systems typically require
massive parallel corpora to achieve state-of-the-art
results. However, this magnitude of data is not
available for low resource languages. To address
this dearth of data, we propose a prompt-based
approach that incorporates linguistic reference ma-
terial including grammar books, dictionaries, and
a limited number of parallel sentences. This ap-
proach was originally proposed in Machine Trans-
lation from One Book (MTOB; Tanzer et al., 2023)
for a single language (Kalamang) and Hus and
Anastasopoulos (2024) expanded to a more large-
scale investigation to include 15 additional low
resource languages.

In order to improve performance, we have aug-
mented the prompt to include a translation from a
dedicated MT system, which has been finetuned on
the 13 Latin American indigenous languages using
the available parallel sentences from the Americ-
asNLP 2025 training set. Thus, the large language
model (LLM) is provided with a potential trans-
lation that can be utilized in conjunction with the
reference linguistic material. The reference mate-
rial consists of the following items:

1Code and data to reproduce our experiments are here:
https://github.com/jonathanhus/americasnlp.

Dictionaries We obtain dictionaries from Pan-
Lex2 for all our languages. Note that in cases where
the number of words in the dictionary was less than
100 we do not include them in the prompt. The size
of each dictionary is included in Appendix A

Parallel Sentences Parallel sentences are in-
cluded in the prompts as translation examples for
in-context learning. We use the training set as pro-
vided by AmericasNLP 2025 Shared Task on Ma-
chine Translation.

Grammar Books The DReaM corpus (Virk
et al., 2020) contains digitized versions of thou-
sands of linguistic documents, including grammar
books and sketches, for many languages. The
source of these documents is often in paper format,
and due to the scanning/OCR quality, the digitized
versions often contain scanning artifacts. We select
one grammar document for each of our languages.
We perform slight manual cleanup to remove some
items (e.g., scanning artifacts, table of contents)
and to ensure that the grammar would fit in the
LLM’s context size.

2 Methodology

We use the GPT-4o-mini model for our experiments.
Its context size of 128k tokens allows large gram-
mar books to be included in the prompt. Addi-
tionally, we finetune separate NLLB 3.3B models
(Costa-jussà et al., 2022) for each translation di-
rection (xx→es and es→xx) using the provided
training data. These NLLB models are then used
to provide preliminary "suggested" translations for
the LLM to edit.

Prompt Format Our prompts are formatted to
contain the following information:

• Prefix - Contains the task description, includ-
ing the source and target languages

2https://panlex.org
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Figure 1: X-to-Spanish Performance on the Dev Dataset

• Dictionary Entries - For each word in the sen-
tence, an entry from the bilingual dictionary
is retrieved that closely matches the word. In
cases where there is not a direct match of the
source word, a selection is made using longest
common subsequence (LCS) matching with
the available words in the dictionary. The
number of dictionary entries to be retrieved
is configurable, but for our experiments we
chose two, which was the parameter value
chosen for evaluation in previous studies.

• Parallel Sentences - For each word in the sen-
tence, a pair of parallel sentences is selected
that has a similar word in it. The number
of parallel sentences to be retrieved is con-
figurable, but for our experiments we chose
two, which was the parameter value chosen
for evaluation in previous studies.

• Grammar Book - The full length grammar
book for the indigenous language is included
in the prompt

• Suggested Translation - Using our finetuned
NLLB models, we provide a possible transla-
tion, and inform the LLM that it can use that
to modify or improve upon it

• Suffix - Finally, we reiterate that the LLM
should provide the translation and coax it
to attempt the translation even if it does not
"speak" the indigenous language

An example prompt is illustrated in Appendix B.

3 Results

We consider two systems when running our tests.
The first is the finetuned NLLB system by itself.
The second is the prompt-based LLM approach,
which uses the finetuned NLLB system as one of
its inputs in order to generate a translation. We
evaluate both of these systems on the dev dataset
and the test dataset.

Using a small sample of 100 sentences in each
language from the dev dataset, we compare the
chrF++ scores between the NLLB "suggestions"
and the final LLM translations. It is clear from
Figures 1 and 2 that, in the case of these languages,
our grammar-based LLM post-correction is primar-
ily useful for translation into Spanish rather than
into languages that the LLM is unfamiliar with.
This indicates that the LLM can use the grammar
information to better understand the indigenous
languages, but it is not enough to produce them, at
least under the current prompt format and genera-
tion paradigm.

The systems are also evaluated using the test
dataset, with results shown in Tables 1 and 2. Simi-
lar performance characteristics are observed, with
translation into Spanish better performed by the
LLM system and translation from Spanish better
performed by the NLLB system.

In the previous studies that utilized the prompt-
based LLM approach, ablations were performed to
assess the performance of the model when given
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Figure 2: Spanish-to-X Performance on the Dev Dataset

various combinations of reference material input
(e.g., providing only parallel sentences or providing
only the grammar book.) In addition, a baseline as-
sessment was determined for each language, where
the model was provided no reference material. Due
to time and cost constraints, that assessment was
not performed for the set of languages in this pa-
per. We leave that as a future research activity. A
novelty in this paper is that the common language
for all of the parallel sentences is Spanish, whereas
previous efforts used English as the common lan-
guage. However, the prompt templates and some
of the grammar books are in English. The effect of
having English, Spanish, and the indigenous lan-
guage all represented in the prompt is unknown
and this warrants further investigation.

4 Conclusion

We propose two systems to perform machine trans-
lation for indigenous languages. The first is an
NLLB-based system. The second system utilizes
the outputs of the NLLB-based system in addi-
tion to linguistic reference material to formulate
prompts for LLMs in order to perform translation.
We evaluated both our systems on the dev set of
13 different languages, translating into and out of
Spanish. We note that the NLLB has superior
performance in the es→xx translation direction,
while the LLM-based system performs better in the
xx→es direction. Both systems show a promising
path forward for translation of low resource lan-
guages. Since both systems produce similar results,

the more computationally efficient NLLB system
would appear to be the favored choice, especially
for communities lacking the resources necessary
for the additional computation. However, addi-
tional techniques like Retrieval-Augmented Gener-
ation (RAG) could make more efficient use of the
model and could provide improved results. There-
fore, both NLLB and LLM methods deserve further
research.

5 Limitations

Full-length grammar books are provided in the in-
put prompt in order to "teach" a model how to trans-
late into a given language. However, there are some
limitations with this approach. First, high quality
grammar books are difficult to obtain for many lan-
guages. The DReaM corpus does an admirable
job of curating and digitizing many linguistic refer-
ences, but the output is not perfect. Multi-column
text documents and tables lose information that is
conveyed by the location of text relative to other
text on the page. The LLMs, therefore, are most
likely not taking full advantage of that informa-
tion. Additionally, scanning artifacts like headers
and page numbers add unnecessary clutter to the
reference material.

We used an OpenAI model (gpt-4o-mini) simi-
lar to what was used in Back to School (Hus and
Anastasopoulos, 2024). While these models are
quite performant, there are some drawbacks. First,
these are truly closed models, with only an API
available. The architecture, weights, and training
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GPT NLLB NLLB Baseline
Language BLEU ChrF ChrF++ BLEU ChrF ChrF++ ChrF++

agr-es 16.81 38.73 36.59 15.17 38.73 36.52 38.39
aym-es 6.51 27.5 26.09 5.17 26.49 25.23 35.6
bzd-es 6.98 29.14 27.86 6.11 28.77 27.41 30.14
cni-es 5.32 23.72 22.44 4 22.94 21.57 24.86
ctp-es 3.76 15.6 14.47 11.74 28.04 26.16 35.84
gn-es 13.81 34.93 33.84 11.23 33.57 32.31 35.91
guc-es 2.92 25.06 23.1 4.2 26 23.93 24.74
hch-es 5.46 25.91 24.37 4.69 25.53 24.04 26.33
nah-es 7.22 27.14 25.58 5.08 26.18 24.31 26.36
oto-es 2.25 19.69 18.24 1.36 17.76 15.99 20.81
quy-es 12.27 34.64 33.02 10.38 33.5 31.77 37.18
shp-es 13.83 39.93 38.01 12.55 39.4 37.43 47.81
tar-es 2.07 21.53 19.72 1.75 21.23 19.39 18.75

Table 1: System Performance on Test Dataset (XX→ES)

GPT NLLB NLLB Baseline
Language BLEU ChrF ChrF++ BLEU ChrF ChrF++ ChrF++

es-agr 1.3 19.16 16.67 8.64 39.75 35.09 36.76
es-aym 0.88 23.12 20.45 1.14 26.26 22.91 31.21
es-bzd 3.85 19.42 20.61 4.41 21.56 22.51 25.52
es-cni 3.63 24.62 21.77 2.47 25.6 22.22 24.39
es-ctp 1.64 15.04 13.33 1.27 15.31 12.25 36.53
es-gn 5.47 32.5 29.95 4.04 27.23 25 35.68
es-guc 0.2 10.94 9.12 1.48 27.42 22.93 24.18
es-hch 5.98 27 23.59 10.04 29.59 26.14 28.26
es-nah 0.64 18.76 15.98 2.02 23.82 20.33 22.42
es-oto 0.98 11.55 10.03 1.33 13.23 11.31 12.78
es-quy 3.8 36.3 31.68 3.7 38.02 32.7 31.88
es-shp 2.68 19.39 17.49 2.79 21.99 19.46 25.76
es-tar 0.77 15.45 13.89 0.39 14.35 12.53 15.96

Table 2: System Performance on Test Dataset (ES→XX)
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scheme are not available to researchers. Second,
since the model is closed, we do not know whether
the linguistic reference material is responsible for
improved translation performance or whether the
models themselves have this inherent ability.

The sizes of the bilingual dictionaries were in-
consistent, with a handful having less than 20
words. We removed these low-volume dictionaries
from our experiments. However, larger dictionaries
of similar magnitudes would most likely improve
the translations and would allow translation per-
formance across the various languages to be better
compared.
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Dictionary Words
Language ISO 639-3 es → X X → es

Aguaruna agr 2242 2496
Aymara aym 1827 1555
Bribri bzd 11 11
Ashaninka cni 12 10
Chatino ctp N/A N/A
Guarani gn 3354 3465
Wayuu guc 2304 2497
Huichol hch 12 11
Nahuatl nah N/A N/A
Otomi oto 4416 3439
Quechua quy 20203 18589
Shipibo-Konibo shp 1157 1129
Tarahumara tar 1039 812

Table 3: Number of words in the dictionaries. Note the Chatino and Nahuatl were not found in the PanLex database.
Therefore, translations for those words were not included in the prompt.

Language Grammar Book Number of Tokens

Aguaruna Overall, Simon. (2007) A Grammar of Aguaruna. LaTrobe University
doctoral dissertation.

109115

Aymara Hardman, Martha J. (2001) Aymara (LINCOM Studies in Native Ameri-
can Linguistics 35). München: Lincom.

159071

Bribri Jara Murillo, Carla Victoria. (2018) Gramática de la Lengua Bribri. San
José, Costa Rica: E-Digital ED.

130572

Ashaninka Rojas, Esaú Zumaeta and Gerardo Anton Zerdin. (2018) Ayotero añaane
/ Guía teórica del idioma asháninka. Nopoki: Universidad Católica Sedes
Sapientiae.

164836

Chatino Pride, Kitty. (1965) Chatino syntax (Summer Institute of Linguistics
Publications in Linguistics and Related Fields 12). Norman: Summer
Institute of Linguistics of the University of Oklahoma.

44698

Guarani Gregores, Emma and Jorge A. Suárez. (1967) A Description of Collo-
quial Guaraní (Janua Linguarum: Series Practica 27). Berlin: Mouton
de Gruyter.

Wayuu José Álvarez. (2017) Compendio de la gramática de la lengua wayuu.
Ms.

114676

Huichol Iturrioz Leza, José Luis and Paula Gómez López. (2006) Gramática
Wixarika I. München: LINCOM.

136345

Nahuatl Cowan de Beller, Patricia and Richard Beller. (1979) Curso del náhuatl
moderno: náhuatl de la Huasteca. Mexico: Instituto Lingüístico de
Verano.

57298

Otomi Priego Montfort de Mostaghimi, Maria Eugenia. (1989) Gramática del
otomí (hñähñu) del Mezquital, Mexico. Universität Bielefeld doctoral
dissertation.

165311

Quechua Zariquiey, Roberto and Gavina Córdova. (2008) Qayna, Kunan, Paqarin:
Una introducción prática al quechua chanca. Lima: PUCP.

129158

Shipibo-
Konibo

Faust, Norma. (1973) Lecciones para el aprendizaje del idioma shipibo-
conibo (Documento de Trabajo 1). Yarinacocha: Instituto Lingüístico de
Verano.

112794

Tarahumara Caballero, Gabriela. (2022) A grammar of Choguita Rarámuri: In
collaboration with Luz Elena León Ramírez, Sebastián Fuentes Holguín,
Bertha Fuentes Loya and other Choguita Rarámuri language experts.
Berlin: Language Science Press.

122232

Table 4: Grammar Books and Size
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B Prompt Format

Each sentence to be translated is formatted into a prompt for GPT-4. The prompt has six components:
prefix, words, sentences, grammar book, suggestion, and suffix. The experiment configuration determines
whether words (W), sentences (S), or grammar books (G) are included in the prompt. The prefix and
suffix are always included in the prompt. In the following sections, we show the format of the prompt
by example, using an Aguaruna-to-Spanish translation task. We heavily used the code provided by the
authors of "Machine Translation from One Book" to generate the prompts.

B.1 Prefix

The prefix provides the task to perform (translation), the source and target languages, and the sentence to
translate.

You are an expert translator. Translate the following sentence from Aguaruna to Spanish: Nunik
nagkamawaju Timanmi jeen, takai takainakua jimaituk wenak yawejaju.

B.2 Words

For words, we attempt to retrieve the item from the bilingual dictionary. For each word in the source
sentence, the top two matching words from the dictionary, as measured by LCS, are included in the
prompt.

To help with the translation, here is one of the closest entries to Nunik in the bilingual dictionary:
Aguaruna word: nuniktatak
Spanish translation: a veces

To help with the translation, here is one of the closest entries to Nunik in the bilingual dictionary:
Aguaruna word: nunik-bau ah-amu
Spanish translation: causar

Additional word-level translations are provided for the remaining words of the source sentence.
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B.3 Sentences
For sentences, we attempt to retrieve similar samples from our small corpus of parallel sentences. For
each word in the source sentence, we find sentences that contain that word, as measured by LCS, and
include the top two matches in the prompt.

To help with the translation, here is a translated sentence with words similar to N̈unikïn a list of
translated reference sentences:
Aguaruna sentence: Aatus gobernador aidau chichaman umikag, apu Daríojai chichastatus
shiyakajui. Nunik jegajuawag chichajuinak: “¡Apuh, kuashat mijan pujustin ata!
Spanish translation: Entonces estos jefes principales y los capitanes vinieron al rey y le dijeron:
¡Oh, rey Darío! Ten vida para siempre.

To help with the translation, here is a translated sentence with words similar to N̈unikïn a list of
translated reference sentences:
Aguaruna sentence: Aatus David tupikaki uwemjauwai. Nunik Samueljai chichastatus yaakat
Ramá weuwai. Nuwi jegaa Saúl niina maatag tibaun ashí Samuelan ujakui. Tusa ujaka Samueljai
yaakat Naiot Ramá awa nuwi pujustatus weuwai.
Spanish translation: Entonces David salió en vuelo, se escapó y fue a Ramá, a Samuel, y le contó
todo lo que Saúl le había hecho. Y él y Samuel fueron y vivían en Naiot.

Additional sentence-level translations are provided for the remaining words of the source sentence.

B.4 Grammar Book
We include the full grammar book in the prompt.

To help with the translation, here is the full text of a bilingual grammar book:
—
## FULL BOOK INSERTED HERE ##
This is the end of the bilingual grammar book.
—

B.5 Hypothesis
The output of our finetuned NLLB system is provided as a hypothesis or suggestion in the prompt.

Here is a potential translation of the sentence provided by another system that you can modify or
improve upon. Only use the suggestion if it improves your response.
Y los criados de Saúl llegaron a la casa de Timni, y la mitad de su jornada fue en ayunas.

B.6 Suffix
The suffix reiterates the task and prompts for the appropriate translation.

Now perform the translation. If you are not sure what the translation should be, then give your best
guess. Do not say that you do not speak Aguaruna. If your translation is wrong, that is fine, but
you have to provide a translation. Provide only the translation as output.
Aguaruna: Nunik nagkamawaju Timanmi jeen, takai takainakua jimaituk wenak yawejaju.
Spanish translation:
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Abstract

This paper describes the Tekio submission to
the AmericasNLP 2025 shared task on ma-
chine translation metrics for Indigenous lan-
guages. We developed two primary metric ap-
proaches leveraging multilingual semantic em-
beddings. First, we fine-tuned the Language-
agnostic BERT Sentence Encoder (LaBSE)
specifically for Guarani, Bribri, and Nahuatl,
significantly enhancing semantic representa-
tion quality. Next, we integrated our fine-
tuned LaBSE into the semantic similarity met-
ric YiSi-1, exploring the effectiveness of aver-
aging multiple layers. Additionally, we trained
regression-based COMET metrics (COMET-
DA) using the fine-tuned LaBSE embeddings
as a semantic backbone, comparing Mean Ab-
solute Error (MAE) and Mean Squared Error
(MSE) loss functions. Our YiSi-1 metric using
layer-averaged embeddings chosen by having
the best performance on the development set
for each individual language achieved the high-
est average correlation across languages among
our submitted systems, and our COMET mod-
els demonstrated competitive performance for
Guarani.

1 Introduction

Machine translation (MT) plays a vital role in lan-
guage revitalization efforts by making Indigenous
language content more accessible, preserving cul-
tural knowledge, and supporting educational initia-
tives that connect younger generations with their
linguistic heritage. In recent years, interest in MT
for Indigenous languages has grown, particularly
through the AmericasNLP Shared Task in Machine
Translation, which began in 2021 (Mager et al.,
2021).

Due to the time-consuming and expensive nature
of human annotation, automatic evaluation metrics
have become essential proxy for assessing transla-
tion systems during the development cycle. These
metrics offer quick, consistent, and cost-effective

evaluation compared to human assessment. How-
ever, traditional metrics, such as BLEU (Papineni
et al., 2002) and ChrF++ (Popović, 2015), were
designed and developed to evaluate MT systems
for written and instructional languages. The dis-
tinctive features of traditionally spoken languages—
e.g. polysynthetic morphology, extensive morpho-
logical variation, and non-standardized spelling—
present particular challenges for metrics that rely
mainly on exact matching at lexical or character
level, especially when these metrics have not been
specifically trained or tested in such languages. On
the other hand, language representation based met-
rics, such as YiSi-1 (Lo, 2019), BERTScore (Zhang
et al., 2020), COMET (Rei et al., 2020), MetricX
(Juraska et al., 2023), etc, require large volume of
data to train the underlying language representation,
which is not available for low-resource languages,
like the Indigenous languages around the world.

The AmericasNLP 2025 Shared Task on Ma-
chine Translation Metrics for Indigenous Lan-
guages directly addresses this challenge, encourag-
ing participants to develop metrics tailored to eval-
uate translations from Spanish into three Indige-
nous languages: Guarani, Bribri, and Nahuatl. The
goal of the shared task is to explore and enhance
MT evaluation approaches for these underrepre-
sented languages, building upon both traditional
and newer evaluation methods.

To this end, we present our approach to the
shared task, leveraging recent advancements in mul-
tilingual semantic embeddings. Our contributions
include:

1. Fine-tuning the Language-agnostic BERT
Sentence Encoder (LaBSE; Feng et al., 2022)
specifically for Indigenous languages, enhanc-
ing its ability to semantically represent trans-
lations into Guarani, Bribri, and Nahuatl.

2. Integrating these fine-tuned LaBSE embed-
dings into the YiSi-1 semantic similarity met-
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ric (Lo, 2019), exploring the impact of using
different layers of LaBSE embeddings on eval-
uation performance.

3. Developing regression-based COMET met-
rics (Rei et al., 2020) using our fine-tuned
LaBSE as a semantic backbone, experiment-
ing with Mean Absolute Error (MAE) and
Mean Squared Error (MSE) loss functions dur-
ing training.

Our results show that fine-tuned semantic embed-
dings can improve MT evaluation for Indigenous
languages. Our YiSi-1 using the average of embed-
dings from the best performing 3 layers for each
individual language achieves the highest average
correlation across languages among our submitted
metrics, and our COMET-based metrics demon-
strate competitive performance for Guarani.

2 Background

BLEU The Bilingual Evaluation Understudy
(BLEU) (Papineni et al., 2002) metric measures
the n-gram overlap between the hypothesis text and
reference translation. While BLEU is language-
agnostic and simple to compute, it operates on the
word level, making it challenging to accurately
evaluate agglutinative languages. The organizers
of the AmericasNLP shared task on machine trans-
lation Mager et al. (2021) observed that many sub-
words appeared in both the hypothesis and refer-
ence sentences, yet complete words frequently did
not, leading them to question the usefulness of
BLEU as a metric for machine translation in in-
digenous languages.

ChrF++ ChrF++ is a refinement of the chrF met-
ric (Popović, 2015) that calculates an averaged
F-score using precision and recall of character
n-grams. The “++” variant incorporates word n-
grams to slightly reward exact word matches, im-
proving correlation with human judgments. By
combining these two types of n-grams, chrF++ cap-
tures both lexical and morphological information.
As ChrF++ gives partial credit for matching sub-
word fragments, it is more forgiving to morpholog-
ical variations than BLEU.

YiSi YiSi (Lo, 2019, 2020) is a group of se-
mantic MT evaluation metrics designed to handle
varying resource levels. YiSi represents both the
hypothesis and reference sentences (or only the
source, for reference-free evaluation) in a common

semantic vector space, and then computes similar-
ity scores. The primary reference-based metric is
YiSi-1, which is a monolingual semantic similarity
metric between the hypothesis and the reference.

For each word in the hypothesis, YiSi-1 finds
the most semantically similar word in the refer-
ence (via cosine similarity of token embeddings),
and vice versa, and calculates a weighted F-score.
In the WMT18 Metrics Task (Ma et al., 2018),
YiSi-1 showed a strong correlation with human
judgments for many language pairs outperforming
BLEU, chrF and others.

COMET COMET (Rei et al., 2020) is a
transformer-based framework for training MT
evaluation models, using human-annotated data.
COMET metrics use a large multilingual model as
a backbone encoder, and a regression head to pre-
dict the quality score given the source, reference,
and hypothesis sentences. At inference, COMET
outputs a score indicating translation quality. Based
on the type of evaluation data available for train-
ing, different variants can be developed, such as
COMET-DA and COMET-MQM models when
using Direct Assessments (DA) and Multidimen-
sional Quality Metric (MQM) data, respectively.

LaBSE LaBSE (Feng et al., 2022) is a BERT
model with CLS-pooling and dense layers on top
to produce a sentence-level encoding. This encoder
is trained with a contrastive translation-ranking task
to align parallel sentences between over 100 lan-
guages. Unlike many other transformer-based text
encoders, which often learn disjoint spaces for each
language in their training set, LaBSE represents all
languages in one shared space where a sentence in
one language would receive a similar encoding to
its translation in any other language.

3 Methodology

Our general approach consisted of adapting a mul-
tilingual language representation across different
languages into Indigenous language data, which
was used to feed and train two semantic MT met-
rics: YiSi-1 and COMET, respectively.

3.1 Multilingual Representation using LaBSE

We fine-tuned LaBSE using a contrastive learning
process to align Indigenous language data with
the Spanish representation space pre-trained in
LaBSE. The goal behind this alignment was to
inherit the high quality pre-trained knowledge of
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Guarani Bribri Nahuatl Average

Metric Spr. Prs. Spr. Prs. Spr. Prs. Spr. Prs.

YiSi-1+ per-lang-avg 0.6611 0.7196 0.5622 0.6244 0.6680 0.6115 0.6304 0.6518
YiSi-1+ cross-lang-avg 0.6611 0.7196 0.5569 0.6300 0.6132 0.5845 0.6104 0.6447
COMET-DA (MAE loss) 0.5597 0.7209 0.4892 0.6261 0.4963 0.5290 0.5151 0.6254
COMET-DA (MSE loss) 0.5605 0.7234 0.4909 0.6268 0.5036 0.5351 0.5183 0.6285

ChrF++ 0.6725 0.6263 0.4517 0.3823 0.6783 0.5549 0.6008 0.5212
BLEU 0.4676 0.4056 0.4518 0.3456 0.3541 0.4061 0.4245 0.3857

Table 1: Spearman (Spr.) and Pearson (Prs.) correlation coefficients between metrics and human scores on the
blind test set across the three languages: Guarani, Bribri and Nahuatl, followed by average correlations of the three
languages. per-lang-avg stands for the embeddings obtained by averaging the best three layers per language,
while cross-lang-avg consider the best three layers on average in the three languages (layers 4-6). Bold values
indicate the best performance in each language-correlation combination.

LaBSE with the limited data available in these
low-resource languages. The data used consist
of the parallel data available for the Americas-
NLP MT Shared Task, which covers 13 indigenous
languages, and an additional corpus for Nahuatl
(Gutierrez-Vasques, 2015). For this fine-tuning
process, we only propagated the gradients for the
encoding of the non-Spanish sentences, aiming to
preserve as much of the shared representation space
as possible. Our approach consisted of training
LaBSE to align all the languages simultaneously,
which worked better than the language-specific
models. We also balanced the language distri-
bution data by up-sampling the training data for
Nahuatl, the language for which we had less data.
In this way, we improved the performance of the
metrics in Nahuatl, with a small trade-off in other
languages. Since the downstream translation met-
rics require token-level embeddings, we extracted
only the BERT model from LaBSE after the fine-
tuning was completed, discarding the pooling lay-
ers. While LaBSE was pre-trained by contrastive
alignment of the [CLS] token encoding between
parallel sentences, we found that aligning the mean-
pooled token encodings to be far more effective.
This is likely because aligning only the [CLS] to-
ken does not properly update the encoding of the
other tokens.

3.2 Metric Development

3.2.1 YiSi-1 + Fine-Tuned LaBSE

As YiSi-1 needs an embedding model to evaluate
semantic similarity (Lo, 2020), we fed this metric
using the obtained LaBSE representation described
in the previous section. We evaluated the metric
performance using the embeddings obtained from
different layers, calculating the Spearman and Pear-

son correlations with the DA scores. For each lan-
guage, we selected the three intermediate layers
that yielded the best performance on the develop-
ment set and obtained the token embeddings by
averaging across the three layers. However, this
language-specific approach risks overfitting to the
development set, potentially not performing as well
on the testing set. We, therefore, made another sub-
mission for which we decided to average the token
embeddings from the three layers that performed
the best on average in all the three languages.

3.2.2 COMET-DA+Fine-Tuned LaBSE
We trained COMET-DA models, using our fine-
tuned LaBSE embeddings as the underlying rep-
resentation. Given the limited amount of avail-
able development data, we applied 5-fold cross-
validation to efficiently leverage all available an-
notations. In each fold, we trained COMET-DA
on 80% of the development set, reserving the re-
maining 20% for validation. We experimented with
training a COMET for each language, and combin-
ing the language data. The combination led to bet-
ter results on the development set, so we submitted
this variation.

We explored two different loss functions to opti-
mize COMET-DA during fine-tuning: mean abso-
lute error (MAE) and mean squared error (MSE).

4 Results

Table 1 presents the Spearman and Pearson corre-
lation results for our four submitted metrics com-
pared to baseline metrics across Guarani, Bribri,
and Nahuatl translation tasks. In general, our YiSi-
1 metric that utilizes average embeddings from
LaBSE layers 4 to 6 performed the best on average,
showing strong performance across languages and
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metrics.
For Guarani, our COMET-based metrics per-

formed notably well on Pearson correlation, with
the COMET variant trained using MSE loss achiev-
ing the highest Pearson correlation, and the MAE
variant ranking second. The YiSi-1 variants
achieved higher Spearman correlations than the
COMET variants, but remained lower than the
ChrF++ baseline.

For Bribri, YiSi-1 with layer averaging had the
highest Spearman correlation, but the single best
layer for Bribri had higher Pearson correlation.

Nahuatl was especially challenging. None of our
submitted metrics surpassed the ChrF++ baseline
for Spearman correlation. Layer-averaged YiSi-1
scored the highest of our systems for both Spear-
man and Pearson.

On average, the layer-averaged YiSi performed
the best of our systems.

5 Conclusion

In this paper, we present our submission to the
AmericasNLP 2025 Shared Task on Machine Trans-
lation Metrics for Indigenous Languages. Central
to our approach was our fine-tuned LaBSE model,
which provided effective multilingual semantic rep-
resentations for Bribri, Guarani, and Nahuatl. We
then integrated the LaBSE embeddings into YiSi-1
and COMET metrics.

Our key contributions include successfully fine-
tuning LaBSE embeddings specifically for Indige-
nous languages, evaluating the effectiveness of em-
bedding layer selection and averaging in YiSi-1,
and training a custom COMET for Indigenous lan-
guages.

Future directions include training COMET with
additional data to further enhance COMET’s per-
formance and investigating language-specific ad-
justments to better handle challenging languages
like Nahuatl.
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Abstract

This paper presents JHU’s submission to the
AmericasNLP shared task on the creation of
educational materials for Indigenous languages.
The task involves transforming a base sentence
given one or more tags that correspond to gram-
matical features, such as negation or tense. The
task also spans four languages: Bribri, Maya,
Guaraní, and Nahuatl. We experiment with
augmenting prompts to large language mod-
els with different information, chain of thought
prompting, ensembling large language mod-
els by majority voting, and training a pointer-
generator network. Our System 1, an ensemble
of large language models, achieves the best
performance on Maya and Guaraní, building
upon the previous successes in leveraging large
language models for this task and highlighting
the effectiveness of ensembling large language
models.

1 Introduction

The AmericasNLP 2025 shared task on the creation
of educational materials (de Gibert et al., 2025)
proposes automated generation of educational ma-
terials for low-resource Indigenous languages in
the Americas. Many of these languages are endan-
gered, with few remaining speakers, and lack the
large datasets necessary to leverage advances in
Natural Language Processing (NLP) as languages
like English and Spanish do. The shared task chal-
lenged teams to develop NLP systems to create ed-
ucational exercises for Bribri, Maya, Guaraní, and
Nahuatl. These exercises involve applying gram-
matical transformations—such as tense changes or
negation—to base sentences.

Each team received a limited training dataset
for each language. This dataset contained base
sentences, the corresponding grammatical modifi-
cations, and the correctly transformed output sen-
tences. Using this data, teams were expected to
develop NLP systems which, given a base sentence

and a grammar modification, could produce the
correctly modified output sentence.

By leveraging NLP to generate grammatical ex-
ercises, this task intends to reduce the burden on the
small number of fluent speakers in these languages
who would otherwise need to manually develop
learning resources. This automation can enable
communities to create a broader range of instruc-
tional materials with less effort, making language
learning more accessible.

Our approach is based on an ensemble of sev-
eral distinct methods, including novel extensions
on the large language model (LLM) methods suc-
cessfully deployed by top performing systems of
the 2024 shared task (Vasselli et al., 2024; Bui and
von der Wense, 2024; Haley, 2024), combined with
additional components including linguistic infor-
mation specific to each language, part-of-speech
tagging, chain-of-thought reasoning, and model en-
sembling using majority voting. We additionally
train a pointer-generator LSTM leveraging addi-
tional Bribri data. Our ensemble system, using
majority voting from LLM outputs generated with
varying prompt configurations, achieves the high-
est performance on Maya and Guarani compared
to other teams. We release our code on GitHub1.

2 Data

2.1 Task Data

The task provided training, development, and test
data in Bribri, Maya, Guaraní, and Nahuatl. Each
data split contained base sentences, the change to
apply to each base sentence. The training and de-
velopment data additionally contain the correctly
transformed base sentence. The training data in-
cludes 309, 584, 178, and 392 examples for Bribri,
Maya, Guaraní, and Nahuatl respectively. The
development data includes 212 Bribri examples,

1https://github.com/KentonMurray/
AmericasNLP2025
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149 Maya examples, 79 Guaraní examples, and
176 Nahuatl examples. The test data includes 480
Bribri examples, 310 Maya examples, 364 Guaraní
examples, and 120 Nahuatl examples.

2.2 Additional Bribri Data

For one of our submitted systems, the pointer-
generator network, we create additional training
data by extracting verb conjugation tables from
Gramática de la lengua bribri, a Bribri reference
grammar (Murillo, 2018). From this process, we
extracted 482 unique verbs and constructed 1400
additional single-verb training examples.

3 Methods

3.1 LLM Prompting

We conduct few-shot prompting experiments utiliz-
ing variations of the prompt in Table 1, modified
from the prompt used in the 2024 submission to
this task by the JAJ team (Vasselli et al., 2024).
This prompt provides a well structured format that
allows us to experiment with the inclusion of ad-
ditional information, namely part of speech tags
and grammar information from a reference book.
An explicit system instruction to output only the
target sentence is included as initial testing showed
that with such an instruction, outputs were inconsis-
tently formatted and occasionally multiple hypothe-
ses for target sentences were generated. We also
observed that the LLMs would sometimes first gen-
erate reasoning text, particularly when including
fewer few-shot examples in the prompt.

Examples are to include in the prompt are cho-
sen in the following manner: Given a maximum
number of examples to include and a test exam-
ple with n change tags, we first select all examples
from the training data such that all n tags in the test
example match those in the training examples, then
sort in descending order by combined BLEU (Pap-
ineni et al., 2002) and chrF (Popović, 2015) score
and select up to the given maximum number of
examples. If more examples are needed, we select
additional training examples which overlap with
n - 1 of the change tags in the test example, then
again sort and select the top examples by combined
BLEU and chrF. If more examples are still needed,
we continue this process down to an overlap of 1
change tag.

For this few-shot prompting approach, we exper-
iment with including a maximum of 3, 5, 10, and
20 examples.

SYSTEM:
You are a helpful assistant with expertise
in linguistics. Output only the target
sentence in your response with no
additional punctuation.

USER:
This is a linguistic puzzle involving
grammar changes in [LANGUAGE]. You are
given examples which include a source
sentence, a grammar change to apply to the
source sentence, and a target sentence.
Your task is to generate the target
sentence for the final example.

Example 1:
Source: [SOURCE SENTENCE]
Grammar Change: [CHANGE TAGS]
Target: [TARGET SENTENCE]

(...)

Now generate the target sentence for this
example:
Source: [SOURCE SENTENCE]
Grammar Change: [CHANGE TAGS]
Target:

Table 1: Our base prompt that we use for experimen-
tation. [LANGUAGE] is replaced with Bribri, Yucatec
Maya, Guaraní, or Western Sierra Puebla Nahuatl.

Additionally, we conduct these experiments with
two LLMs: GPT-4o (OpenAI et al., 2024b) and
DeepSeek-v3 (DeepSeek-AI et al., 2025), and set
the temperature to 0.

Reference Book In one experiment, we include
the line “You are also given additional informa-
tion about the morphology and syntax of the lan-
guage." and copied the ’Morphology and Syntax’
sections for Bribri, Maya, and Guaraní from a ref-
erence book (Campbell, 2000). We did not include
morphological and syntactic information for Nahu-
atl as the reference book documented Classical
Nahuatl rather than Western Sierra Puebla Nahu-
atl. We test this addition to the prompt with 10
examples from the training data included. This ex-
periment is partly inspired by MTOB, a benchmark
on low resource machine translation for LLMs us-
ing a human-readable grammar book (Tanzer et al.,
2024). In contrast to MTOB, the grammar descrip-
tions we include are only a few pages long.

Part of Speech Tags We experiment with addi-
tionally including a part-of-speech tagged source
sentences in our prompt, alongside the original
source sentences, for Maya and Guaraní data. We
utilize open source part-of-speech taggers released
by Apertium to generate our part-of-speech tagged
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data (Forcada and Tyers, 2016; Kuznetsova and
Tyers, 2021; Pugh et al., 2023).

3.2 Chain of Thought
We also experimented with chain of thought (CoT)
prompting (Wei et al., 2022), instructing the LLM
to offer a step-by-step analysis to arrive at a solu-
tion. We tested CoT prompting using DeepSeek-
V3 first in a zero-shot setting, followed by experi-
ments with few-shot settings using 10, 20, and 25
examples.

Our approach involved processing sentences by
providing predefined steps using a structured CoT
prompt. We varied the number of few-shot exam-
ples to evaluate their impact on model performance.
The methodology followed these key steps:

1. Understanding the Source Sentence – The
model was instructed to analyze the input sen-
tence in the target language.

2. Identifying the Required Change – The
model was guided to recognize and interpret
the intended transformation.

3. Retrieving Few-Shot Examples – We exper-
imented with different numbers of few-shot
examples (n = 0, 10, 20, 25). For our CoT ex-
periments, examples are selected based on the
number of overlapping change tags with the
test example, as described in Bui and von der
Wense (2024).

4. Applying the Transformation – The model
generated the modified sentence step-by-step,
following CoT reasoning.

5. Output Formatting – The final prediction
was in a standardized format (PREDICTED
TARGET:), which helped us with the extrac-
tion of results.

3.3 Ensembling
We create an ensemble system by utilizing ma-
jority voting to combine up to six LLM outputs.
We decide on the specific configuration of LLM
systems to include for each language by compar-
ing the scores on the dev set of ensembling ev-
ery combination of up to six of our LLM experi-
ment outputs, including all our prompt configura-
tion experiments and our CoT experiment using
DeepSeek-V3 and 25 examples. We also compare
sentence-level, token-level, and character-level ma-
jority voting strategies.

3.4 Pointer-Generator Network

As a contrastive system, we train a character-level
pointer-generator LSTM utilizing a language tag
and change tags as features (Bahdanau et al., 2016;
See et al., 2017; Vinyals et al., 2015). Our pointer-
generator network has 1 encoder layer, 1 decoder
layer, an embedding size of 128, and a hidden layer
size of 512. We train on all data including our
additional Bribri data, and use a learning rate of
1e-3, dropout set to 0.3, and optimize with Adam
(Kingma and Ba, 2017). Training is conducted
with early stopping, and we evaluate using a model
checkpoint saved after training for 31 epochs.

4 Submitted Systems

We organize our submitted systems as follows:

System 1 A majority voting ensemble of up to
six systems selected based on dev set performance
for each language. For Bribri, this is a token-level
majority voting ensemble of four LLM outputs. For
both Maya and Guaraní, this is a whole sentence
majority voting ensemble of six LLM outputs. For
Nahuatl, the best single system outperformed any
ensemble of multiple systems, so we include only
a single non-ensembled system for Nahuatl.

System 2 The best prompt configuration for
DeepSeek-v3 for each language, selected based
on dev set performance.

System 3 GPT-4o using the same prompt config-
urations as System 2.

System 4 The best prompt configuration for GPT-
4o for each language, selected based on dev set
performance.

System 5 This system is CoT prompting of
DeepSeek-v3 with 25 included examples.

System 6 This system is our pointer-generator
LSTM.

5 Results and Discussion

We present our results on the test set for all six of
our systems in Table 2. Our LLM ensemble system,
System 1, performs the best of our submitted sys-
tems and is declared one of two winning systems
on this year’s task, achieving the highest scores in
the task for Maya and Guaraní. Compared to last
year’s winning systems for Maya and Guaraní, our
System 1 achieves an additional 10.00 percentage
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System Bribri Maya Guaraní Nahuatl
Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF

1 22.71 45.68 71.63 63.87 84.03 93.87 43.68 57.2 86.83 3.33 12.2 52.75
2 20.21 42.5 71.99 59.35 82.32 92.95 38.19 50.28 85.41 3.33 12.2 52.75
3 20.21 44.51 72.21 56.77 80.59 91.77 38.74 55.47 86.17 1.67 11.66 49.27
4 18.75 45.09 71.42 60.00 81.94 92.94 40.93 54.89 86.02 1.67 12.5 49.67
5 15.83 40.02 70.59 59.03 80.48 92.39 41.21 55.04 86.21 2.5 12.84 55.31
6 5.42 20.67 49.65 9.68 46.71 67.19 6.32 4.79 46.28 0 0.62 27.73

Table 2: Test set evaluation results for our six submitted systems. Winning scores in the task are in bold.

points in accuracy for Maya and an 9.06 percent-
age points in accuracy for Guaraní (Chiruzzo et al.,
2024). Compared to our highest scoring single
LLM system submissions, our ensembling strategy
also provides an increase in accuracy of 2.50 per-
centage points for Bribri, 3.87 percentage points
for Maya, and 2.75 percentage points for Guaraní.

5.1 LLM Choice

Our single LLM systems, Systems 2, 3, and 4,
exhibit a moderate amount of variation in score,
though all still perform higher than last year’s best
systems for Maya and Guaraní. For a clearer un-
derstanding on how our selection of LLMs affects
our performance on this task, we conduct an ad-
ditional experiment on the dev set using our base
prompt with 10 examples to compare our system
performance when using GPT-4 (OpenAI et al.,
2024a), specifically the gpt-4-0614 snapshot avail-
able through the OpenAI API2. We also compare
performance when using two additional snapshots
of GPT-4o: gpt-4o-2024-11-20 and gpt-4o-2024-
05-133. Our GPT-4o systems by default use gpt-
4o-2024-08-06. We report the results of this exper-
iment in Table 3. As seen in the table, using GPT-4
and different GPT-4o snapshots result in some vari-
ation in performance on the dev set compared to
the LLMs used in our submitted systems, but this
variation is only to a small extent. This could indi-
cate that the specifics of our prompting technique
and our method of selecting training examples play
a more significant role in the higher performance
of our single LLM systems, rather than simply our
choice of LLMs.

2https://platform.openai.com/docs/models/
gpt-4

3https://platform.openai.com/docs/models/
gpt-4o

5.2 Prompting Configurations

We record the results of our experiments in varying
LLM prompt configurations, which were referred
to in selecting the components of our submitted
systems, in Table 4. Notably, increasing the num-
ber of training examples included in the prompt did
not strictly increase performance, and leveraging
part-of-speech tags and reference book information
also does not have a clear impact on performance
as evaluated on the development set. Future work
could take a fine-grained approach to understand-
ing how such prompt configurations affect model
predictions.

5.3 Nahuatl Performance and Future Work

We observe poor performance on Nahuatl across
all of our experiments and submitted systems, com-
pared to our performance on the other languages
included in this task. One possible hypothesis as
to why performance is so low is due to the extent
of variation within Nahuatl and the extent to which
LLMs have been trained on and can differentiate
Nahuatl varieties. Western Sierra Puebla Nahuatl,
the Nahuatl variety included in this task (de Gib-
ert et al., 2025), is one of 30 varieties within the
"language grouping" of Nahuatl recognized by the
Instituto Nacional de Lenguas Indígenas (INALI).
INALI further states that each language variety
should be treated as languages themselves, partic-
ularly for educational matters, as well as in other
areas including justice and health (INALI, 2008).
Thus, in the spirit of this task, we propose that
future work in developing systems to create ed-
ucational materials for Indigenous language take
a more variety-specific approach to Nahuatl, that
may include sourcing and incorporating grammati-
cal information about Western Sierra Puebla Nahu-
atl, and also possibly fine-tuning LLMs on West-
ern Sierra Puebla Nahuatl data. Additionally, to
understand the extent to which our systems are im-
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Model Bribri Maya Guaraní Nahuatl
Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF

DeepSeek-V3 18.40 45.79 66.69 55.70 77.31 91.31 41.77 52.70 86.41 2.27 8.13 42.58
gpt-4o-2024-08-06 18.40 45.96 65.13 54.36 76.39 90.41 39.24 49.24 84.70 1.14 6.38 38.88
gpt-4o -2024-11-20 16.51 44.73 65.42 55.70 77.11 90.84 45.57 51.89 86.31 3.41 6.18 40.19
gpt-4o-2024-05-13 17.45 46.10 65.75 57.05 78.48 91.02 39.24 49.24 85.45 1.14 5.75 39.72

gpt-4-0613 18.40 46.25 66.54 56.38 76.20 90.93 37.97 50.68 83.49 2.84 5.71 38.95

Table 3: Results on the dev set of our comparison experiment with GPT-4, 3 different GPT-4o snapshots, and
DeepSeek-V3, using our base prompt and 10 examples. Our submitted systems use the gpt-4o-2024-08-06 snapshot
and DeepSeek-V3.

pacted by the linguistic diversity within Nahuatl,
future analysis could examine whether incorrect
outputs of our LLM-based systems are valid for
other Nahuatl varieties. Such analysis may provide
insight into how systems can be modified to better
support Western Sierra Puebla Nahuatl specifically.

6 Conclusion

We presented the results of JHU’s submission to the
2025 AmericasNLP shared task on the creation of
educational materials for Indigenous languages. In
developing our systems, we conducted experiments
using different prompting configurations with GPT-
4o and DeepSeek-V3, combined chain of thought
prompting techniques with few-shot prompting,
trained a pointer-generator LSTM, and construct
a majority voting ensemble of LLMs. We achieve
the highest performance on Maya and Guaraní with
our ensemble system, which is declared one of two
winning systems on this year’s task.
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Prompt Config Model Bribri Maya Guaraní Nahuatl
Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF Acc. BLEU chrF

3 examples GPT-4o 16.98 44.52 62.89 54.36 77.37 90.84 39.24 47.44 85.39 1.14 4.86 34.98
DeepSeek-V3 15.09 41.84 63.71 57.05 79.04 91.36 39.24 49.32 85.70 2.84 7.34 40.68

5 examples GPT-4o 17.92 44.49 63.87 55.03 76.67 90.43 41.77 49.75 85.97 1.14 5.41 37.52
DeepSeek-V3 17.92 46.24 65.75 55.03 76.96 90.61 44.30⋆ 52.88 87.01 2.27 6.03 40.84

10 examples GPT-4o 18.40 45.96 65.13 54.36 76.39 90.41 39.24 49.24 84.70 1.14 6.38 38.88
DeepSeek-V3 18.40 45.79 66.69 55.70 77.31 91.31 41.77 52.70 86.41 2.27 8.13 42.58

20 examples GPT-4o 15.57 44.76 64.75 58.39 78.64⋆ 90.98 40.51 54.51 86.17 1.14 5.71 39.19
DeepSeek-V3 18.87⋆ 47.68⋆ 67.43⋆ 56.38 78.20 91.49 44.30⋆ 54.02 87.42⋆ 5.11⋆ 8.88⋆ 43.56⋆

3 ex. + POS GPT-4o - - - 53.02 76.24 89.16 39.24 56.78⋆ 85.40 - - -
DeepSeek-V3 - - - 55.03 77.29 90.59 36.71 49.25 83.63 - - -

5 ex. + POS GPT-4o - - - 48.32 72.51 88.75 41.77 55.96 85.12 - - -
DeepSeek-V3 - - - 55.70 77.23 90.47 37.97 50.40 85.90 - - -

10 ex. + POS GPT-4o - - - 55.70 76.49 90.44 44.30⋆ 52.37 86.15 - - -
DeepSeek-V3 - - - 55.70 77.41 91.17 41.77 51.59 86.45 - - -

20 ex. + POS GPT-4o - - - 56.38 77.24 90.36 41.77 51.77 86.27 - - -
DeepSeek-V3 - - - 59.06⋆ 78.55 91.54⋆ 40.51 51.08 86.21 - - -

10 ex. + book GPT-4o 16.98 45.63 65.86 54.36 76.92 90.79 43.04 55.15 86.95 - - -
DeepSeek-V3 16.04 44.47 65.90 55.03 76.50 90.95 43.04 56.26 86.33 - - -

Table 4: Results from experimenting with different prompt configurations using GPT-4o and DeepSeek-V3. The
highest scores for each model on each language are in bold. The best scores across both systems for each language
are indicated with a ⋆.

todenominaciones y referencias geoestadísticas. In-
stituto Nacional de Lenguas Indígenas, México, D.F.

Diederik P. Kingma and Jimmy Ba. 2017. Adam:
A method for stochastic optimization. Preprint,
arXiv:1412.6980.

Anastasia Kuznetsova and Francis Tyers. 2021. A finite-
state morphological analyser for Paraguayan Guaraní.
In Proceedings of the First Workshop on Natural
Language Processing for Indigenous Languages of
the Americas, pages 81–89, Online. Association for
Computational Linguistics.

Carla Victoria Jara Murillo. 2018. Gramática de la
lengua bribri. EDigital, San José. Reviewed in *Re-
vista de Filología y Lingüística de la Universidad de
Costa Rica*.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024a. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark, A. J.
Ostrow, Akila Welihinda, Alan Hayes, Alec Radford,
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Abstract

This paper describes the NAIST submission
to the AmericasNLP 2025 shared task on the
creation of educational materials for Indige-
nous languages. We implement three systems
to tackle the unique challenges of each lan-
guage. The first system, used for Maya and
Guarani, employs a straightforward GPT-4o
few-shot prompting technique, enhanced by
synthetically generated examples to ensure cov-
erage of all grammatical variations encountered.
The second system, used for Bribri, integrates
dictionary-based alignment and linguistic rules
to systematically manage linguistic and lexi-
cal transformations. Finally, we developed a
specialized rule-based system for Nahuatl that
systematically reduces sentences to their base
form, simplifying the generation of correct mor-
phology variants.

1 Introduction

The development of educational materials for In-
digenous languages presents unique challenges due
to their low-resource nature, limited digital rep-
resentation, and morphological complexity. The
AmericasNLP 2025 Shared Task (de Gibert et al.,
2025) addresses these challenges by focusing on
the creation of accurate grammatical modifications
in sentences across several Indigenous languages:
Bribri, Maya, Guarani, and Nahuatl. The goal of
the shared task was to apply specified grammati-
cal transformations to source sentences in order to
generate appropriate new sentences that could be
used in educational content for language learning
and preservation.

Historically, language processing tasks such as
grammatical transformations, have relied on exten-
sive corpora. However, such resources are scarce
or entirely unavailable for many Indigenous lan-
guages. Building on our successful approach from
the AmericasNLP 2024 Shared Task, we again
leverage dictionaries and linguistic rules combined

with the generative capabilities of GPT-4o (Achiam
et al., 2023). This year we try a new technique
which proved to be less effective than our technique
from 2024, but still resulted in strong scores for
Bribri. We also tested an entirely rule-based system
for Nahuatl, which while still in early stages, nev-
ertheless achieves significant improvements over
LLM prompting.

Our submission comprises three distinct trans-
lation systems. The first system, submitted for
Maya and Guarani, employs a straightforward GPT-
4o few-shot prompting technique, enhanced by
synthetically generated examples to ensure cov-
erage of all grammatical variations encountered.
The second system, used for Bribri, integrates
dictionary-based alignment with GPT-4o, inspired
by the edit-tag method used in the Grammatical
Error Correction Tagged with Edits (GECTOR)
system (Omelianchuk et al., 2020), to manage lexi-
cal and morphological transformations systemati-
cally. Finally, recognizing the specific complexities
of Nahuatl, we developed a specialized rule-based
system that classifies grammatical features, reduces
sentences to a base form, and generates the target
sentence from that base form.

2 Task and Data Description

In this shared task, the provided dataset includes
original sentences along with the grammatical
transformations to be applied to these sentences.
The goal is to develop systems capable of applying
these transformations accurately to the base sen-
tences, producing grammatically modified versions
suitable for educational use.

While many instances in the data consisted of a
single change, there were many compound changes
as well, where multiple types of transformations
were combined, especially for Nahuatl and Bribri
(See Appendix A). For example, a negative type
alteration (TYPE:NEG) may be combined with a
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Language Original With Synthetic
Bribri 309 533
Maya 594 615
Guarani 178 186
Nahuatl 391 391

Table 1: Number of example sentences initially pro-
vided versus the number actually utilized after adding
synthetic examples. We did not create synthetic exam-
ples for Nahuatl.

change to an interrogative (SUBTYPE:INT). This
would have the effect of going from “I walked” to
“Didn’t you walk?” in English. This may be further
combined with transformations to subject, such as
to 3rd person plural (PERSON:3_PL): “Didn’t they
walk?”

We synthetically enhanced the training set by
expanding changes into component substeps, com-
bining alterations to make more compound changes.
The number of sentences before and after expan-
sion are listed in Table 1.

Sub-step Expansion We decomposed complex
grammatical transformations into simpler, sequen-
tial sub-steps. For example, a change labeled
TYPE:NEG, SUBTYPE:INT was expanded into two
distinct steps: initially applying TYPE:NEG to reach
an intermediate form, followed by SUBTYPE:INT
to attain the final sentence.

Change Combination Additionally, we intro-
duced new examples by combined changes. For
example, a change in tense or mood would be com-
bined with a person’s changes. We aimed to have
comprehensive coverage of all grammatical trans-
formation combinations.

3 System Description

We implemented three systems, varying in their
dependence on prompting versus rule-based pro-
cessing. For each language, we selected the system
that performed best on the dev set.

3.1 Example-Based Prompt

The first system leverages GPT-4o exclusively
through few-shot prompting, relying on synthetic
examples to maximize its coverage of grammat-
ical variations. In this approach, we choose ex-
amples from the training data with the exact same
change, from which the LLM can hopefully learn
to generalize and perform similar modifications on
new sentences. As mentioned in Section 2, there

Source Ie’ dúwa
¯Change TYPE:NEG, TENSE:PRF_PROG

Target Ie kë̀ ku
¯
’bak dawö́kwa

¯
KEEP: ie’
ADD: kë̀ (negation particle)
ADD: ku

¯
’bak (NEG PRF_PROG marker)

CHANGE: base form dúwa
¯

-> PRF_PROG
form dawö́kwa

¯

Table 2: Example with change description

was not always an exact match for the change in
the training data. This approach differed from the
submission last year, JAJ (Vasselli et al., 2024),
which addressed the lack of comprehensive cov-
erage of change combinations by iteratively pro-
cessing the test cases, applying sub-changes in a
different order for each language. We also exper-
imented with translating the prompt into Spanish,
which improved scores for Bribri, but did not help
Maya, Guarani, or Nahuatl.

3.2 Transformation-Based Prompt
The second system is based on the intuition that
grammatical changes typically require only a small
number of edits to the source sentence. Inspired by
GECTOR (Omelianchuk et al., 2020), we annotate
each training example with an explicit transforma-
tion sequence. Each transformation is framed in
terms of token-level operations:

• KEEP for words that remain unchanged

• ADD for newly inserted words

• REMOVE for words that are removed.

• REPLACE for words that are replaced with
different word types.

• CHANGE for cases where the word form
changes, but the base word type is preserved
(e.g., tense/person inflection).

This format allows GPT-4o to operate more con-
servatively by avoiding unnecessary rewrites, lead-
ing to more interpretable predictions and improved
generalization. In addition, it facilitates automatic
double-checking of each transformation using dic-
tionary lookups or morphological rules, further en-
hancing the reliability of the output. An example
can be seen in Table 2.

Using this method greatly improved perfor-
mance on Bribri. Even moreso when the tagged
change output was postprocessed. See Table 3 for
ablation results on the development set.
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System Acc. BLEU ChrF

Examples 4.25 9.77 35.21
+ Description 15.09 40.94 58.24
+ Postprocessing 36.79 60.83 70.80

Table 3: Ablation experiments on the Bribri develop-
ment set using examples only, with change descriptions,
and postprocessing the change description output.

3.3 Pure Rule Based Transformation

The third system is a fully rule-based approach de-
veloped specifically for Nahuatl. Unlike Bribri,
we lacked a digitized dictionary, preventing us
from applying the transformation-based method
described in Section 3.2. Nahuatl also presents
more grammatical changes per sentence than Maya
or Guarani, making the example-based approach
less effective.

To address this, we created rules to heuristically
assign part-of-speech tags using word position and
known affixes. These tags were then used to infer
grammatical features of each sentence—such as
subject, object, and indirect object person markers,
honorific status, type, and purposive direction.

Grammatical Feature Identification Evaluation
We used the training data to infer grammatical fea-
tures by identifying sentences that appeared in mul-
tiple transformation pairs. Table 4 shows two such
examples. 1

From the first pair, we infer that the target sen-
tence is honorific (HON:1), has a 2nd person plural
subject, a 3rd person plural object, a 3rd person
singular indirect object, and is not purposive. This
implies that the source sentence differs in those
respects, but the only meaningful thing we learn
about the source is that it is not honorific.

However, the same source sentence appears as
the target in the second pair. From that example,
we infer that "tehuatl amo otinechnextilito nin tlat-
zotzonal" has a 2nd person singular subject, is neg-
ative, and expresses purposive intent toward the
speaker. Since these features were not listed as
changed in the first pair, we can propagate them to
the first target as well, inferring that the target of
the first pair is also negative. We also infer that the
second source sentence is not honorific.

1There is an error in this sentence which affects five other
examples in the provided data: “otinechnextilito” should be
“otinechnoxtilico” for PURPOSIVE:VEN. This error, in an
already infrequent change category, may have contributed to
the challenge of learning the PURPOSIVE feature.

Source tehuatl amo otinechnextilito nin tlatzotzonal
Change HON:1, PERSON[IOBJ]:3_SI,

PERSON[OBJ]:3_PL, PERSON[SUBJ]:2_PL,
PURPOSIVE:NA

Target nimehuantzitzin amo onoconnextilihqueh
nin tlatzotzonal

Source yehuatl onechnextileh nin tlatzotzonal
Change PERSON[SUBJ]:2_SI, PURPOSIVE:VEN,

TYPE:NEG
Target tehuatl amo otinechnextilito nin tlatzotzonal

Table 4: Examples from the Nahuatl training set

Quality Training Development

Honorific 93.7 100.0
Subject 59.0 88.6
Possessor 69.0 100.0
Object 31.0 -
Ind. Object 0.0 -
Tense 64.8 82.1
Mood 75.9 83.3
Aspect 58.6 88.9
Purposive 0.0 -
Type 100.0 100.0
Transitivity 0.0 -

Table 5: Results of rule-based classification. “-” indi-
cates there was not enough information in the set to
generate test cases for this quality.

By iterating over the dataset in this way, we
assembled a more complete set of grammatical fea-
tures for each sentence. These annotations allowed
us to evaluate our rule-based system by assigning
source and target features, applying transforma-
tions, and comparing the result.

Table 5 shows classification results on training
and dev sets. While our system performs well on
simpler features like type (positive or negative),
it struggles with indirect object, transitivity, and
purposive features, indicating areas for future im-
provement.

Inference Time At inference time, we used the
classifier to predict the grammatical features of
a new source sentence. These predicted features
were then modified according to the specified
changes to derive the expected target sentence fea-
tures. We decomposed the source sentence into a
normalized default form—non-honorific, 3rd per-
son singular subject, no possessor, present simple
tense, no mood, and positive type—by systemati-
cally stripping or converting known morphological
indicators. From this base form, we then generated
the target sentence by applying all grammatical
features required by the target configuration.

This rule-based generation pipeline still requires
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System Bribri Guarani Maya Nahuatl
Acc. BLEU ChrF Acc. BLEU ChrF Acc. BLEU ChrF Acc. BLEU ChrF

Edit-tree baseline 5.66 20.35 45.56 22.78 34.99 77.14 26.17 52.38 78.72 0.00 1.38 34.32
Example-based Prompt 4.25 9.77 35.21 45.57 55.53 86.77 45.64 71.21 87.28 0.57 3.40 34.76
+ Spanish prompt 8.49 31.32 55.90 37.97 51.68 84.14 42.28 70.18 86.28 0.57 1.64 31.54
Transformation-based Prompt 15.09 40.94 58.24 39.24 50.58 85.59 42.95 69.13 84.62 - - -
+ Postprocessing 36.79 60.83 70.80 15.19 42.31 77.18 40.94 70.22 84.77 - - -
Rule-based Transformation - - - - - - - - - 26.14 26.64 52.19

Table 6: Results on the development set. “-” indicates the system does not currently support that language.

System Bribri Guarani Maya Nahuatl
Acc. BLEU ChrF Acc. BLEU ChrF Acc. BLEU ChrF Acc. BLEU ChrF

Edit-tree baseline 8.75 22.11 52.73 14.84 25.03 76.10 25.81 53.69 80.23 - - -
JAJ (Vasselli et al., 2024) 54.17 71.72 82.78 36.81 48.29 84.12 53.55 78.41 91.53 - - -
Ours 41.25 62.57 74.99 32.69 49.21 84.98 42.90 71.81 88.97 17.5 40.50 65.40

Table 7: Results on the test set. Ours was the best performing system for each language on the development set:
Postprocessed transformation-based prompt for Bribri, English language Example-based Prompt for Maya and
Guarani, and Rule-based Transformation for Nahuatl.

further refinement, particularly for accurate recon-
struction of morphologically complex forms. How-
ever, the system proved to be more effective than
the example-based prompting approach when eval-
uated on the Nahuatl development set.

4 Results

As seen in Table 7, across all four languages,
our systems outperformed the edit-tree baseline
provided in the shared task in terms of accuracy,
BLEU, and ChrF scores. However, our results did
not reach the performance levels of the JAJ system
from last year.

For Maya and Guarani, our approach this year
applied all changes at once using synthetically con-
structed examples, whereas the JAJ system applied
transformations incrementally. The iterative strat-
egy appears to reducing the complexity at each
transformation step, improving accuracy.

In Bribri, two factors probably contributed to
our lower scores. First, as with Maya and Guarani,
we did not apply changes iteratively. Second, we
omitted explicit conjugation hints from the prompt,
which were included in the JAJ system and likely
contributed to the improved performance. Al-
though our post-processing step was designed to
enforce correct conjugation, it is unknown whether
it is less effective than targeted prompting. A com-
bination of the edit-tag prompting method with
conjugation hints and iterative change application
is a promising direction for future experiments.

Nahuatl was introduced to the task for the first
time this year and was the most challenging for our
system. Although our rule-based system performed

better than the example-based prompting baseline,
it still falls short of ideal performance. The lack of
a digitized dictionary and the large number of inter-
acting grammatical features per sentence continue
to pose significant challenges.

5 Related Work

Rosetta Stone Puzzles In Rosetta Stone puz-
zles (Bozhanov and Derzhanski, 2013), solvers
are given a limited set of bilingual sentence pairs
and asked to translate sentences into the other lan-
guage. These puzzles contain machine transla-
tion and grammatical transformation. Şahin et al.
(2020) tested several algorithms for those problems,
including statistical algorithms and Transformer-
based language models (Vaswani et al., 2017).
Sung et al. (2024) explored the metalinguistic
awareness of pre-trained language models. Chi
et al. (2024) and Bean et al. (2024) developed
benchmarks in the same format as Rosetta Stone
puzzles and tested several LLMs. The results
demonstrate that LLMs potentially have the ca-
pabilities to apply linguistic knowledge and extract
linguistic features from limited data.

LLM-Assisted Rule-Based Approach An LLM-
assisted rule-based approach demonstrates promis-
ing performance, particularly for low-resource lan-
guages. Low-resource languages have limited
linguistic resources, resulting in the challenging
performance of LLMs. To address this issue,
several studies have leveraged existing linguistic
knowledge to develop pipeline systems that ap-
ply rule-based processing to input in low-resource
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languages before passing it to LLMs. Coleman
et al. (2024) introduced a new methodology, LLM-
Assisted Rule-Based Machine Translation, and ex-
plored the performance and advantages. Zhang
et al. (2024) proposed a method that decomposes
inputs into morphemes with morphological analyz-
ers, assigns glosses to each morpheme with dictio-
naries, and uses them for translation. Both methods
leverage rule-based approaches to narrow the can-
didates or add rich information to the original input,
guiding LLMs to the correct output.

6 Conclusion

We presented three systems for generating edu-
cational sentence transformations in Indigenous
languages, varying in their use of prompting and
linguistic rules. Our systems consistently outper-
formed the baseline across all four languages, but
results suggest several areas for refinement.

For Maya and Guarani, applying all changes
at once proved less effective than the iterative ap-
proach used in previous work. For Bribri, the ab-
sence of conjugation cues in the prompt may have
hindered performance, even with post-processing.
For Nahuatl, our rule-based system offered im-
provements over prompting alone, but remains lim-
ited by the lack of digitized lexical resources.

Future work will focus on refining the rule-based
system, incorporating a Nahuatl dictionary to sup-
port edit-tag prompting, and adopting iterative ap-
plication of changesa strategy that yielded strong
results in prior shared tasks.

The interplay between LLM-based reasoning
and structured linguistic knowledge emerged as
a key factor in producing reliable transforma-
tions—especially when creating educational tools
for under-resourced Indigenous languages.

Limitations

The purely prompt-based approach is highly sensi-
tive to the quality and coverage of examples. When
faced with compound grammatical transformations,
our system often failed to generalize.

The transformation-based system relies on accu-
rate alignments, which in turn relies on complete
dictionaries. While effective for Bribri, incom-
plete dictionaries may lead to missing or incorrect
transformation annotations, which in turn affect the
system’s outputs.

For Nahuatl, the rule-based system is based on
hand-crafted heuristics and POS inference rules.

These rules are not always accurate and can mis-
classify grammatical qualities. Additional work
must be done to make this system more accurate.
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A Data Distribution

We observed that Maya and Guarani examples typically involved only one or two grammatical changes per
instance, whereas Bribri and Nahuatl frequently included compound transformations affecting multiple
features simultaneously. This discrepancy is illustrated in Table 8 and Figure 1. We hypothesize that this
difference in complexity contributed to the weaker performance of purely prompt-based systems on Bribri
and Nahuatl, as those systems may struggle to generalize when required to model multiple interacting
changes at once as illustrated in Figure 2.

1 2 3 4 5 6 7 8 Total

bribri
train 51 (16.5%) 89 (28.8%) 75 (24.3%) 60 (19.4%) 26 (8.4%) 7 (2.3%) 1 (0.3%) - 309
dev 46 (21.7%) 62 (29.2%) 51 (24.1%) 33 (15.6%) 16 (7.5%) 3 (1.4%) 1 (0.5%) - 212
test 83 (17.3%) 141 (29.4%) 125 (26.0%) 85 (17.7%) 41 (8.5%) 5 (1.0%) - - 480

guarani
train 175 (98.3%) 3 (1.7%) - - - - - - 178
dev 79 (100.0%) - - - - - - - 79
test 361 (99.2%) 3 (0.8%) - - - - - - 364

maya
train 538 (90.6%) 47 (7.9%) 6 (1.0%) 1 (0.2%) 2 (0.3%) - - - 594
dev 138 (92.6%) 8 (5.4%) 1 (0.7%) 1 (0.7%) 1 (0.7%) - - - 149
test 222 (71.6%) 83 (26.8%) 5 (1.6%) - - - - - 310

nahuatl
train 17 (4.3%) 69 (17.6%) 98 (25.1%) 90 (23.0%) 72 (18.4%) 28 (7.2%) 14 (3.6%) 3 (0.8%) 391
dev 17 (9.7%) 49 (27.8%) 52 (29.5%) 38 (21.6%) 19 (10.8%) - 1 (0.6%) - 176
test 16 (13.3%) 36 (30.0%) 41 (34.2%) 15 (12.5%) 7 (5.8%) 3 (2.5%) 2 (1.7%) - 120

Table 8: Number of changes.

Figure 1: Ratio of number of changes across datasets.

Figure 2: Performance w.r.t. number of changes in devset.
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Abstract

Indigenous languages face significant chal-
lenges due to their endangered status and lim-
ited resources which makes their integration
into NLP systems difficult. This study in-
vestigates the use of Large Language Mod-
els (LLMs) for sentence transformation tasks
in Indigenous languages, focusing on Bribri,
Guarani, and Maya. Here, the dataset from
the AmericasNLP 2025 Shared Task 2 is used
to explore sentence transformations in Indige-
nous languages. The goal is to create edu-
cational tools by modifying sentences based
on linguistic instructions, such as changes in
tense, aspect, voice, person, and other gram-
matical features. The methodology involves
preprocessing data, simplifying transformation
tags, and designing zero-shot and few-shot
prompts to guide LLMs in sentence rewrit-
ing. Fine-tuning techniques like LoRA and
Bits-and-Bytes quantization were employed to
optimize model performance while reducing
computational costs. Among the tested mod-
els, Llama 3.2(3B-Instruct) demonstrated su-
perior performance across all languages with
high BLEU and ChrF++ scores, particularly
excelling in few-shot settings. The Llama
3.2 model achieved BLEU scores of 19.51 for
Bribri, 13.67 for Guarani, and 55.86 for Maya
in test settings. Additionally, ChrF++ scores
reached 50.29 for Bribri, 58.55 for Guarani,
and 80.12 for Maya, showcasing its effec-
tiveness in handling sentence transformation.
These results highlight the potential of LLMs
that can improve NLP tools for indigenous lan-
guages and help preserve linguistic diversity.

1 Introduction

Indigenous languages are an important part of hu-
man history and culture, but many are on the verge
of disappearing. These languages hold unique
knowledge and traditions that should be preserved
for future generations. Thankfully, advancements
in Natural Language Processing (NLP) offer new

ways to protect and revitalize them.
For example, in New Zealand, technology is play-
ing a key role in revitalizing the Maori language.
Apps like ’Kōrerorero’ are making it easier for peo-
ple to learn and practice the language in their daily
lives1. Similarly, in Canada, the FirstVoices app
offers resources to support learning for more than
60 indigenous languages, helping to preserve and
promote these rich cultural traditions2.
The AmericasNLP 2025 Shared Task 2 (de Gibert
et al., 2025) focuses on creating educational tools
for Indigenous languages in the Americas, includ-
ing Bribri, Guarani, Maya, and Nahuatl Omitlan.
The initiative leverages NLP techniques to develop
systems that can generate language learning exer-
cises by transforming sentences based on grammat-
ical changes, such as tense or type.
In this shared task, the provided dataset contains
a source sentence and instruction that need to be
applied to achieve the target sentence. The goal is
to train a system capable of modifying the source
sentences according to specified grammatical trans-
formations. For instance, an example of sentence
transformation in the Maya language,
Source: Táan u bin tu kool (He is going to the
field)
Change(Instruction): TYPE:NEG
Target(Transformed): Ma’ táan u bin ich kooli’
(He is not going to the field)
Each of these languages presents unique linguis-
tic characteristics. For example, Bribri is a tonal
language with SOV(Subject-Object-Verb) word
order supported by tools like morphological an-
alyzers and electronic dictionaries (Coto-Solano
et al., 2021). Guarani is a highly agglutinative lan-
guage, where prefixes and suffixes are used to ex-
press grammatical information (Lucas et al., 2024).

1https://linguisticsnews.com/insight/
case-study-the-evolution-of-indigenous-languages/

2https://autogpt.net/
the-impact-of-ai-in-languages-preservation/
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Maya languages exhibit fascinating linguistic fea-
tures, such as aspectual marking instead of tense
conjugation to express time-related information
(Pugh et al., 2023).
The task of sentence transformation for Indigenous
languages creates a unique challenge due to it’s
complex linguistic structures. To address these, the
dataset was carefully preprocessed by cleaning text,
standardizing formatting, and simplifying transfor-
mation tags into actionable instructions. Prompt de-
sign played a critical role, with zero-shot and few-
shot prompts guiding models effectively in rewrit-
ing sentences based on linguistic instructions. Few-
shot prompts consistently outperformed zero-shot
prompts by providing examples for better learning.
Large Language Models (LLMs) were fine-tuned
using techniques like LoRA (Low-Rank Adapta-
tion) and Bits-and-Bytes (BNB) quantization to op-
timize performance while reducing computational
costs. Post-processing ensured concise outputs by
extracting only the relevant transformed sentences.
The results showed that Llama 3.2 achieved the
best performance across Bribri, Guarani, and Maya
languages, with high BLEU and ChrF++ scores on
development and test datasets. Few-shot prompting
proved particularly effective for low-resource lan-
guages, highlighting its advantage in multilingual
NLP tasks.
The major contributions of our research work are
as follows-

• We proposed an innovative sentence transfor-
mation system for Indigenous languages, uti-
lizing LLMs for effective results.

• We executed a range of experiments on the
dataset and presented a comprehensive analy-
sis of their performance.

The experimentation details have been provided in
the GitHub repository. 3

2 Related Work

Indigenous languages are often low-resource,
making them challenging for NLP systems that
rely on extensive annotated data. Previous studies
have showed the potential of NLP in preserving
these languages by creating tools like machine
translation systems and educational resources.
Leveraging pre-trained models like mBERT and

3https://github.com/mahshar-yahan/
AmericansNLP-2025/tree/main/Shared%20Task-2

XLM-R for cross-lingual knowledge transfer can
help adapt high-resource language models to
low-resource settings, enabling better sentence
transformations (Pakray et al., 2025). In prior
work organized by AmericasNLP, researchers
demonstrated that GPT-4 and other large language
models perform effectively in few-shot learning
for low-resource languages (Ginn et al., 2024).
Additionally, they highlighted data augmentation
strategies that can address data scarcity and
enhance model generalization in low-resource
settings.
In a study, the author of the paper (Hammond,
2024) implemented a multilingual transformer-
based model(mBERT) and an edit tree method
to address the sentence transformation task,
which performed poorly. Then, they applied
a morphosyntactic similarity approach, which
significantly improved performance by utilizing
linguistic features. In another research work,
the authors (Niklaus et al., 2019) introduced the
idea of changing complex sentences into simple
ones using recursive sentence simplification
and a semantic hierarchy. In a separate study
(Silfverberg et al., 2017), researchers proposed
an efficient data augmentation technique by
modifying morphological patterns, which helps
with low-resource language with limited data.
The paper (Su et al., 2024) explores fine-tuning
transformer models like NLLB-200, Claude
3 Opus and demonstrates their effectiveness
in capturing sentence-level morphological
inflections. For Maya, fine-tuning with data
augmentation (using StemCorrupt) yielded the
best performance. Another shared task paper by
AmericansNLP explores sentence transformation
using Pointer-Generator LSTM, Mixtral 8x7B
(SICL4 with LoRA), and GPT-4 (ICL5) (Bui and
Von Der Wense, 2024). Also, they have proposed
an ensemble method that outperforms single
models by boosting accuracy by almost 4%.
An innovative approach by the authors combines
rule-based NLP techniques with prompt-based
methods leveraging large language models (LLMs)
and POS6 tagging(Vasselli et al., 2024). This
approach balances general processing with
language-specific customization for grammatical
sentence transformation. Another study demon-

4SICL: Supervised In-Context Learning
5ICL: In-Context Learning
6POS: Parts of Speech
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strates that minimal CSV-style prompting using
large language models (LLMs) like GPT-4 and
GPT-3.5 can achieve competitive performance
in low-resource morphological tasks (Haley, 2024).

3 Dataset

We have utilized a dataset created for Americas-
NLP 2025 Shared Task 2 (de Gibert et al., 2025),
which aims to develop educational tools for In-
digenous languages. The dataset includes four
low-resource languages: Bribri, Guarani, Maya,
and Nahuatl Omitlan. It is designed for sentence
transformation tasks, where sentences are modified
based on linguistic instructions such as changes in
tense, aspect, polarity and so on. It includes 16
major categories with a total of 68 unique values
across these categories. The dataset is divided into
Train, Development (Dev), and Test sets, as shown
in Table 1:

Split Bribri Guarani Maya Nahuatl
Omitlan

Train 391 178 594 392
Dev 176 179 149 177
Test 120 364 310 121

Table 1: Language-wise distribution in the dataset

The relatively small size of the training data, par-
ticularly for some languages, presents a challenge
for robust model training. The dataset also features
a mix of simple and complex instructions, allowing
for a wide array of sentence transformations to be
applied. Table 2 offers some excellent examples to
illustrate these transformations and their English
equivalents.

4 Methodology

In this section, we have provided an overview of the
methods and techniques applied to the dataset de-
scribed earlier. Initially, the data was preprocessed,
and the transformation tags were transferred to in-
struction. Subsequently, various LLMs were uti-
lized to enhance performance. These models were
fine-tuned and evaluated to optimize their effective-
ness, as illustrated in Figure 1.

4.1 Data Preprocessing

Several preprocessing steps have been imple-
mented on the given dataset of different language to

achieve optimal outcomes. These steps include re-
moving of unnecessary changes, standardizing text
formatting and addressing inconsistencies in the
data. Each step is designed to enhance the model’s
ability to process linguistic transformations effec-
tively.

4.1.1 Removal of Unnecessary Changes
The dataset contains entries where the change col-
umn is tagged as NA, indicating that no modifica-
tions are required for the source sentence. These
entries are removed to obtain meaningful transfor-
mation. This ensures that only actionable instruc-
tions are remained in the dataset. For example,
Before Removal: VOICE:MID, PERSON:NA
After Removal: VOICE:MID

4.1.2 Text Standardization
To ensure uniform formatting in the dataset, we
have cleaned the text by removing punctuation, spe-
cial characters, and unnecessary whitespace. This
step helps reduce noise and improves the model’s
ability to focus on meaningful linguistic patterns.
For instance in Bribri,
Before Removal: Ye’ tö i kít
After Removal: Ye tö i kít (Apostrophe removed)

In the given example for cases English translation is
And here it is. But in some cases, this preprocessing
step may have impacted results, where apostrophes
represent glottalization and differentiate minimal
pairs.

4.2 Tag Simplification

This process simplifies complex tag combinations
into clear, actionable instructions that are easy to
understand. It helps the model interpret and apply
transformations more effectively. For example, in
the dataset, the Change field may contain multiple
complex tags like TYPE:NEG, TENSE:PRF_REC.
Input Tags: TYPE:NEG, TENSE:PRF_REC
Simplified Instructions: Make the sentence nega-
tive and change to recent perfect tense.
This makes the dataset easier to work with and
helps the model learn better. This ensures the
model is trained on instructions it can accurately
process and apply, resulting in more precise trans-
formations.

4.3 Prompt Design

In this task, zero-shot-prompt and few-shot-prompt
are utilized to rewrite sentences according to in-
structions. These prompts are structured to provide
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Source Change Target
(Original Sentence) (Instruction) (Transformed Sentence)
Kin in suut koonol merkaado (I am
returning to the market)

ASPECT: INS Je’el in suut koonol merkaado (I will
return to the market)

Kin in suut koonol merkaado(I am
returning to the market)

ASPECT:TER,
TENSE: PAS_SIM

Ts’o’ok in suut koonol merkaado(I
have returned to the market)

Table 2: Illustrative examples of single and multi-instruction sentence transformations in the Maya language

Source

Change

Target

Source

Change
Post Processing

Train Dataset
Data

Preprocessing

Removal of
Unnecessary

Changes

Text
Standardization

Types Values Instruction

Tags Simplification

Prompting

Zero Shot Few Shot
Source: {source}
Change: {change}
Target: {target}

You are a language transformation assistant. Modify the
given "Source" according to the instructions.

Example 1:
Source: Ye' shka'
Change: Make the sentence negative
Target: Kë̀ ye' shkàne̠

Example 2:
Source: Ye' shka'
Change: Express the beginning or initiation of the action
Target: Ye' shka'mi̠

Source: {source}
Change: {instructions}
Target: {target}

Hyper
Parameter

LoRA Config

PEFT Fine Tuning

LLama

NLLB

xglb

Model Selection

Fine-Tuned Model

Test Dataset

Raw Predictions

Evaluate

BLEU

Chrf++

Figure 1: Methodological Workflow for Sentence Transformation in Indigenous Language Education Using Large
Language Models

clear guidance to the model while ensuring consis-
tency in the transformation process.

4.3.1 Zero Shot Prompt Design
These prompts are designed to evaluate the model’s
ability to perform translations and linguistic trans-
formations without relying on specific training ex-
amples. The model is expected to independently
generate the correct output based solely on the pro-
vided instruction. For instance, consider the fol-
lowing training prompt in Bribri:
Zero Shot Prompt
Source: Ye’ shka’
Instruction: MODE:ADVERS
Target: Ye’ shka’
In handling test data, a slightly modified version of
the prompt is used to isolate the predicted sentence
in the output: "Provide only the Target sentence,
nothing else". This ensures that the generated out-
put is concise and aligned with the task output.

4.3.2 Few Shot Prompt Design
Few-shot prompts incorporate multiple examples
of source sentences paired with instructions and
their corresponding target sentences. These ex-

amples act as references, helping the model learn
transformation patterns and apply them accurately.
For instance,

Few Shot Prompt:
Language: Bribri, Rewrite and change the
Source sentence to the Target sentence accord-
ing to the given instruction.
Example 1:
Instruction: Change to recent perfect tense.
(TENSE:PRF_REC)
Source: Ye’ shka’
Target: Ye’ shké
Example 2:
Instruction: Make the sentence negative and
change to recent perfect tense. (TYPE:NEG,
TENSE:PRF_REC)
Source: Ye’ shka’
Target: Ye’ kë shkàne
Rewrite following sentence using instruction:
Instruction: Change to potential future
tense and change to imperfective aspect.
(TENSE:FUT_POT, ASPECT:IPFV)
Source: Ye’ shka’
Target: Ye’ shkömi
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Language Model Prompt Type Acc BLEU Chrf++

Bribri
Llama 3.1(8B-Instruct) Zero Shot 1.79 2.74 11.28
Llama 3.1(8B-Instruct) Few Shot 5.11 12.73 50.22
Llama 3.2(3B-Instruct) Zero Shot 5.59 4.94 33.50
Llama 3.2(3B-Instruct) Few Shot 6.21 22.36 50.46
Xglm 1.7B Zero Shot 0.89 1.16 30.29
Xglm 1.7B Few Shot 2.51 13.56 29.19

Gurarani
Llama 3.1(8B-Instruct) Zero Shot 6.47 3.16 29.56
Llama 3.1(8B-Instruct) Few Shot 9.01 18.34 28.15
Llama 3.2(3B-Instruct) Zero Shot 7.57 24.14 41.10
Llama 3.2(3B-Instruct) Few Shot 10.53 22.99 58.30
Xglm 1.7B Zero Shot 2.55 8.34 52.17
Xglm 1.7B Few Shot 4.19 6.24 48.17

Maya
Llama 3.1(8B-Instruct) Zero Shot 8.29 17.11 56.56
Llama 3.1(8B-Instruct) Few Shot 10.11 19.56 68.15
Llama 3.2(3B-Instruct) Zero Shot 17.39 43.45 70.23
Llama 3.2(3B-Instruct) Few Shot 21.31 57.16 82.48
Xglm 1.7B Zero Shot 13.51 43.45 70.53
Xglm 1.7B Few Shot 1.16 11.23 40.44

Table 3: Performance Evaluation of Different Models and Zero-Shot and Few-Shot Prompt on the Dev Dataset for
Bribri, Guarani, and Maya Languages using Accuracy, BLEU and ChrF++ Metrics

This approach bridges the gap between zero-shot
learning and fully supervised training, making
it highly effective for multilingual sentence
transformation.

4.4 Train

The training process for sentence transformation
task involves fine-tuning large language models
(LLMs) such as Llama (Touvron et al., 2023),
XGLM (Lin et al., 2021) and NLLB (Costa-Jussà
et al., 2022) to accurately rewrite sentences based
on instructions provided in the dataset. This task
focuses on transforming sentences across different
dimensions, such as tense, mood, aspect, voice, and
negation.

To adapt pre-trained LLMs to the task-specific
requirements, we have employed efficient fine-
tuning techniques using LoRA (Low-Rank Adapta-
tion) and quantization with Bits and Bytes (BNB).
These methods allow us to optimize memory usage
and computational efficiency while maintaining the
model’s performance. LoRA modifies only a sub-
set of the model’s parameters, making it ideal for
tasks requiring domain-specific adjustments with-
out retraining the entire model. BNB enables 4-bit
quantization of model weights, significantly reduc-
ing memory consumption during training.

4.5 Post Processing

When using a casual language model for sentence
transformation tasks, the generated output may in-
clude extra information beyond the desired target
sentence. To address this, we have employed a
simple linear search on the output to locate the
keyword "Target". Once the keyword is identi-
fied, everything following it is extracted as the final
transformed sentence. This method ensures that
only the relevant portion of the model’s output is
retained.

5 Results and Analysis

In this section, we have provided a comprehensive
comparison of the performance across different
approaches to large language models (LLMs) for
different languages.

5.1 Parameter Setting

Table 4 shows parameter settings for different mod-
els.

In Table 4, lr, optim,la and l4 represents learn-
ing_rate,optimizer, lora_alpha and load_in_4bit
and respectively.

5.2 Evaluation Metrics

The performance of various models has been
evaluated using the Bilingual Evaluation Under-
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Model lr optim la l4
Llama 3.1 3e−4 Paged 4 8
(8B-Instruct) Adamw
Llama 3.2 2e−4 Paged 4 8
(3B-Instruct) Adamw
XGLM 1.7B 2e−3 Adam 4 8

Table 4: Parameter settings for different models

study (BLEU) score, the Character-level F-score++
(ChrF++), and Accuracy metrics on the develop-
ment and test dataset.

5.3 Comparative Analysis

From Table 3, we observed that Llama 3.2 (8B-
Instruct) demonstrated the best performance for
sentence transformation tasks in Bribri, Guarani,
and Maya languages. For Bribri, it achieved the
highest BLEU score of 22.36 and ChrF++ of 50.46
in few-shot settings on the development set. Simi-
larly, for Guarani, it secured a BLEU score of 22.99
and ChrF++ of 58.35, while for Maya, it excelled
with a BLEU score of 57.16 and ChrF++ of 82.48.
In contrast, XGLM 1.7B performed poorly with
significantly lower scores across all languages and
settings. Few-shot prompting consistently outper-
formed zero-shot prompting for all models, demon-
strating its advantage in low-resource language
tasks. The submitted system using Llama 3.2 (8B-
Instruct) performed well on the test sets, as shown
in Table 5. It achieved competitive BLEU and
ChrF++ scores, particularly for Maya, and secured
9th place on the leaderboard.

Language Type Evaluation Metrics
Acc BLEU Chrf++

Bribri
dev 6.21 22.36 50.46
test 0.4167 19.51 50.29
base 5.66 20.35 45.56

Gurarani
dev 10.53 22.99 58.30
test 1.92 13.67 58.55
base 22.78 34.99 78.72

Maya
dev 21.31 57.16 82.48
test 13.55 55.86 80.12
base 26.17 52.38 78.72

Table 5: The results of the submitted system on the
development and test sets using Llama 3.2(3B-Instruct)
Model

6 Conclusion

The research demonstrates the feasibility of using
LLMs for sentence transformation tasks in Indige-
nous languages. The performance of the models,
particularly when compared to a simple edit tree
baseline, fell short across all tested languages. Fac-
tors such as excessive preprocessing, overly com-
plex prompts, a small dataset size, and high out-
of-vocabulary (<unk>) token rates in the model
tokenizer may cause these challenges. Among the
experimented models, Llama 3.2 is the most ef-
fective system. Few-shot prompting proved par-
ticularly advantageous for low-resource languages.
However, this work provides valuable insights into
the obstacles faced when applying LLMs to low-
resource languages.

Limitations

Several limitations were identified in this study.
First, the provided dataset is quite small, which im-
pacted model generalization. The limited availabil-
ity of annotated data particularly affected Guarani,
where language-specific adaptations were not im-
plemented due to time constraints. Computational
constraints also restricted broader experimentation
with larger-scale models or ensemble techniques.
Addressing these limitations will be crucial for fu-
ture advancements in Indigenous language process-
ing.

Future Work

Future research should focus on advancing dataset
quality and diversity through innovative data aug-
mentation techniques, such as back-translation,
contextual embedding-based augmentation, and
syntax tree manipulation. Using methods like en-
semble learning or hybrid modeling could also
boost performance in sentence transformation tasks.
Additionally, integrating neural morphology exten-
sions to handle complex linguistic structures would
improve sentence transformation tasks. Expanding
this work to include more endangered languages
could help preserve cultural heritage through NLP.
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Abstract

This paper presents our approach to machine
translation between Spanish and 13 Indige-
nous languages of the Americas as part of the
AmericasNLP 2025 shared task. Addressing
the challenges of low-resource translation, we
fine-tuned advanced multilingual models, in-
cluding NLLB-200 (Distilled-600M), Llama
3.1 (8B-Instruct) and XGLM 1.7B, using tech-
niques such as dynamic batching, token ad-
justments, and embedding initialization. Data
preprocessing steps like punctuation removal
and tokenization refinements were employed to
achieve data generalization. While our models
demonstrated strong performance for Awajun
and Quechua translations, they struggled with
morphologically complex languages like Nahu-
atl and Otomí. Our approach achieved com-
petitive ChrF++ scores for Awajun (35.16) and
Quechua (31.01) in the Spanish-to-Indigenous
translation track (Es→Xx). Similarly, in the
Indigenous-to-Spanish track (Xx→Es), we ob-
tained ChrF++ scores of 33.70 for Awajun and
31.71 for Quechua. These results underscore
the potential of tailored methodologies in pre-
serving linguistic diversity while advancing ma-
chine translation for endangered languages.

1 Introduction

Nearly half of the world’s 7,000 languages are cur-
rently endangered1. Experts predict that around
1,500 of these languages could vanish by the end
of this century due to factors like globalization,
economic growth, and insufficient support for In-
digenous languages2. Indigenous languages are not
just cultural gems but also hold unique perspectives
and knowledge. The United Nations has declared
2022–2032 as the International Decade of Indige-
nous Languages, highlighting the urgency of this
issue (Boodeea et al., 2025).

1https://www.science.org/content/article/
languages-are-being-wiped-out-economic-growth

2https://www.anu.edu.au/news/all-news/
1500-endangered-languages-at-high-risk

Machine Translation (MT) presents significant
challenges, particularly in low-resource settings.
Limited data availability, the presence of diverse
dialects, and complex linguistic structures such
as polysynthesis significantly increase the chal-
lenges. However, recent improvements in neural
machine translation (NMT) and multilingual learn-
ing have shown promise. For example, models like
Meta’s NLLB-200 (Distilled-600M)(Costa-Jussà
et al., 2022) and fine-tuned methods using Low-
Rank Adaptation(LoRA) (Hu et al., 2022) have
worked well in low-resource settings, improving
translation accuracy while helping preserve lan-
guages with the involvement of Indigenous com-
munities.
The AmericasNLP 2025 Shared Task focuses on
translating between Spanish and 13 Indigenous lan-
guages, such as Quechua, Guarani, and Wayuu-
naiki. This project uses advanced MT techniques
and works closely with Indigenous communities
to create accurate and culturally respectful trans-
lation models. By using advanced techniques like
improved tokenization and batching, the initiative
aims to build strong MT systems that respect lin-
guistic diversity while pushing forward the field of
computational linguistics.
This task is an important step towards using tech-
nology to bridge cultural gaps, ensuring that In-
digenous voices are heard and preserved for future
generations.

The implementation details have been provided
in a GitHub repository3.

2 Related Work

MT has emerged as a promising solution for low-
resource languages. Fine-tuning large language
models and innovative tokenization strategies have
played a big role in these improvements. However,
challenges such as limited training data, linguistic

3https://github.com/mahshar-yahan/
AmericansNLP-2025/tree/main/Shared%20Task-1
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diversity, and issues like overgeneration continue
to hinder the development of robust systems.

Recent Advancements
Recent advancements in multilingual models have
significantly improved translation quality for low-
resource languages. (Costa-Jussà et al., 2022)
introduced NLLB-200 (Distilled-600M), a mas-
sively multilingual model trained on 200 languages,
demonstrating the effectiveness of fine-tuning for
low-resource settings. A recent study further
highlighted the potential of NLLB-200 (Distilled-
600M) by showing that fine-tuning this model can
substantially improve translation quality for spe-
cific language pairs, such as Spanish to Quechua
and Spanish to Guarani (Gilabert et al., 2024).
Additionally, LoRA-based approaches (Hu et al.,
2022) have shown promise by enabling efficient pa-
rameter updates in large language models without
requiring extensive computational resources. No-
tably, leveraging LoRA has led to a performance
improvement of 14.2%.

Tokenization Strategies
Indigenous languages often exhibit agglutinative or
polysynthetic structures that challenge standard to-
kenization methods. (Attieh et al., 2024) compared
various tokenization strategies, including Senten-
cePiece and BPE-MR. They found that BPE-MR
performs better for morphologically rich languages
by preserving meaningful subword units. Our ap-
proach inspired upon these findings by tailoring
tokenization strategies to the linguistic characteris-
tics of AmericasNLP languages.

Overgeneration issues
Overgeneration is a well-documented issue in ma-
chine translation systems, where models produce
excessively long or redundant outputs that compro-
mise translation quality. Prior work has addressed
this problem through evaluation metrics and ar-
chitectural modifications. For instance, LAAL
(Length-Adaptive Average Lagging) provides un-
biased metrics to measure overgeneration during
simultaneous translation tasks (Papi et al., 2022).
Additionally, methods such as beam search opti-
mization (Cohen and Beck, 2019) have been pro-
posed to mitigate excessive output length.

Addressing Similar Challenges
MMTAfrica (Emezue and Dossou, 2022) employs
backtranslation and reconstruction techniques to
enhance multilingual translations for African lan-
guages. Similarly, we have utilized backtranslation

in our system, enabling each of our models to trans-
late between Spanish and Indigenous languages
bidirectionally. On the other hand, ModeLing (Chi
et al., 2024) is a benchmark dataset designed to
evaluate linguistic reasoning in low-resource set-
tings. This work focused on phenomena such as
possessive morphology and word order variation.
ModeLing provides insights into linguistic chal-
lenges similar to those faced in AmericasNLP.

3 Dataset

The dataset provided by AmericasNLP 2025 in
Shared Task 1 (de Gibert et al., 2025) focuses
on MT between Spanish and 13 Indigenous lan-
guages of the Americas: Awajun (agr), Aymara
(ayr), Bribri (bzd), Asháninka (cni), Chatino (ctp),
Guarani (grn), Wayuunaiki (guc), Wixarika (hch),
Nahuatl (nah), Otomí (oto), Quechua (quy), Rara-
muri (tar) and Shipibo-Konibo (shp). It is divided
into training, development, and test sets. Training
samples vary from 3,883 (Asháninka) to 125,008
(Quechua), while development sets contain be-
tween 599 and 6,635 samples per language. The
test set is mostly balanced, with 1,003 samples per
language, except for Awajun (358) and Wayuunaiki
(498). The dataset supports two translation sub
tasks: Spanish to Indigenous languages (Es→Xx)
and Indigenous languages to Spanish (Xx→Es).
Across all datasets, we identified an average of ap-
proximately 765 new words per language that were
not present in the initial vocabulary of the NLLB-
200(Distilled-600M) tokenizer (Costa-Jussà et al.,
2022), which we used for this task. Among the pro-
vided datasets, we have utilized all except Chatino
and Rarámuri. Here the number of train, devel-
opment, and test datasets for different subtasks is
shown in the table 1.

4 Methodology

In this section, we explain the process of trans-
lating a sentence into a specific language. Here,
we will discuss both sub-tracks of AmericasNLP
2025 Shared Task 1, where Spanish is translated
to Indigenous languages and vice versa. Addition-
ally, we will see how to handle unknown words
while training the model for a new language. Also
we explore how sentence length can help reduce
translation errors.

5https://en.wikipedia.org/wiki/Wayuu_language
6https://en.wikipedia.org/wiki/Aymara_language
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Language Train Dev Test
agr 21,964 1,018 358
ayr 6,531 996 1,003
bzd 7,508 996 1,003
cni 3,883 883 1,003
ctp 357 499 1,000
grn 26,032 995 1,003
guc 59,715 6,635 498
hch 8,966 994 1,003
nah 16,145 672 1,003
oto 4,889 599 1,003
quy 125,008 996 1,003
shp 14,592 996 1,003
tar 14,720 995 1,003

Table 1: Language Data Across Stages

4.1 Data Preprocessing
Data preprocessing is a crucial step in preparing the
dataset for MT. In this step, we have cleaned and
standardized text to improve model performance
and ensure consistency across languages.

4.1.1 Punctuation Removal
In this step, we remove punctuation marks to en-
sure uniformity across the dataset. The removal
of punctuation helps in the tokenization process
as it reduces unnecessary symbols. We used the
MosesPunctNormalizer (Koehn et al., 2007) func-
tion from the sacremoses (Face, 2018) library for
normalization. For example,
Before Removal: Tujash, senchi nampekaju, nunik
jiyanitan nagkamawag, senchi maninau.
After Removal: Tujash senchi nampekaju nunik
jiyanitan nagkamawag senchi maninau.

4.1.2 Whitespace and Character Cleaning
Whitespace inconsistencies were addressed by re-
moving extra spaces and ensuring proper format-
ting. Leading and trailing spaces were trimmed,
and multiple spaces were condensed into one. Ad-
ditionally, invalid characters were identified and
removed to avoid errors during tokenization. In
the following example an unnecessary extra space
before a fullstop is removed,
Before Cleaning: Nuniamuik pishak najaneaku .
After Cleaning: Nuniamuik pishak najaneaku.

4.1.3 Lowercasing
All text was converted to lowercase for consis-
tency unless case sensitivity was required. How-
ever, sometimes capitalization is important, like for

proper nouns, acronyms, or special terms. In those
cases, we keep the original case instead of convert-
ing everything to lowercase. To ensure accurate
handling of case-sensitive words, we utilized the
SpaCy library (Honnibal et al., 2020) for Spanish
text processing. SpaCy’s built-in Named Entity
Recognition (NER) capabilities allowed us to iden-
tify and retain the original case for entities like
names, locations, and other significant terms. For
instance,
Before: Etsa wantintuk yumijau
After: etsa wantintuk yumijau

4.1.4 Handling Unknown Tokens
Unknown tokens are words or symbols not present
in the tokenizer’s vocabulary. To address this,
we introduced <unk> tokens to represent out-of-
vocabulary items. During preprocessing, texts con-
taining unknown tokens were flagged for review,
allowing us to refine the vocabulary or handle these
cases systematically. For instance, rare Indigenous
words were either added to the tokenizer or mapped
to <unk> during training. This strategy minimized
disruptions caused by unseen words while main-
taining translation quality.

4.2 Token Adjustment

Since some languages are new to the model, we
need to adjust the tokenization process to fit them.
This step is essential for helping the model general-
ize and properly understand Indigenous languages.
By doing this, we can improve translation quality
and ensure the model handles these languages more
effectively.

4.2.1 Adding New Language Tokens
To add new languages in the translation model,
we introduced special language tokens. These
tokens help the model recognize the source and
target languages during both training and inference.
The token addition process involved updating the
tokenizer’s vocabulary and mappings to integrate
these new tokens seamlessly. Each language was
assigned a unique token, such as <agr_Latn> for
Awajun and <spa_Latn> for Spanish. These tokens
were added to sentences during training to clearly
specify the language. For example:
Before: Yama nagkamchamunmak Chijajai,
Timantim, Sukuyá.
After: <agr_Latn>Yama nagkamchamunmak
Chijajai, Timantim, Sukuyá.
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Language Closest Sup-
ported Lan-
guage

Basis for Similarity

agr_Latn
(Awajun)

quy_Latn
(Quechua)

Geographic proximity in Peru and shared agglutinative mor-
phology (Goulder, 2005).

bzd_Latn
(Bribri)

grn_Latn
(Guarani)

Both are polysynthetic languages with tonal systems in
Central and South America (Kann et al., 2022).

cni_Latn
(Asháninka)

quy_Latn
(Quechua)

Regional proximity in Peru and shared syntactic traits (Goul-
der, 2005; Bustamante et al., 2020).

guc_Latn
(Wayuu-
naiki)

grn_Latn
(Guarani)

Polysynthetic structure and noun incorporation in northern
South America.5

hch_Latn
(Wixarika)

quy_Latn
(Quechua)

Shared agglutinative features despite different language
families (Goulder, 2005).

nah_Latn
(Nahuatl)

ayr_Latn
(Aymara)

Typological similarities like agglutination and SOV word
order due to historical interactions.6

oto_Latn
(Otomí)

ayr_Latn
(Aymara)

Borrowing from Nahuatl and typological resemblance to
Aymara.6

shp_Latn
(Shipibo-
Konibo)

quy_Latn
(Quechua)

Shared Amazonian influences and agglutinative morphol-
ogy (Goulder, 2005; Bustamante et al., 2020).

Table 2: Mapping of Embedding Initialization for Unsupported Languages Based on Linguistic Similarity using
NLLB-200 (Distilled-600M)

4.2.2 Embedding Initialization

The NLLB-200 (Distilled-600M) (Costa-Jussà
et al., 2022) model directly supports three Indige-
nous languages: Aymara (ayr_Latn), Guarani
(grn_Latn), and Quechua (quy_Latn). However,
when extending the model to new languages
that are not explicitly supported, embeddings are
initialized using representations from linguisti-
cally similar languages. For example, Awajun
(agr_Latn) uses Quechua(quy_Latn) embeddings
due to linguistic similarities. This approach
leverages existing knowledge, reducing training
time and improving convergence. Using PyTorch,
the embedding layer is resized, and new token
IDs are mapped to pre-trained embeddings,
ensuring compatibility while preserving prior
representations. This method enables efficient
extension to low-resource languages.

In comparison, models like LLaMA 3.1 (Tou-
vron et al., 2023) and XGLM (Lin et al., 2021)
offer multilingual capabilities but do not directly
support Indigenous languages. LLaMA 3.1 focuses
on eight high-resource languages, such as Spanish
and Hindi. XGLM uses a balanced multilingual
corpus but lacks direct support for low-resource

Indigenous languages.

4.3 Fine Tuning Process

The fine-tuning process was conducted separately
for Task 1 (Es→Xx) and Task 2 (Xx→Es) using
NLLB-200(Distilled-600) (Costa-Jussà et al.,
2022), LLaMA 3.1 (Touvron et al., 2023), and
XGLM (Lin et al., 2021) models. Each model was
adapted to the specific translation direction by
leveraging its pre-trained multilingual capabilities.

For NLLB, the training process involved
freezing encoder layers to reduce computational
overhead while updating decoder layers for
task-specific adaptation. The model was fine-tuned
using a custom training loop with Adafactor
optimizer and a constant learning rate scheduler
with warm-up steps. Training batches were dynam-
ically generated, ensuring source-target alignment
through language-specific tokens. Periodic
checkpoints were saved, and the best-performing
model was selected based on ChrF++ scores on the
development set. Language-specific tokens (e.g.,
spa_Latn for Spanish and agr_Latn for Awajun)
were used to guide the model during training and
evaluation.
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For LLaMA 3.1 and XGLM, we followed a
similar fine-tuning strategy but incorporated the
parameter-efficient technique LoRA. This method
allowed us to train adapter layers in self-attention
blocks while freezing most of the model’s parame-
ters. Dynamic batching was employed, where lan-
guage pairs were randomly selected for each batch.
It allowed the model to learn from diverse linguis-
tic contexts and improve generalization across lan-
guages. Mixed-precision training was employed
to further optimize GPU utilization. Both models
were fine-tuned using the same bilingual datasets
but with task-specific configurations for each trans-
lation direction.

4.4 Post Processing

To ensure the translated text remains concise and
relevant, we first determined the length of the orig-
inal sentence and compared it to the length of the
translated output. If the translated text was more
than twice the length of the original, we retained
only the first 1.25 times the original length. Since
we used a causal learning model, it sometimes gen-
erated extra information. This method helped con-
trol excessive output while maintaining translation
quality.

5 Results and Analysis

The evaluation of our system in the AmericasNLP
2025 Shared Task on MT revealed mixed results
across languages for both Track 1 (Spanish to In-
digenous languages) and Track 2 (Indigenous lan-
guages to Spanish) will be discussed in this sec-
tion. Our experiments utilized fine-tuned versions
of NLLB-200 (Distilled-600M) (Costa-Jussà et al.,
2022), XGLM 1.7B (Lin et al., 2021), and Llama
3.1(8B-Instruct) (Touvron et al., 2023), focusing on
multilingual setups to optimize performance across
diverse linguistic structures. The test results of
the submitted system using NLLB-200 (Distilled-
600M) are presented in Table 6.

5.1 Hyper Parameter Setting

Table 5 shows parameter settings for different mod-
els.

In Table 5, lr, optim,la and l4 represents learn-
ing_rate,optimizer, lora_alpha and load_in_4bit
and respectively.

5.2 Evaluation Metrics

The performance of various models has been eval-
uated using the Bilingual Evaluation Understudy
(BLEU) score, the Character-level F-score (ChrF),
and the Character-level F-score++ (ChrF++) met-
rics on the development and test dataset.

5.3 Comparative Analysis

In this subsection, we provide a detailed analysis
of the performance of different models across both
development and test datasets for the submitted lan-
guages. Using Table 3 and Table 4, which present
development results, and Table 6, summarizing test
results, we analyze the performance of submitted
models across languages. This comparison helps
identify trends and determine which models per-
form better for specific languages in both tracks.

5.3.1 Track 1 (Es→Xx)
NLLB-200 (Distilled-600M) consistently outper-
formed LLaMA 3.1 and XGLM across all lan-
guages on both development and test datasets.
While all models performed below baseline, no-
table trends were observed in Awajun (agr) and
Quechua (quy), where results approached the base-
line. For the test data, NLLB-200 achieved the
highest ChrF++ scores, with 35.16 for agr and
31.01 for quy, demonstrating its ability to handle
low-resource Indigenous languages. On the de-
velopment data, agr and quy also performed well,
with ChrF++ scores of 31.55 and 40.01, respec-
tively, showing consistency across datasets.
LLaMA 3.1 exhibited moderate performance for
agr on development data (25.17 ChrF++) but strug-
gled with other languages, including quy (13.74
ChrF++). XGLM performed the weakest overall,
with ChrF++ scores of 20.44 for agr and only 9.45
for quy on development data, indicating signifi-
cant challenges in adapting to low-resource settings.
However, even in NLLB-200 (Distilled-600M),
the best-performed model also showed poor per-
formance relative to the baseline, particularly for
morphologically complex languages like Nahuatl
(ChrF++: 13.88 vs. baseline 26.36) and Wayu-
uunaiki (ChrF++: 14.40 vs. baseline 24.74) on
test results. These results highlight challenges in
handling linguistic diversity despite leveraging ad-
vanced models.

5.3.2 Track 2 (Xx→Es)
The performance of NLLB-200, LLaMA 3.1, and
XGLM in Track 2 was evaluated using ChrF++
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Language NLLB-600M Llama 3.1 (8B-
Instruct)

XGLM 1.7B

BLEU ChrF++ BLEU ChrF++ BLEU ChrF++
BLEU ChrF++ BLEU ChrF++ BLEU ChrF++

agr 5.97 31.55 5.11 25.17 3.25 20.44
aym 4.03 30.11 4.09 28.13 2.51 22.45
bzd 3.63 16.25 2.72 15.19 1.85 12.37
cni 2.35 24.24 2.02 22.46 1.45 18.92
grn 3.44 19.53 2.57 20.13 1.83 16.24
guc 1.11 17.56 0.56 11.44 0.32 8.76
hch 8.66 28.17 6.79 24.21 4.32 19.87
nah 1.13 14.64 0.93 10.29 0.61 7.85
oto 0.62 15.12 0.23 6.43 0.15 4.21
quy 2.43 40.01 1.16 13.74 0.78 9.45
shp 1.30 18.12 1.01 9.76 0.67 6.32

Table 3: Comparison of BLEU and ChrF++ scores of development data across different models and languages of Es
to Xx(Track 1).

Language NLLB-600M Llama 3.1 (8B-
Instruct)

XGLM 1.7B

BLEU ChrF++ BLEU ChrF++ BLEU ChrF++
agr 11.12 32.80 9.45 28.17 6.73 23.54
aym 8.82 31.72 7.21 26.85 5.34 22.16
bzd 4.31 26.74 3.52 22.18 2.65 18.72
cni 2.85 21.20 2.31 17.65 1.74 14.84
grn 8.62 32.07 7.15 27.26 5.17 22.45
guc 2.22 12.58 1.78 10.46 1.33 8.81
hch 3.69 23.36 3.05 19.48 2.21 16.35
nah 7.22 26.89 5.86 22.41 4.33 18.82
oto 1.50 19.01 1.23 15.84 0.90 13.31
quy 8.76 33.83 7.18 28.76 5.26 23.68
shp 7.22 27.33 5.87 23.23 4.33 19.13

Table 4: Comparison of BLEU and ChrF++ scores of development data across different models and languages of
Xx to Es(Track 2).

Model lr optim la l4
NLLB-200 2e−4 Ada - -
(Distilled-600M) Factor
Llama 3.1 3e−3 Paged 4 8
(8B-Instruct) Adamw
XGLM 1.7B 3e−3 Adam 4 8

Table 5: Parameter settings for different models

scores on both development and test datasets.
Similarly, as track 1 Awajun (agr) and Quechua
(quy) showed results approaching the baseline,
demonstrating better adaptability compared to
other languages.

On the development data, NLLB-200 outper-
formed the other models across all languages.
It achieved ChrF++ scores of 32.80 for agr and
33.83 for quy, showcasing its strong multilingual
capabilities. LLaMA 3.1 followed with moderate
performance, scoring 28.17 ChrF++ for agr and
22.86 ChrF++ for quy, indicating some adaptability
to low-resource languages in this track. XGLM
exhibited weaker performance overall, with
ChrF++ scores of 23.54 for agr and 20.36 for
quy, reflecting its challenges in handling complex
linguistic diversity.
On the test data, NLLB-200 maintained its
dominance, achieving ChrF++ scores of 33.70 for
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Language Es to Xx (Track 1) Xx to Es (Track 2)
BLEU ChrF ChrF++ BLEU ChrF ChrF++

agr 7.82 40.10 35.16[1] 13.21 36.11 33.70[2]
aym 1.96 31.61 27.72[1] 5.89 27.53 25.78[1]
bzd 4.55 21.68 22.77[1] 5.87 27.53 26.22[2]
cni 2.43 26.96 23.17[1] 3.06 21.34 20.13[2]
grn 3.46 17.84 16.21[2] 15.14 26.15 24.70[2]
guc 0.11 15.86 12.83[2] 3.14 16.19 14.40[2]
hch 11.07 30.47 26.77[1] 3.98 23.69 22.02[2]
nah 0.65 15.73 12.64[2] 4.00 15.40 13.88[2]
oto 0.76 14.16 12.02[1] 1.50 19.91 17.80[1]
quy 3.07 36.14 31.01[2] 10.60 33.26 31.71[2]
shp 0.37 14.94 12.76[2] 8.94 32.58 30.83[2]

Table 6: Translation Evaluation Metrics for submitted test languages using NLLB-200 (distilled-600M)

agr and 31.71 for quy, coming close to the baseline
scores of 38.39 (agr) and 37.18 (quy). These
results highlight NLLB-200’s ability to generalize
well across datasets. However, even NLLB-200
struggled with morphologically complex languages
like Nahuatl (nah), scoring only 13.88 ChrF++,
which is below its baseline of 26.36 ChrF++.

Overall, NLLB-200 delivered solid results in
both tracks for Awajun (agr), indicating that
the token adjustments effectively compensated
for the model’s lack of direct understanding of
the language. This demonstrates the adaptabil-
ity of NLLB-200 in handling low-resource lan-
guages through fine-tuning. LLaMA 3.1 exhib-
ited moderate potential, particularly for Awajun
(agr) and Quechua (quy), suggesting that further
fine-tuning could enhance its performance in these
languages. However, all models, including NLLB-
200, showed relatively poor performance compared
to the baseline for morphologically complex lan-
guages like Nahuatl (nah) and Otomí (oto), high-
lighting the challenges posed by such linguistic
diversity.

6 Conclusion

This research work on MT provided valuable in-
sights into the challenges and potential of trans-
lating between Spanish and Indigenous languages.
Our approach incorporated techniques like token
adjustments and dynamic batching to address lin-
guistic diversity and complex grammatical struc-
tures. The results highlighted both the strengths
and limitations of our models. While Awajun and
Quechua showed decent performance, most other

languages underperformed against the baseline, re-
vealing gaps in handling morphosyntactic complex-
ities. This study shows the importance of devel-
oping tailored strategies for Indigenous languages,
which often feature unique linguistic phenomena
such as polysynthesis and agglutination.

7 Limitations

Our models struggled to consistently outperform
the baseline in most languages, likely due to dif-
ficulties in handling complex grammar and sen-
tence structures. Training large models like NLLB-
200 (Distilled-600M) and Llama required powerful
GPUs, which were not fully available. This con-
straint impacted critical processes such as hyperpa-
rameter tuning and token adjustments, which are
essential for optimizing performance. Additionally,
the reduced training duration (limited to 5 epochs)
further hindered the models’ ability to fully adapt
to the linguistic intricacies of the target languages.

8 Future Work

Future efforts will focus on addressing the chal-
lenges identified in this study to improve translation
quality for Indigenous languages. First, increas-
ing training epochs and leveraging more powerful
computational resources will allow for better fine-
tuning of large models. Exploring transfer learn-
ing from linguistically similar languages may also
enhance performance for underperforming cases
like Guarani and Nahuatl. Another key area for
improvement is the development of specialized
architectures or fine-tuning strategies tailored to
polysynthetic and agglutinative languages. Finally,
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expanding the dataset with diverse linguistic phe-
nomena and experimenting with ensemble methods
could further enhance translation accuracy and ro-
bustness across all languages.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu
Wang, Shuohui Chen, Daniel Simig, Myle Ott, Na-
man Goyal, Shruti Bhosale, Jingfei Du, et al. 2021.
Few-shot learning with multilingual language models.
arXiv preprint arXiv:2112.10668.

Sara Papi, Marco Gaido, Matteo Negri, and Marco
Turchi. 2022. Over-generation cannot be rewarded:
Length-adaptive average lagging for simultaneous
speech translation. arXiv preprint arXiv:2206.05807.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

133

https://pypi.org/project/sacremoses/
https://pypi.org/project/sacremoses/
https://spacy.io
https://spacy.io
https://aclanthology.org/P07-2045/
https://aclanthology.org/P07-2045/


Proceedings of the Fifth Workshop on NLP for Indigenous Languages of the Americas (AmericasNLP), pages 134–152
May 4, 2025 ©2025 Association for Computational Linguistics

Findings of the AmericasNLP 2025 Shared Tasks on Machine
Translation, Creation of Educational Material, and Translation

Metrics for Indigenous Languages of the Americas
Ona de Gibert≁* Robert Pugh♣* Ali Marashian♯* Raúl Vázquez≁ Abteen Ebrahimi♯
Pavel Denisov♠ Enora Rice♯ Edward Gow-Smithγ Juan C. Prietoβ Melissa Roblesβ

Rubén Manriqueβ Oscar Moreno Veliz▷◁ Ángel Lino Campos▷◁ Rolando Coto-Solano♡

Aldo AlvarezΩ Marvin Agüero-Torales△∇ John E. Ortegaα Luis Chiruzzo♢

Arturo Oncevay▷◁ Shruti Rijhwani℧ Katharina von der Wense♯† Manuel Mager‡†

≁University of Helsinki ♣Indiana University, Bloomington ♯University of Colorado Boulder
♠Fraunhofer IAIS γUniversity of Sheffield βUniversidad de Los Andes

▷◁Pontificia Universidad Católica del Perú ♡Dartmouth College △Universidad de Granada, Spain
ΩUniversidad Nacional de Itapua, Paraguay ∇Global CoE of Data Intelligence, Fujitsu
♢Universidad de la República, Uruguay αNortheastern University ℧Google DeepMind

†Johannes Gutenberg University Mainz ‡Amazon

Abstract

This paper presents the findings of the Americ-
asNLP 2025 Shared Tasks: (1) machine trans-
lation for truly low-resource languages, (2)
morphological adaptation for generating educa-
tional examples, and (3) developing metrics for
machine translation in Indigenous languages.
The shared tasks cover 14 diverse Indigenous
languages of the Americas. A total of 12 teams
participated, submitting 27 systems across all
tasks, languages, and models. We describe the
shared tasks, introduce the datasets and evalua-
tion metrics used, summarize the baselines and
submitted systems, and report our findings.

1 Introduction

The recent rapid progress in Natural Language Pro-
cessing (NLP), significantly accelerated by the im-
proved architectures, training methods, and the rise
of Large Language Models (LLMs), has primarily
benefited high-resource languages, languages that
have large amounts of digital text available such
as English or French. In contrast, languages with
low amounts of data, known as low-resource lan-
guages, still face considerable challenges in terms
of both data availability and the development of
appropriate models (e.g., Ignat et al., 2024). Low-
resource languages that are native to a specific re-
gion, or Indigenous languages, remain challenging
for even the most novel NLP techniques (Mager
et al., 2024; Weerasinghe et al., 2025; Hettiarachchi
et al., 2025).

*In order, the main organizers for shared tasks 1, 2, and 3.
† Irrespective of Manuel Mager’s listed affiliation, this

work is independent of his employment at Amazon.

Figure 1: Map of Central and South America presenting
an approximate distribution of where each Indigenous
language covered by the three Shared Tasks is spoken.

To address these disparities, the Workshop on
NLP for Indigenous Languages of the Americas
(AmericasNLP) was established with the goal of
advancing NLP research for Indigenous languages
from the American continent.

Building on the success of last year’s Shared
Tasks (ST) (Ebrahimi et al., 2024; Chiruzzo et al.,
2024), the 2025 edition expands its scope with
three STs designed to address critical challenges in
working with Indigenous languages. Many of the
languages included in the STs are polysynthetic,
agglutinative or tonal languages, features which are
not mutually exclusive. In addition, they often lack
a standardized orthography, exhibit dialectal vari-
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ation and frequent code-switching with dominant
regional languages (Mager et al., 2019).

The goal of this effort is not only to advance
methodologies for low-resource settings but also
to support the development of tools for language
learning, preservation, and revitalization. More-
over, we expect to develop technologies that can
include the native speakers of these languages in
the recent developments in our field. This year’s
STs include:

• ST1: Machine Translation (MT) for low-
resource languages, translating between
Spanish and 13 Indigenous languages with
limited parallel data. This year, it features two
new languages (Awajun and Wayuunaiki), and
a new translation direction (into Spanish).

• ST2: Morphological adaptation to gener-
ate educational examples transforming sen-
tences to create grammar exercises for lan-
guage learners. This year, we include Nahuatl
as an additional language.

• ST3: Developing metrics for MT in Indige-
nous languages designing evaluation met-
rics suited to the linguistic properties of low-
resource languages. The first edition of its
kind.

Across all tasks, languages, and models, a total
of 12 teams participated, submitting 27 systems.
The consistent interest from the community high-
lights the continued interest in developing NLP
tools for Indigenous languages.

We publicly release the training and develop-
ment data through our GitHub repository.1

2 Languages

The STs feature 14 Indigenous languages spoken
across North, Central, and South America, listed in
Table 1. These languages differ in language fam-
ily, number of speakers, geographical distribution,
and resource availability; reflecting their diversity.
They vary in their levels of official recognition, and
in many cases, speaker population data is based
on outdated census information. Figure 1 shows
the approximate geographical distribution of the
languages included in the tasks. Below, we briefly
introduce each of the languages.

1https://github.com/AmericasNLP/
americasnlp2025/

LANGUAGE FAMILY ISO 639-3 GLOTTOLOG ST

Asháninka Arawak cni asha1243 1
Awajun Chicham agr agua1253 1
Aymara Aymaran aym nucl1667 1
Bribri Chibchan bzd brib1243 1,2,3
Chatino Oto-Manguean ctp chat1268 1
Guarani Tupi-Guarani grn para1311 1,2,3
Maya Mayan yua yuca1254 2
Nahuatl Uto-Aztecan nah azte1234 1,2,3
Otomí Oto-Manguean oto otom1300 1
Quechua Quechuan quy ayac1238 1
Rarámuri Uto-Aztecan tar tara1321 1
Shipibo-Konibo Panoan shp ship1253 1
Wayuunaiki Arawak guc wayuu1243 1
Wixarika Uto-Aztecan hch huic1243 1

Table 1: Languages of the Shared Tasks, their language
families, ISO 639-3 and Glottolog codes, and Shared
Tasks were they are included.

Asháninka (aka Campa) is an Arawakan lan-
guage spoken primarily in Peru and Brazil by ap-
proximately 74,500 speakers. It is agglutinative
and polysynthetic and has a Verb-Subject-Object
(VSO) word order.

Awajun (aka Aguaruna) is a Chicham language
spoken in northern Peru, by around 53,400 speak-
ers. It follows a Subject-Object-Verb (SOV) and
has rich morphology that consists of agglutinative
suffixes. We use the Marañón variant.

Aymara is an Aymaran language spoken in the
Andean regions of Bolivia and Peru, with approx-
imately 1.7 million speakers. It is recognized for
its agglutinative morphology and polysynthetic na-
ture, typically following a SOV word order. We
use Central Aymara variant, spoken in Aymara La
Paz.

Bribri is a Chibchan language spoken in south-
ern Costa Rica, by an estimated 7,000 people. The
language exhibits morphological ergativity and is
tonal, with SOV word order. We use the Amburi
variant.

Chatino refers to a group of indigenous
Mesoamerican languages within the Zapotecan
branch of the Oto-Manguean family, spoken in Oax-
aca, Mexico. These languages are tonal and have
complex systems of verbal inflection. We use the
San Juan Quiahije variant, spoken by about 5,000
people.

Guarani is a Tupi–Guarani language spoken
mainly in Paraguay, where it is one of the official
languages, as well as in parts of Bolivia, Argentina,
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and Brazil. It has approximately 6.5 million speak-
ers. It is an agglutinative language. We use the
Paraguayan variant, except the training data for
ST1, which consists of a mix of dialects.

Maya is a Mayan language spoken on the Yu-
catán Peninsula of Mexico, northern Belize, and
parts of Guatemala, with approximately 800,000
speakers. It is characterized by its use of glottalized
consonants and a Verb-Subject-Object (VSO) word
order. We use the Yucatec Maya variant.

Nahuatl Nahuatl is a group of related Uto-
Aztecan languages spoken throughout Mexico and
in parts of Central America, with approximately
1.6 million speakers in total. There are over 30
variants of the language. It is polysynthetic and
agglutinative.

For ST1, we use a diverse set of variants, in-
cluding colonial-era written Nahuatl, for training
(from the Axolotl corpus (Gutierrez-Vasques et al.,
2016)) and Huasteca Nahuatl for ST1 evaluation
as well as for ST3. ST2 focuses on Western Sierra
Puebla Nahuatl, a relatively understudied Nahuatl
variety.

Otomí (aka Hñähñu2) is an Oto-Manguean lan-
guage spoken in central Mexico by about 300,000
people. It has nine variants. Otomí languages are
tonal and exhibit a complex system of verb inflec-
tion, typically following SVO word order. We fo-
cus on the Ixtenco Otomí (OTX), a variant with less
than 460 speakers, in the Mexican state of Tlaxcala.

Quechua is a family of languages spoken across
the Andean regions of Argentina, Bolivia, Chile,
Colombia, Ecuador, and Peru, with approximately
7.2 million speakers. It is recognized as an official
language in Peru and Bolivia and is known for its
agglutinative structure and SOV word order. We
use the Quechua Ayacucho variant, although the
training data also includes text in Quechua Cuzco.

Rarámuri (aka Tarahumara) is a Uto-Aztecan
language spoken in northern Mexico, by around
70,000 speakers. It is polysynthetic and agglutina-
tive. We use the highlands variant.

Shipibo-Konibo is a Panoan language spoken in
Peru by approximately 26,000 people. It is char-
acterized by its agglutinative morphology and pre-
dominantly SOV word order and uses postposi-
tions.

2Other names for the language are used, depending on the
language variant.

Wayuunaiki is an Arawakan language spoken in
northern Colombia and Venezuela, primarily by the
Wayuu community, with about 420,000 speakers.
It is an agglutinative language with a predominant
SOV word order.

Wixarika (aka Huichol) is a Uto-Aztecan lan-
guage spoken in Mexico, by approximately 35,000
speakers. It is official in Mexico with four vari-
ants. It is an agglutinative morphology with strong
polysynthetic characteristics and follows the SOV
word order. We use the Nayarit version, spoken in
Zoquipan.

3 ST1: A ST on Machine Translation on
Truly Low-resource Languages

Description Low-resource MT (Haddow et al.,
2022) is mainly characterized by the limited avail-
ability of parallel corpora, but it also faces addi-
tional challenges, such as the scarcity of monolin-
gual data and issues related to data quality.

This task focuses on translation between Spanish
and 13 indigenous languages. Now in its fourth
iteration (Mager et al., 2021; Ebrahimi et al., 2023,
2024), it continues to push the boundaries of MT
for these languages, emphasizing generalization
strategies for low-resource MT and the creation of
new linguistic resources to support these efforts.

For this year’s edition, we introduce two new
languages (Awajun, Wayuunaiki) for the ST1 task
and expand the ST to cover both translation into
an Indigenous language from Spanish (Track 1),
as well as translation from an Indigenous language
into Spanish (Track 2). These two translation direc-
tions are organized as separate tracks within the ST.
Furthermore, following the spirit of open science,
this year we only take into account submissions
which rely solely on open-source weights for the
final ranking.

Data Table 7 in the Appendix shows our data
statistics. We use the same training data as in pre-
vious editions for the repeating languages. This
consists of the organizers’ collection of parallel
sentences, and the data collected by Vázquez et al.
(2021) and De Gibert et al. (2023), a combina-
tion of scraped sources, and synthetically generated
data, obtained through back-translation.

For Wayuunaiki, the train dataset was derived
from the work of Prieto et al. (2024), with a thor-
ough curation and selection of the data. It was
compiled from grammar books, the Bible, short
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stories, a dictionary and the Colombian constitu-
tion, with a total of 59,715 sentences. To process
this data, different extraction techniques were ap-
plied based on the structure of each source. Web
scraping was used for highly structured texts like
the Bible, ensuring precise verse alignment. For
more complex sources, such as grammar books
and linguistic studies, GPT-4 was used to identify
sections of the text containing translated sentences,
extracting and tabulating them into a standardized
format. In cases were texts were available only as
scanned documents or unstructured PDFs, OCR
combined with GPT-4 processing enabled the re-
trieval of bilingual content. Finally, a manual re-
view process was conducted across all sources to
filter incomplete translations and correct formatting
inconsistencies.

For Awajun, the main part of the training data
was extracted from various web sources such as
poems, stories, laws, protocols, guidelines, hand-
books, the Bible, and news published by Ojo
Público,3 a news media organization that supported
the first iteration of the dataset (Moreno et al.,
2024). An official translator validated all sources
for the corpora to ensure the same dialect is used.
Only a few of the sources were aligned automati-
cally, using line breaks and sentence length heuris-
tics as reference, while most of the sources were
aligned manually to retain the quality of the trans-
lations.

For development and evaluation, we use the
AmericasNLP 2021 data (Mager et al., 2021), a
multi-way parallel dataset of the XNLI (Conneau
et al., 2018) test set into 10 languages of the Amer-
icas (Asháninka, Aymara, Bribri, Guarani, Nahuatl,
Otomí, Quechua, Rarámuri, Shipibo-Konibo, and
Wixarika). The Chatino data comes from Mexi-
can court proceedings. For an in-depth review of
the development and evaluation data, please refer
to Ebrahimi et al. (2022, 2024) and Mager et al.
(2021).

For the new languages, the Wayuunaiki develop-
ment set is sourced from the work of Prieto et al.
(2024), while the test set is created by translating
the first 95 pages of the book Journey to the Cen-
ter of the Earth by Verne (1874), with an average
of 150 words per page. To uphold high ethical
standards, we ensured that translators received fair
compensation. The test set also includes the trans-
lation of the short story Benjamin Bunny by Potter

3https://ojo-publico.com/

(1904). In the case of Awajun, the development set
was split from the available training data. We com-
pile a small test set that contains translations pro-
vided by a professional translator in texts extracted
from news within the Territorio Amazonas domain,
and another portion of the test set are examples
extracted from a dictionary by Espejo Apikai et al.
(2021) not processed for the train or development
set.

Metrics We use ChrF++ (Popović, 2017) as the
main metric of the task, although we also report
BLEU (Papineni et al., 2002).

ChrF++ is an overlap-based metric at the
character-level, which is more suitable than BLEU
for our task since most languages are morphologi-
cally rich, and BLEU often penalizes morphologi-
cal variants (Chauhan et al., 2023). The final score
for each submission (ChrF++ column in Table 8)
is calculated by taking an average over all thirteen
languages; if there is no model output for a given
language, the score is taken as 0.

Baselines For our baseline, we follow the train-
ing set-up of “Submission 3” to the 2023 edition
of the ST by Gow-Smith and Sánchez Villegas
(2023). We extend the embedding matrix of NLLB-
200-distilled-1.3B4 with language tags for the lan-
guages not already covered, and finetune on the
task data as well as additional training sources. We
finetune two separate models for Track 1 and 2.
See the original paper for further training details,
our only modification for this year is the addition of
the two new languages. We choose the best check-
point based on the highest average ChrF++ across
all languages.

Aiming to assess the current performance of
LLMs on the task languages, we also imple-
mented a fine-tuned a LLaMA3.2 model (Dubey
et al., 2024) 5 using Low-Rank Adaptation (LoRA)
adapters (Hu et al., 2022). This baseline performed
poorly, only managing to copy the source sentence;
however, we do not rule out the possibility of bugs
in our implementation.

Submitted Systems For this year’s ST1 we re-
cieved a total of 5 submissions by 3 different teams.
Below, we briefly describe each team’s participa-
tion:

• George Mason University (GMU) (Hus
et al., 2025): this team submits two systems

4facebook/nllb-200-distilled-1.3B
5meta-llama/Llama-3.2-3B-Instruct
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TEAM AGR AYM BZD CNI CTP GRN GUC HCH NAH OTO QUY SHP TAR

TRACK 1: SPA-XXX

Baseline 36.76 31.21 25.52 24.39 36.53 35.68 24.18 28.26 22.42 12.78 31.88 25.76 15.96
GMU 35.09 22.91 22.51 22.22 13.33 29.95 22.93 26.14 20.33 11.31 32.70 19.46 13.89
Syntax Squad 35.16 27.72 22.77 23.17 - 16.21 12.83 26.77 12.64 12.02 31.01 12.76 -
UCSP - - - - - - - - - - 16.75 - -

TRACK 2: XXX-SPA

Baseline 38.39 35.60 30.14 24.86 35.84 35.91 24.74 26.33 26.36 20.81 37.18 47.81 18.75
GMU 36.59 26.09 27.86 22.44 26.16 33.84 23.93 24.37 25.58 18.24 33.02 38.01 19.72
Syntax Squad 33.70 25.78 26.22 20.13 - 24.70 14.40 22.02 13.88 17.80 31.71 30.83 -
UCSP - - - - - - - - - - 17.87 - -

Table 2: The best CHRF++ scores for ST1 for each team (across all submitted systems) across all languages. Bold
values represent the best performing system overall, while underlined values are the best performing submission to
this year’s shared task.

for all language pairs in both tracks. First, they
finetune NLLB-200-3.3B with the provided
data for each language pair separately. Then,
they prompt GPT-4o-mini model with external
knowledge coming from bilingual dictionar-
ies (a translation word is provided for each
word of the sentence), two sample parallel
sentences (few-shot approach), a full gram-
mar book on the Indigenous language and a
suggested translation, which is the generated
hypothesis of the first NLLB-based system.
Since GPT4-0-mini is a closed-source model,
we only use their NLLB-based approach for
the ranking. GMU is the only team to submit
entries for all language pairs.

• Syntax Squad (Yahan and Amanul Islam,
2025): this team submits one system for 11
language pairs in both tracks and one extra
system for translation from Spanish into Ay-
mara. They perform data normalization and
then finetune NLLB-200-600M, LLaMA 3.1
8B Instruct, XGLM 1.7B (Lin et al., 2021).
They submitt their NLLB-based model, which
outperforms the other two in the develoment
set.

• Universidad Católica San Pablo (UCSP)
(Congora et al., 2025): this team participates
in the task for Quecha translation from/into
Spanish. They dedicate efforts to data col-
lection and data cleaning. Furthermore, they
expand their datasets by generating synthetic
sentences via the replacement of subjects and
verbs in the sentences. They use two meth-
ods: Wordnet, which is deemed unsatisfac-
tory, and an LLM (Phi3-mini for English and

Phi3.5 for Spanish). Then, they train two dif-
ferent architectures on the augmented dataset:
transformer-base (Vaswani et al., 2017) and
mT5-small (Xue et al., 2021).

Results The best performance per language for
each team is shown in Table 2. In the Appendix, Ta-
ble 8 provides the official ranking of the ST, which
excludes closed-source models, and Table 9 reports
the complete results for all submissions and teams.
The baseline is hard to beat in both tracks. In both
tracks, GMU is the only team to beat it for any
language. The strong performance of the baseline
indicates the importance of multilingual training, as
NLLB is finetuned across all language pairs simul-
taneously, unlike GMU’s NLLB-based submission,
which is finetuned on each language individually.

In Track 1 (SPA→XXX), GMU’s NLLB-based
submission achieves the highest average perfor-
mance, with a ChrF++ score of 21.95, closely
followed by Syntax Squad (17.93) and GMU’s
GPT-based system (18.81). GMU surpasses the
baseline only for Quechua, achieving a +0.82 gain
in ChrF++. While Syntax Squad performs well
overall, its results are notably weaker for Guarani,
Wayuunaiki, Nahuatl, and Shipibo-Konibo.

In Track 2, the best-performing model is also
GMU’s NLLB-based submission, with an average
ChrF++ score of 26.62, slightly ahead of their own
GPT-based system (26.41), which performs signifi-
cantly worse for Chatino. They surpass the baseline
for Rarámuri, achieving a +0.97 gain in ChrF++.
Overall, GPT-based models appear effective at post-
grammar correction for Spanish, but show weaker
performance for the Indigenous language targets.

Submissions for Quechua from UCSP underper-
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Language Num. Sentences Textual features Grammatical changes

(train-dev-test) Words/Sent Chars/Word TTR Changes/Sent Num Changes

Nahuatl 391-176-120 3.05 7.69 (20) 0.06 3.5 47
Maya 584-149-310 5.48 4.66 (14) 0.03 1.1 34
Bribri 309-212-480 3.75 3.39 (8) 0.02 2.8 28
Guarani 178-79-364 3.92 6.17 (14) 0.07 1.0 19

Table 3: A comparison of descriptive statistics of the corpora for ST2, calculated on the combination of the train
and dev sets. Included features about the text are the average sentence length, average word length, the length of the
longest word (in parentheses after the average word length), and the type-token ration for the corpus. With respect
to the "Grammatical features", we report the average number of requested grammatical changes per sentence, as
well as the total number of unique grammatical changes (i.e. feature-value pairs) in the entire corpus.

form when compared to other submissions, suggest-
ing that training models from scratch has stopped
being the most effective approach in low-resource
settings.

Findings MT where the target is an Indigenous
language appears to have reached a performance
plateau. Improvements in the AmericasNLP work-
shop seem to be difficult given current data limita-
tions. While this may not be the case in general,
the most effective strategy in the AmericasNLP
workshop remains to be the finetuning of a highly
multilingual pretrained model (such as NLLB). In
contrast, for translations where the target langauge
is a high-resource language like Spanish, LLMs
can provide a boost in performance. This is likely
due to their extensive pretraining and a stronger rep-
resentation of the higher-resource target language.
However, whether the performance gains justify
the practical costs of running these models remains
an open question.

4 ST2: A ST on Morphological
Adaptation to Generate Educational
Examples

Description Language education initiatives,
which are critical to many language revitalization
efforts, require educational materials that are costly
and time-consuming to create.

This task focuses on generating grammar exer-
cises for learners of four Indigenous languages. In
its first edition (Chiruzzo et al., 2024), the task in-
volved automatically transforming a given base sen-
tence by modifying its tense, aspect, or other mor-
phosyntactic features into a target sentence. These
sentences can later be used to create educational
materials for language learners. This year’s edition
features the addition of an endangered variety of
Nahuatl.

Data Four languages are included in this year’s
task: Bribri, Guarani, and Maya, which were all
included in last year’s task, and a new addition,
Nahuatl. Since the data for the first three languages
is the same as in last year’s task, we refer the reader
to Chiruzzo et al. (2024) for details.

Mexico’s Instituto Nacional de Lenguas Indíge-
nas (INALI) recognizes 30 Nahuatl varieties (IN-
ALI, 2012). The variant included in ST2 is com-
monly referred to as Western Sierra Puebla Nahuatl
or Zacatlán-Ahuacatlán-Tepetzintla Nahuatl (Náhu-
atl de la Sierra Oeste de Puebla, ISO-639-3: nhi),
spoken in the northwestern sierra region of the
state of Puebla, Mexico by less than 20,000 peo-
ple. This Nahuatl variety is relatively understudied,
with most linguistic work, such as a short unpub-
lished grammar and some examination of morpho-
logical and phonological phenomena, focusing on
the subvariety spoken in the community of San
Miguel Tenango, Zacatlán (Schroeder and Tuggy,
2010; Schroeder, 2014, 2015) or the municipality
of Ahuacatlán (Sasaki, 2014).

The sentences used (see. Table 3) for the ST
come from the community of Omitlán, Tepetz-
intla, where the specific Nahuatl communalect has
been less studied, though it has been included in
some recent computational work for the variety,
such as a morphological analyzer (Pugh and Ty-
ers, 2021b) and a Universal Dependencies treebank
(Pugh et al., 2022). The base sentences are a part
of a currently-unreleased corpus of grammatical
example sentences, and the transformed sentences
were verified by a native-speaking expert from the
community.

The set of features used to annotate the Nahuatl
data were:

• Person and number: Person/number of the
subject, object, and indirect object of the Verb,
and the possessor of the Noun in the sentence.
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System Name Bribri Maya Guarani Nahuatl Avg Rank

NAIST 41.25 42.90 32.69 17.50 33.59 1♢

JHU_1 22.71 63.87 43.68 3.33 33.40 2♢

JHU_4 18.75 60.00 40.93 1.67 30.34 3
JHU_2 20.21 59.35 38.19 3.33 30.27 4
JHU_5 15.83 59.03 41.21 2.50 29.64 5
JHU_3 20.21 56.77 38.74 1.67 29.35 6
Syntax Squad 0.42 13.55 1.92 0.00 3.97 8
JHU_6 5.42 9.68 6.32 0.00 5.35 7
FPUNApy 0.00 0.00 8.52 0.00 2.13 9
IUNLP 0.00 2.26 3.85 0.00 1.53 10
RaaVa 1.25 0.00 2.20 0.00 0.86 11

Vasselli et al. (2024) 54.17 53.55 36.81 - - -
Baseline 5.66 26.17 22.78 0.00 13.65 -

Table 4: Final Accuracy results table for ST2. Note that while 6 teams submitted results on the test set, only 2 teams
submitted system description papers, therefore we only describe the systems for two of the teams (NAIST and JHU).
We also report the results from the previous year’s winning system and the edit-tree baseline. The overall accuracy
difference between ranks 1 and 2 is not significant (see ♢).

Person and number are represented together:
1_SG, 1_PL, 2_SG, 2_PL, 3_SG, 3_PL.

• Tense: Past, Present or Future (PRE_SIM,
PAS_SIM, FUT_SIM, respectively).

• Aspect: Perfective (PERFV) and Imperfective
(IMPFV) aspects occur with the past tense, and
the Durative (DUR) aspect can occur with Past,
Present, or Future tenses.

• Mood: Optative (OPT), Imperative (IMP, Con-
ditional (COND), Interrogative (INT), or Indica-
tive (NA).

• Transitivity: Nahuatl uses indefinite object
prefixes to reduce the valency of a verb (e.g.
nechinnextiliah “They show them to me" vs.
tetlanextiliah “They show things to people").
When the valency is reduced by one of these
morphemes, the transformation contains the
tag TRANSITIV:ITR.

• Purposive: Nahuatl verbs can take a Purpo-
sive suffix indicating directionality of motion,
e.g. “Go and do VERB". This directionality
can be either away from (VET) or toward (VEN)
the speaker.

• Honorific: Nahuatl varieties have as many as
four levels of honorifics (Hill and Hill, 1978),
though we only include the first in our dataset
since it is the most common.

• Polarity: Positive or negative.

Metrics The main metric of this task is accuracy
(fraction of times the system output matches the
expected output). Systems for every language are
evaluated separately, in addition to the overall av-
erage score, which is used to determine the shared
task’s winner.

Baselines This year, the baseline was the same
as last year’s, namely a simplified adaptation of the
Prefer Observed Edit Trees (POET) method, which
involves learning the edit operations required to
convert a source string into a target string (Kann
and Schütze, 2016). Learning is performed by cal-
culating the edit tree for each pair of source and
target sentences in the training data, and counting
the total number of each edit tree associated with
the specific grammatical change. During testing,
the edit trees for the given grammatical change are
applied to the given source sentence in order of de-
creasing frequency until the succeeding edit tree is
found. If no such tree is found, the source sentence
is returned as the output.

Submitted Systems We received 11 submissions
from 6 teams for the task, but unfortunately only
three teams submitted system description papers.
Given the lack of description papers from the other
3 teams, we are unable to discuss their submissions.

• NAIST: The NAIST submission (Vasselli
et al., 2025) developed three different systems:
example-based LLM prompting system with
additional synthetic data, a transformation-
based prompting system where each token
is annotated according to its required opera-
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tion to achieve the sentence-level transforma-
tion, and, for Nahuatl, a purely rule-based sys-
tem which heuristically assigns part-of-speech
tags and uses them to infer grammatical fea-
tures.

• JHU: There were a total of six JHU sub-
missions (Lupicki et al., 2025). The sub-
mitted systems include multiple variations of
prompt-engineering with LLMs, including ex-
perimenting with chain-of-thought, few-shot
prompting, using additional linguistic data
such as parts of speech and a reference book
(for Maya, Bribri, and Guarani), and ensem-
bling multiple LLM-based systems. Addi-
tionally, they train a pointer generator LSTM
model.

• Syntax Squad: This team investigated LoRA
fine-tuning of LLMs, namely Llama models
and XGLM, for the sentence transformation
task. The process also involved some text pre-
processing, such as removing punctuation and
diacritics, and post-processing of the LLM
output. They did not describe results for the
Nahuatl data.

Results The results of all submissions are listed
in Table 4. Two of the three submitted sys-
tem descriptions correspond to the two highest-
performing submissions. The JHU team achieved
the best performance for Maya and Guarani with
their ensemble method, surpassing the last year’s
best-performing system on the same data. NAIST
achieved the best score for both Bribri (41.25%
acc.) and Nahuatl (17.5%), though their system
did not outperform last year’s winning system for
Bribri, a fact the authors attribute to their appli-
cation of transformations all at once, instead of
incrementally as was done in last year’s winning
system. On the other hand, JHU system 1 had
the best performance for Maya (63.87% acc.) and
Guarani (43.67% acc.). The overall difference be-
tween NAIST and JHU System 1 is not significant6

we decided for having both teams as winners of
this years edition. It is also important to notice the
poor performance of most teams on Nahuatl, with
5 submitted systems achieving 0% accuracy, and
all, except for NAIST, achieveing less than 4% acc.

6Average sample-wise accuracy values with 95% confi-
dence intervals, calculated with the bootstraping approach
(Ferrer and Riera), are 36.97 [34.46, 39.56] for the NAIST
system, and 36.89 [34.30, 39.48] for the JHU_1 system

The Syntax Squad submission underperformed
the baseline for all languages. While it warrants
further investigation, it is likely that the dataset
sizes were too small to effectively fine-tune the
LLMs for this task. Furthermore, they highlight
the potential negative impact of excessive prepro-
cessing of the text. For example, for languages like
Maya where changes in tone can indicate a change
in Voice (one of the features in the Maya dataset),
removing this may introduce unwanted noise and
make it more challenging for a model to learn the
necessary sentence transformations.

Findings For the three languages represented in
last year’s shared task, we saw year-over-year im-
provements in the best-performing system for two
(Maya and Guarani). None of the submitted sys-
tems improved on last year’s best performing sys-
tem on the Bribri data.

Interestingly, Nahuatl proved to be quite chal-
lenging, with all teams achieving their lowest score
on the Nahuatl data. The best performance on
this data was achieved with the purely rules-based
system. We suspect that this is due to a combina-
tion of lack of representation of the Western Sierra
Puebla variety in LLM training data, and a num-
ber of language- and dataset-specific features, e.g.
longer words, many grammatical transformations
per sentence, the largest number of unique gram-
matical transformations compared to the other lan-
guages in the shared task (see Table 3 for details).

While the trend of leveraging pretrained LLMs
via prompt engineering and reference data contin-
ues to show promise for some languages, the results
on the Nahuatl data show that knowledge-based
approaches still merit attention, particularly when
dealing with complex tasks and data (multiple inter-
acting grammatical transformations, complex mor-
phology with long words) and/or languages with
minimal resources (both with respect to LLM train-
ing data as well as reference materials and digital
dictionaries).

5 ST3: A ST on Creating Metrics for
Machine Translation in Indigenous
Languages

Description Automatic metrics are a crucial al-
ternative to human evaluation for efficiently evalu-
ating the output of MT systems. However, indige-
nous languages present unique challenges that stan-
dard metrics are not designed to handle. MT evalu-
ation commonly relies on two types of automatic
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Language Num. Sentences Textual features

(dev-test) Words/Sent Chars/Word TTR

Nahuatl 100-200 6.68-6.78 8.27-7.83 0.27-0.23
Bribri 100-200 12.23-11.23 4.78-4.7 0.16-0.14
Guarani 100-200 6.24-6.36 7.94-7.43 0.28-0.24

Table 5: Data statistics for ST3. The textual statistics are for the reference translations, for dev and test sets. We
report the average sentence length, average word length, and the type-token ration for the corpus. Overall, 300
sentence pairs were annotated for each language.

metrics: overlap-based and neural. Overlap-based
metrics, such as BLEU and ChrF , are less effec-
tive for Indigenous languages as these languages
often lack standardized orthographies and exhibit
polysynthetic structures, making exact word or (to
a lesser degree) character overlap unreliable. The
limitations of BLEU are well documented (Mathur
et al., 2020), and the overreliance of the MT com-
munity can potentially negatively affect MT de-
velopment (Kocmi et al., 2021). Neural metrics,
such as COMET (Rei et al., 2020), are also lim-
ited because they rely on pretrained models trained
on large datasets that rarely include low-resource
languages. In the first edition of its kind, this task
consists in building metrics to evaluate the quality
of translations from Spanish into three Indigenous
languages: Guarani, Bribri, and Nahuatl.

Data For each language, a set of 100 sentence
pairs are selected from the submissions to Ameri-
casNLP 2024 MT ST, from multiple systems. Al-
though the initial pool of sentences are selected
randomly, it is important to select pairs of varying
quality to ensure that the metrics can effectively
distinguish these differences in quality. We use
ChrF++ as a proxy of the quality of submissions,
and for a portion of sentences we also include the
gold translations 7. The same set of Spanish sen-
tences were used for all the languages. For the test
data, we repeated this process. These sentences
were then given to annotators for the human judg-
ment. The annotators are asked to rate each trans-
lation on a 5-point scale on two axes: semantics
and fluency (Koehn and Monz, 2006). As bilingual
speakers, the annotators have access to the source
sentence in Spanish, and a candidate translation in
the target Indigenous language. Table 5 reports the
textual statistics for dev and test sets.

7Note that using ChrF++ as a metric could introduce bias.
We use ChrF++ mainly to detect the “best” and “worst” trans-
lations, but for the majority of Spanish sentences we include
random translations. Also, since most of the systems are of
lower quality, we expect the introduced bias to be negligible.

Metrics The winning submission will be the one
with the highest correlation with the ratings on a
held-out test set of size 200. We employ Pearson
correlation coefficient as the main evaluation met-
ric, but also report Spearman correlation values.
We choose Pearson over Spearman as it measures
the linearity of the relationship. Linear metrics are
preferred since they offer greater interpretability.

Baselines We use BLEU and Chrf++ as our
automatic baselines. ChrF++ is character-based
and is shown to correlate better than BLEU with
morphologically-rich languages. ChrF outperforms
BLEU on non-standardized orthographies as well
(Aepli et al., 2023). Therefore, we consider it as
the main baseline to beat.

Submitted Systems This ST got a total of 11
submissions by 3 different teams. We only have
the descriptions of two of these teams. Below is a
concise overview of each team’s contribution.

• Tekio: The submission of R. Krasner et al.
(2025) relies mainly on finetuning Language-
agnostic BERT Sentence Encoder (LaBSE;
(Feng et al., 2022)) to develop better seman-
tic representations for Indigenous languages.
They use the data for the MT ST for con-
trastive alignment in the finetuning. This fine-
tuned LaBSE is the backbone of four metrics:
1) YiSi-1 (Lo, 2019, 2020) is an MT quality
metric that needs representations to evaluate
semantic similarity. In the first submission,
for each language, they chose the top three
intermediate layers based on the performance
on the development set and averaged their to-
ken embeddings. 2) The same as #1, but they
use the three layers that that did best on av-
erage for all the languages to avoid overfit-
ting. 3) COMET Estimator Model (Rei et al.,
2020) with the finetuned LaBSE as the pre-
trained model and mean absolute error (MAE)
as the loss function. 5-fold cross-validation is
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Guarani Bribri Nahuatl Average

Method Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson

ChrF++ 0.6725 0.6263 0.4517 0.3823 0.6783 0.5549 0.6008 0.5212
BLEU 0.4676 0.4056 0.4518 0.3456 0.3541 0.4061 0.4245 0.3857

Tekio_1 0.6611 0.7196 0.5622 0.6244 0.668 0.6115 0.6304 0.6518
Tekio_2 0.6611 0.7196 0.5569 0.63 0.6132 0.5845 0.6104 0.6447
Tekio_3 0.5597 0.7209 0.4892 0.6261 0.4963 0.529 0.5151 0.6254
Tekio_4 0.5605 0.7234 0.4909 0.6268 0.5036 0.5351 0.5183 0.6285
RaaVa_1 0.6723 0.6249 0.5356 0.4223 0.6766 0.5657 0.6282 0.5377
RaaVa_2 0.6516 0.6776 0.5755 0.5662 0.6145 0.5921 0.6139 0.612
RaaVa_3 0.656 0.7038 0.4829 0.5931 0.6364 0.6263 0.5918 0.6411
RaaVa_4 0.656 0.7038 0.4829 0.5931 0.6364 0.6263 0.5918 0.6411
RaaVa_5 0.6526 0.7209 0.5379 0.654 0.6195 0.6362 0.6033 0.6704
RaaVa_6 0.6429 0.6964 0.5332 0.6523 0.6132 0.6351 0.5965 0.6613
LexiLogic 0.6811 0.6529 0.5021 0.3763 0.6717 0.5504 0.6183 0.5265

Table 6: Final results for ST3. The best score for each column is bolded, while the second best score is underlined.
The difference between RaaVa_3 and RaaVa_4 is minuscule and can only be seen in the later decimals.

used on all the available annotated scores. 4)
The same as #3, but with mean squared error
(MSE) as the loss function.

• RaaVa: The submission of Raja and Vats
(2025) combines various linguistic and com-
putational features, including lexical simi-
larity via Levenshtein distance (Levenshtein
et al., 1966), phonetic similarity using Meta-
phone (Philips, 1990) and Soundex encoding
(Russell, 1918), semantic similarity through
LaBSE sentence embeddings, and fuzzy token
matching to account for morphological vari-
ations (Kondrak, 2005). They submit 6 sys-
tems: 1) this system integrates character-level
lexical overlap via Jaccard similarity with pho-
netic similarity from Metaphone encodings. 2)
Lexical (Damerau-Levenshtein edit distance),
phonetic (Metaphone encodings), and seman-
tic similarity (LaBSE sentence encoding) are
linearly combined with fixed weights. 3) This
system incorporates four similarity metrics,
adding fuzzy similarity to the lexical, phonet-
ics, and semantic similarities. Again, the final
metric is a weighted average of the individ-
ual metrics. 4) Two separate linear regression
models are trained for semantic and fluency,
based on the four similarity metrics of #3. The
regression models are trained on the develop-
ment sets. 5) Same as #4 but a Ridge regres-
sion is used for semantic similarity estimation,
while Random Forest regression is used to
model fluency. 6) Same as #5, but a Gradient
Boosting Regressor (GBR, (Zemel and Pitassi,
2000)) is trained to model fluency.

Results Table 6 shows the final correlation scores
for the submitted systems. Overall, RaaVa_5 has
the best Pearson performance and is the winner
of the shared task, while RaaVa_6 follows closely
as the second best system. Tekio_1 has the best
Spearman correlation on average, and the third best
according to Pearson. None of the systems beat
ChrF++ on Spearman for Nahuatl.

Findings In our schema, we weigh fluency and
adequacy the same, which could partially explain
the superior performance of RaaVa_5 and RaaVa_6
that model those two aspects separately. RaaVa_5
increases the Pearson correlation by 0.149 on aver-
age. It must be noted that this framework of human
judgment for MT has drawn criticisms (Graham
et al., 2013). We adopt this schema for its simplic-
ity for annotators and consistency with previous
iterations of MT shared task, but this could poten-
tially change in future iterations.
Table 10 demonstrates the correlation scores of
each submitted system with semantics and fluency.
Tekio_1 has the highest overall correlation with se-
mantics at 0.6446, while RaaVa_5 is a close second
at 0.6432. However, RaaVa_5 has a much higher
correlation with fluency than Tekio_1.
The baseline performance on Bribri is relatively
poor, hinting that string-based methods are partic-
ularly lacking for this language. However, it is
important to note that Bribri has much longer sen-
tences in terms of number of words in our study
(Table 5). It sees the biggest boost in performance
(+0.27) among the three languages. In contrast,
Guarani and Nahuatl exhibit more modest gains
(+0.1 and +0.08, respectively) but have stronger
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baseline results. The agglutinating morphology
of Nahuatl could in part explain the strong per-
formance of ChrF++ (Pugh and Tyers, 2021a),
whereas Bribri is a fusional language. Taken to-
gether, the results suggest that neural approaches
hold significant potential for Indigenous languages.
This corroborates the findings of Aepli et al. (2023)
where neural models based on COMET far outper-
formed string-based baselines for language varia-
tions with non-standardized orthographies.

6 Conclusions

We have introduced the three STs held this year at
the AmericasNLP workshop: (1) MT for truly low-
resource Languages, (2) morphological adaptation
for generating educational examples, and (3) met-
ric development for MT in Indigenous languages.
Overall, 12 teams participated across a total of 27
submissions.

In the MT task, the baseline (a 1.3B encoder-
decoder model) proves hard to beat for translation
from Spanish. The new translation direction into
Spanish benefits from the use of GPT-based mod-
els. This highlights both the limitations imposed by
the current available data and the strength of well-
adapted, smaller-scale approaches. For the task
on generating examples for educational material,
while the use of LLMs through prompt engineer-
ing and reference-based approaches proves effec-
tive for certain languages, our results suggest that
knowledge-based methods still hold value, espe-
cially for morphologically complex, low-resource
languages and tasks involving multiple interacting
grammatical phenomena. In the metrics ST, we
find that neural methods far outperform the string-
based baselines; in spite of the amount of available
data that limits the performance of neural models.

These shared tasks contribute to the broader
NLP community by advancing methods specific to
highly diverse, underrepresented languages. They
also provide publicly available datasets, tools, and
benchmarks that serve both academic research and
community-driven language technology efforts.
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A Dataset Statistics for ST1

Table 7 shows the number of sentences for each
language in the dataset.

LANGUAGE TRAIN SOURCE TRAIN EXTRA SYN. DEV. TEST

Chatino (ctp) (Ebrahimi et al., 2023) 357 2,246 - 499 1,000
Asháninka (cni) (Ortega et al., 2020; Romano and Richer,

2008; Mihas, 2011)
3,883 - 13,195 883 1,003

Otomí (oto) (Mager et al., 2021) 4,889 9,012 - 599 1,003
Aymara (aym) (Prokopidis et al., 2016; Tiedemann,

2012)
6,531 24,331 16,750 996 1,003

Bribri (bzd) (Feldman and Coto-Solano, 2020;
Margery Peña, 2005; Murillo, 2018a;
Umaña et al., 2004; Murillo and Segura,
2013; Murillo, 2018b)

7,508 - - 996 1,003

Wixarika (hch) (Mager et al., 2018) 8,966 2,653 511 994 1,003
Shipibo-Konibo (shp) (Montoya et al., 2019; Galarreta et al.,

2017; Loriot et al., 1993)
14,592 16,721 23,595 996 1,003

Rarámuri (tar) (Brambila, 1976) 14,720 2,254 - 995 1,003
Nahuatl (nah) (Gutierrez-Vasques et al., 2016) 16,145 2,493 9,222 672 1,003
Awajun (agr) (Moreno et al., 2024) 21,964 - - 1,018 358
Guarani (grn) (Chiruzzo et al., 2020) 26,032 42,186 40,516 995 1,003
Wayuunaiki (guc) (Prieto et al., 2024) 59,715 - - 6,635 498
Quechua (quy) (Agić and Vulić, 2019; Huar-

caya Taquiri, 2020)
125,008 6,469 60,399 996 1,003

Table 7: Dataset statistics for ST1, together with the sources for the training data of each language pair.
Languages are listed in increasing order of available training data. AmericasNLP translated all test splits into
indigenous languages from a set of different sources (please see the corresponding ST Findings paper).

B ST1 Ranking

Table 8 shows the main ranking of all submitted
systems for ST1.

RANK TEAM VER. COUNT TOT. BLEU TOT. CHRF TOT. CHRF++ AVG. BLEU AVG. CHRF AVG. CHRF++

TRACK 1: SPA-XXX

1 GMU 2 13 43.72 324.12 285.37 3.36 24.93 21.95
2 Syntax Squad 1 11 36.24 265.50 233.07 2.79 20.42 17.93
3 Syntax Squad 2 1 2.02 30.13 26.31 0.16 2.32 2.02
4 UCSP 1 1 0.07 21.73 16.75 0.01 1.67 1.29
- GMU 1 13 31.83 273.23 244.56 2.45 21.02 18.81

TRACK 2: XXX-SPA

1 GMU 2 13 93.44 368.14 346.06 7.19 28.32 26.62
2 Syntax Squad 1 11 75.31 279.68 261.19 5.79 21.51 20.09
3 UCSP 1 1 1.52 20.70 17.87 0.12 1.59 1.37
- GMU 1 13 99.19 363.52 343.34 7.63 27.96 26.41

Table 8: Main ranking of all submitted systems for ST1. VER denotes the team’s submission number, COUNT
denotes the number of languages a particular system was submitted for, with the TOT columns showing the
total sum of the metric score across submissions. The final three columns represent the average over all 13
languages of the shared task, with CHRF++ being used to calculate the overall ranking.
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C ST1 Full Results

Table C shows the full results of ST1.

LANG. TEAM VER. BLEU CHRF CHRF++

TRACK 1: SPA-XXX

agr-spa GMU 0 16,81 38,73 36,59
agr-spa GMU 1 15,17 38,73 36,52
agr-spa Syntax Squad 0 13,21 36,11 33,70

aym-spa GMU 0 6,51 27,50 26,09
aym-spa Syntax Squad 0 5,89 27,53 25,78
aym-spa GMU 1 5,17 26,49 25,23

bzd-spa GMU 0 6,98 29,14 27,86
bzd-spa GMU 1 6,11 28,77 27,41
bzd-spa Syntax Squad 0 5,87 27,53 26,22

cni-spa GMU 0 5,32 23,72 22,44
cni-spa GMU 1 4,00 22,94 21,57
cni-spa Syntax Squad 0 3,06 21,34 20,13

ctp-spa GMU 1 11,74 28,04 26,16
ctp-spa GMU 0 3,76 15,60 14,47

grn-spa GMU 0 13,81 34,93 33,84
grn-spa GMU 1 11,23 33,57 32,31
grn-spa Syntax Squad 0 15,14 26,15 24,70

guc-spa GMU 1 4,20 26,00 23,93
guc-spa GMU 0 2,92 25,06 23,10
guc-spa Syntax Squad 0 3,14 16,19 14,40

hch-spa GMU 0 5,46 25,91 24,37
hch-spa GMU 1 4,69 25,53 24,04
hch-spa Syntax Squad 0 3,98 23,69 22,02

nah-spa GMU 0 7,22 27,14 25,58
nah-spa GMU 1 5,08 26,18 24,31
nah-spa Syntax Squad 0 4,00 15,40 13,88

oto-spa GMU 0 2,25 19,69 18,24
oto-spa Syntax Squad 0 1,50 19,91 17,80
oto-spa GMU 1 1,36 17,76 15,99

quy-spa GMU 0 12,27 34,64 33,02
quy-spa GMU 1 10,38 33,50 31,77
quy-spa Syntax Squad 0 10,60 33,26 31,71
quy-spa UCSP 0 1,52 20,70 17,87

shp-spa GMU 0 13,83 39,93 38,01
shp-spa GMU 1 12,55 39,40 37,43
shp-spa Syntax Squad 0 8,94 32,58 30,83

tar-spa GMU 0 2,07 21,53 19,72
tar-spa GMU 1 1,75 21,23 19,39
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LANG. TEAM VER. BLEU CHRF CHRF++

TRACK 2: XXX-SPA

spa-agr Syntax Squad 0 7,82 40,10 35,16
spa-agr GMU 1 8,64 39,75 35,09
spa-agr GMU 0 1,30 19,16 16,67

spa-aym Syntax Squad 0 1,96 31,61 27,72
spa-aym Syntax Squad 1 2,02 30,13 26,31
spa-aym GMU 1 1,14 26,26 22,91
spa-aym GMU 0 0,88 23,12 20,45

spa-bzd Syntax Squad 0 4,55 21,68 22,77
spa-bzd GMU 1 4,41 21,56 22,51
spa-bzd GMU 0 3,85 19,42 20,61

spa-cni Syntax Squad 0 2,43 26,96 23,17
spa-cni GMU 1 2,47 25,60 22,22
spa-cni GMU 0 3,63 24,62 21,77

spa-ctp GMU 0 1,64 15,04 13,33
spa-ctp GMU 1 1,27 15,31 12,25

spa-grn GMU 0 5,47 32,50 29,95
spa-grn GMU 1 4,04 27,23 25,00
spa-grn Syntax Squad 0 3,46 17,84 16,21

spa-guc GMU 1 1,48 27,42 22,93
spa-guc Syntax Squad 0 0,11 15,86 12,83
spa-guc GMU 0 0,20 10,94 9,12

spa-hch Syntax Squad 0 11,07 30,47 26,77
spa-hch GMU 1 10,04 29,59 26,14
spa-hch GMU 0 5,98 27,00 23,59

spa-nah GMU 1 2,02 23,82 20,33
spa-nah GMU 0 0,64 18,76 15,98
spa-nah Syntax Squad 0 0,65 15,73 12,64

spa-oto Syntax Squad 0 0,76 14,16 12,02
spa-oto GMU 1 1,33 13,23 11,31
spa-oto GMU 0 0,98 11,55 10,03

spa-quy GMU 1 3,70 38,02 32,70
spa-quy GMU 0 3,80 36,30 31,68
spa-quy Syntax Squad 0 3,07 36,14 31,01
spa-quy UCSP 0 0,07 21,73 16,75

spa-shp GMU 1 2,79 21,99 19,46
spa-shp GMU 0 2,68 19,39 17,49
spa-shp Syntax Squad 0 0,37 14,94 12,76

spa-tar GMU 0 0,77 15,45 13,89
spa-tar GMU 1 0,39 14,35 12,53

Table 9: Full results of ST1.

D ST3 Results
Table 10 shows the results for ST3 broken down
between semantics and fluency scores.
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Guarani Bribri Nahuatl Average

Method Semantics Fluency Semantics Fluency Semantics Fluency Semantics Fluency

ChrF++ 0.63 0.5323 0.4078 0.3018 0.5681 0.4929 0.5353 0.4424
BLEU 0.4207 0.3314 0.3515 0.2908 0.4257 0.351 0.3993 0.3244

Tekio_1 0.6899 0.6474 0.6369 0.5236 0.6069 0.5618 0.6446 0.5776
Tekio_2 0.6899 0.6474 0.6404 0.5307 0.5789 0.5381 0.6364 0.5721
Tekio_3 0.603 0.7411 0.6002 0.5657 0.49 0.5203 0.5644 0.609
Tekio_4 0.6054 0.7433 0.6036 0.5634 0.4972 0.5248 0.5687 0.6105
RaaVa_1 0.6367 0.5227 0.4644 0.3187 0.5818 0.5 0.561 0.4471
RaaVa_2 0.6518 0.6073 0.5852 0.4667 0.5896 0.5423 0.6089 0.5388
RaaVa_3 0.6793 0.6284 0.5689 0.5355 0.625 0.5722 0.6244 0.5787
RaaVa_4 0.6793 0.6284 0.5689 0.5355 0.625 0.5722 0.6244 0.5787
RaaVa_5 0.6816 0.6584 0.6314 0.5862 0.6165 0.5991 0.6432 0.6146
RaaVa_6 0.6661 0.628 0.6372 0.5768 0.621 0.5927 0.6414 0.5992
LexiLogic 0.6512 0.5608 0.4233 0.274 0.5645 0.488 0.5463 0.4409

Table 10: Pearson correlation scores of each submitted system with adequacy (semantics) and fluency of the
annotated instances in the test dataset for ST3. The best score(s) for each column is bolded, while the second
best score is underlined.

152



Author Index

Aguilar, Paul, 38
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