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Abstract

In this paper, we present our submission for the
token prediction task of EvaCun 2025. Our sys-
tems are based on LLMs (Command-R, Mistral,
and Aya Expanse) fine-tuned on the task data
provided by the organizers. As we only pos-
sess a very superficial knowledge of the subject
field and the languages of the task, we simply
used the training data without any task-specific
adjustments, preprocessing, or filtering. We
compare 3 different approaches (based on 3
different prompts) of obtaining the predictions,
and we evaluate them on a held-out part of the
data.

1 Introduction

The EvaCun token prediction shared task focuses
on missing word restoration in languages originally
written in cuneiform – Akkadian and Sumerian.
The script is one of the earliest known forms of writ-
ing with a history spanning over 3000 years, evolv-
ing originally from the proto-cuneiform that was
used for accounting and record keeping. One of the
most challenging part of interpreting and translat-
ing Akkadian and Sumerian text is the polyvalence
of cuneiform signs – a single sign can be used as a
logogram, i.e. representing a whole word (which is
further complicated by the fact that one symbol can
represent many different possible words, and that
Akkadian texts can contain Sumerian words, even
though the languages are not otherwise related), or
as a syllable (one sign can represent multiple sylla-
bles) or as a determinative that denotes a semantic
category of the previous word (diety, person, place,
etc.). In the context of the task, our work is greatly
simplified by the fact that the task data are already
interpreted and transliterated into the Latin alpha-
bet instead of being in the original cuneiform script.
As we do not have any knowledge of the languages
of the task in our team, we pursued a purely engi-
neering approach of finetuning 3 different LLMs

– Aya Expanse 8B (Dang et al., 2024), Command-
R v0.1 34B (Cohere4AI team, 2025) and Mistral
Small 3 24B (Mistral team, 2025) – on the task
data, with 3 slightly different formulations of the
problem. We offer our solution as a baseline to be
compared with the more informed and task-specific
approaches.

2 Related work

A more focused effort in NLP for languages written
in cuneiform started only recently. A basis for all
future work are databases and datasets like the Elec-
tronic Text Corpus of Sumerian Literature (Black
et al., 2016), Cuneiform Digital Library Initiative,
(CDLI contributors, 2025), CuneiML (Chen et al.,
2023) and the Open Richly Annotated Cuneiform
Corpus (Oracc Team, 2025).

Simmons et al. (2024) created a new corpus
based on these previously released datasets that
pairs digital Unicode transcription of cuneiform
texts with their transliterations as well as a baseline
system trained on this dataset to perform this task.
Similarly, Gordin et al. (2020) present a method
for automatic translation of Akkadian cuneiform. ?
present an MT system for Sumerian with the final
goal of an information retrieval pipeline for this
language.

3 Methods

We fine-tune autoregressive LLMs with 3 different
prompts to predict the masked word. A masked
language model would be a more natural choice for
this task, however causal (autoregressive) language
modeling is currently a more popular approach with
a larger selection of pretrained models.

3.1 Data preprocessing and prompts

The dataset provided by the organizers contains
a list of tokens, each token accompanied by its
document id, line number in the context of the doc-
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Method Prompt

All Fill in the missing {language} words, masked by the [MASK] token. Output "WORDS:" and a comma-
separated list of the missing words in original {language}: {masked_document}

One by one Fill in the missing {language} word masked by the [MASK] token: {masked_document_with_unks}
Restore Complete the missing {language} words masked by the [MASK] tokens and print out the restored

document: {masked_document}

Table 1: Prompts for the three token prediction methods we compared.

ument, the word index on that line, language, and
extra information, for example, the place where
the tablet was found or the type of text. We only
make use of the language, word order, and docu-
ment id, i.e., we do not for example split the inputs
into lines or use the additional information. In each
document, we mask 15% randomly sampled words
with a [MASK] token. For each document, we cre-
ate at most 15 unique variants with different masks
(fewer if the overall possible number of combina-
tions for the given document length is lower). We
frame the prediction task in three different ways.
The model is shown the masked document in the
prompt, and it is asked to:

• Produce a list containing all the original words
corresponding to the masked predictions in the
correct order (we call this method All further
in the text).

• All [MASK] tokens except for one are re-
placed by an [UNK] token, and we ask the
model to predict the original word for the
single remaining [MASK] token. This is re-
peated for all [MASK] tokens in the masked
document (One by one).

• We ask the model to output the full restored
text of the masked document. We finetune
separate models on each of these prompts (Re-
store).

The specific prompts are shown in Table 1. Our
baseline approach, All, needs the least effort for
data preprocessing and training and inference com-
pute time. However, it could suffer from error
propagation due to the autoregressive nature of
the inference – the model bases the predictions on
previously predicted words as well. One by one
approach could mitigate this issue, as only one
masked word is predicted for each example (others
remain masked). Restore approach is based on the
basic next-word prediction training objective for
autoregressive models, but the decoding is compli-
cated by the need for forcing the unmasked parts of

the text and keeping the word lengths the same for
whole text for both masked and unmasked versions.

4 Experiments

We describe the experimental setup, hyperparame-
ters and results in this section.

4.1 Data

The full training data from the organizers contains
913252 tokens in 22777 documents. We set aside
1% (227 documents) for the dev set (we filter out
single word documents from the dev set). For our
evaluation, we used a subset of this dev set con-
taining 135 documents with 1500 different unique
masked examples in total.

4.2 LLM finetuning

We finetune the pretrained models using QLoRA
(Dettmers et al., 2023). We experimented with
3 LLMs: Command-R V0.1 (4-bit quantized,
CohereForAI/c4ai-command-r-v01-4bit), Aya Ex-
panse 8B and Mistral Small 3 24B Instruct (4-
bit quantized, unsloth/Mistral-Small-24B-Instruct-
2501-unsloth-bnb-4bit. We use the transformers
(Wolf et al., 2020), peft and trl libraries for the
training. We experimented with LoRA rank sizes
8, 16, 32, 64 and 92, α = r/2. We finetuned the
models by AdamW optimizer, with warmup ratio
of 0.03 and learning rate lr = 2e − 4. We used
batch sizes 40, 36 and 35 for Aya, Command-R and
Mistral models, respectively. We trained on a het-
erogenous cluster on a mix of Nvidia L40, A40 and
H100 GPUs. We trained for a maximum of epochs,
but the checkpoints we actually used for the predic-
tion were from earlier parts of the training, as we
describe in the results section.

4.3 Results

We sampled from the models with temperature
t = 0.2 to obtain the predictions (greedily, without
the use of algorithms like beam search) and we
measured the accuracy of the predictions on the
held-out validation set, i.e the fraction of masked
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Figure 1: Relative frequencies of the top-20 generated words for masked positions by best checkpoint for each
prompt (All, One by one, Restore on top left, top right and bottom left, respectively) and of the reference masked
words (bottom right).

Aya Expanse Command-R Mistral

All 0.202 0.209 0.221
One by one 0.157 0.167 0.205
Restore 0.136 0.139 0.137

Majority voting 0.269 (0.377)
Most common word 0.04

Table 2: Accuracies of all combinations of models and
prompts on held-out part of the task data. We also report
top-3 accuracy for the majority voting in the parentheses.
The final row shows the accuracy of predicting the most
common word for the given language (based on the
training data) for each masked position.

Aya Expanse Command-R Mistral

All 6300 (0.75) 6300 (0.67) 5400 (0.55)
One by one 8100 (0.15) 5400 (0.10) 900 (0.02)
Restore 4500 (0.53) 9000 (0.96) 2700 (0.27)

Table 3: Number of updates (and the corresponding frac-
tion of an epoch in parentheses) that the best-performing
models were trained for.

positions where the missing word was predicted
correctly out of all masked positions. For the Re-
store method, we generate the restored document in
parts, by force decoding the known parts and only
generating one complete word (possibly consisting
of multiple subwords) for each [MASK] token (i.e.
after force decoding the unmasked part of the doc-
ument, we select the most probable subword that
starts with a beginning of word symbol and gener-
ate next subwords until we reach another beginning
of word subword, we discard this last subword and
start with force decoding the known continuation
again). We ensemble the results by majority voting,
pick 60 best-performing checkpoints and select the
most common prediction for each position.

We present the results of the 3 methods on the
held-out validation set in Table 2. Overall, finetun-
ing the Mistral models resulted in the best accura-
cies. However, the differences are not large and
with a different choice of hyperparameters in the
finetuning, we might see different ranking. From
the methods point of view, All performed the best.
Table 3 shows the number of steps and a corre-
sponding fraction of an epoch that the best-scoring
checkpoints were trained on. The final line shows
the majority baseline – for each language, we only
predict the most common word from the training
data for all masked positions. For example, in
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Akkadian, the most common word is the proposi-
tion ina, meaning in, on, onto, at, to, from and other
possible meanings in compound expressions.

We also show the relative frequencies of the top-
20 predicted words by each method and of the
reference words in Figure 1. We see that while
the list of top 10 words is similar to the reference
list for all methods, the LLMs overestimate the
probability (frequency) of the most popular words.
This is a common issue in text-generating models.
As a result, probabilities of less common words
are underestimated – the methods generated 1567,
1217 and 3164 unique words for All, One by one
and Restore respectively, while the reference con-
tains 2317 unique tokens. We believe that the large
number of unique tokens for the Restore method is
caused by our prediction mechanism that ensures
the same word length of both the prediction and the
original text but can force the selection of subop-
timal predictions as a fallback. Also, note the we
did not disallow the generation of [MASK] token
in the Restore method by mistake. This negatively
affects the resulting accuracy of this method.

For the final test set submission, we ran the in-
ference with the best 60 checkpoints on the test
dataset and performed the majority voting to obtain
top-3 predictions.

5 Conclusion

We finetuned various autoregressive LLMs on the
token restoration task posed in 3 different ways.
We show that the best single model can accurately
predict 22.1% of masked tokens on our held-out
dev set, while by combining predictions of multiple
models by voting, we can reach 26.9% accuracy.
However, there might be biases and aspects of the
dataset like repetitiveness, which could lead to over-
estimating the real capabilities of our approach.

In the future, we plan to focus on the much more
difficult task of direct translation of cuneiform
script into English, either using Unicode transcrip-
tions of the tablets, or a visual LLM to read the
tablet photos directly.
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