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Abstract

This report presents our team’s work on ancient
Chinese Named Entity Recognition (NER) for
EvaHan 20251. We propose a two-stage frame-
work combining GujiRoBERTa with a Logits-
Constrained (LC) mechanism. The first stage
generates contextual embeddings using Gu-
jiRoBERTa, followed by dynamically masked
decoding to enforce valid BMES transitions.
Experiments on EvaHan 2025 datasets demon-
strate the framework’s effectiveness. Key find-
ings include the LC framework’s superiority
over CRFs in high-label scenarios and the detri-
mental effect of BiLSTM modules. We also
establish empirical model selection guidelines
based on label complexity and dataset size.

1 Introduction

Named Entity Recognition (NER) is basically a
task to identify and classify named entities in texts,
such as person name, geographical location, and
time expression. It is a crucial research topic in
NLP. NER in Ancient Chinese is particularly chal-
lenging due to the complex semantic properties
of words, which can lead to errors in label se-
quence predictions. To address this, our model
integrates the Logits-Constrained Framework with
GujiRoBERTa2, effectively reducing such errors.

2 Related Work

2.1 RoBERTa
Large-scale pre-trained language models (PLMs)
based on Transformer architectures (Vaswani et al.,
2023) have revolutionized sequence labeling tasks.
RoBERTa (Liu et al., 2019), an optimized variant
of BERT (Devlin et al., 2019), steadily improved
Ancient Chinese NER accuracy. GujiRoBERTa,
pre-trained on a large corpus of traditional Chinese

1https://github.com/GoThereGit/EvaHan
2https://huggingface.co/hsc748NLP/GujiRoBERTa_

jian_fan

texts, serves as the backbone model in our EvaHan
2025 close-modality setting and is a fine-tuned ver-
sion of SikuRoBERTa.

2.2 Transition Constraints in Sequence
Labeling

Sequence labeling tasks require strict adherence to
structural constraints defined by tagging schemes.
For instance, under the BMES scheme where
valid label sequences must conform to S3 =
Perm({B,M,E}), the transition (B,M,E) is the
only valid transition in S3. Traditional approaches
employ Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001) with bidirectional LSTMs (BiL-
STMs)(Huang et al., 2015) to globally normalize la-
bel transition probabilities during inference. How-
ever, these methods depend on manually designed
transition matrices and often produce illegal paths
when decoding under low-resource or label-sparse
senarios.

Recent work explores alternative constraint
mechanisms. For example, Jiang et al. (2021) pro-
poses a constrained transition framework that dy-
namically masks invalid transitions during train-
ing and inference. Similarly, Wei et al. (2021) de-
velops a masked transition learning approach that
implicitly encodes tagging scheme rules through
auxiliary language modeling objectives. Our work
extends these paradigms by directly incorporating
transition constraints into the model’s parameter-
ized decision boundary, which eliminates heuristic
post-processing while maintaining theoretical guar-
antees of valid output structures.

3 Method

3.1 Pre-processing

Punctuation marks provide potential entity bound-
ary information, and preserving and correctly seg-
menting them can enhance NER performance (Ge,
2022) . Considering the characteristics of punc-

https://github.com/GoThereGit/EvaHan
https://huggingface.co/hsc748NLP/GujiRoBERTa_jian_fan
https://huggingface.co/hsc748NLP/GujiRoBERTa_jian_fan
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tuation in the EvaHan 2025 training sets, we
adopt different sentence segmentation strategies.
Specifically, trainset_c only considers primary
sentence-ending punctuation: “。”, “！”, and “？”.
In contrast, trainset_a and trainset_b addition-
ally account for “」” and “』”, as well as “”” and
“”’ as special sentence-final markers.

3.2 Framework

Motivated by the Occam’s razor principle – that
simpler hypotheses consistent with observations
are preferable (MacKay, 2003) – we propose a min-
imally invasive two-stage architecture that main-
tains model simplicity while enforcing structural
constraints. Our design philosophy consciously
avoids stacking complex components like CRFs or
BiLSTMs, which may introduce interference pat-
terns during learning.Just as illustrated in Figure 1,
the framework operates through.

3.2.1 Stage 1: Contextual Encoding with
GujiRoBERTa

The pre-trained GujiRoBERTa model generates
contextualized embeddings hi ∈ Rd for each token
xi, capturing ancient linguistic patterns through its
12-layer transformer architecture. A linear projec-
tion layer then computes initial label logits:

li = Whi + b (1)

where W ∈ Rk×d maps to k possible labels. Train-
ing uses standard cross-entropy loss without ex-
plicit transition modeling.

3.2.2 Stage 2: Logits-Constrained Decoding

We introduce a constraint matrix M ∈ {0, 1}k×k

encoding valid BMES transitions (e.g., B-PER can
only transition to M-PER or E-PER). During infer-
ence, we modulate the logits sequence {l1, ..., ln}
through masked autoregressive refinement:

l′t = M[yt−1]⊙ lt + (1−M[yt−1]) · (−∞) (2)

where yt−1 denotes the previous token’s predicted
label. This differentiable masking ensures struc-
turally valid outputs without additional trainable
parameters.

Figure 1: Framework Overview

4 Experiments

Following EvaHan 2025 guidelines, we use three
training sets—trainset_a, trainset_b, and train-
set_c—annotated with 6, 3, and 6 NER categories,
respectively, plus a non-NER label “O.” The {B, M,
E, S} scheme marks entity positions as Begin, Mid-
dle, End, or Single. Since trainset_b’s categories
are a subset of trainset_a’s, the dataset includes 37
classification labels.

4.1 Experimental Environment

All experiments were conducted on Google Colab
using NVIDIA A100 (40 GB) and T4 GPUs with
mixed precision (FP16) training enabled.

4.2 Parameter Regulation

The model was trained for 4 epochs with a batch
size of 8 for training and 1 for evaluation. The
learning rate was set to 2 × 10−5 with a warmup
ratio of 0.1 and a weight decay of 0.01 to mitigate
overfitting. Gradient accumulation was performed
over 2 steps, with a linear scheduler adjusting the
learning rate progressively.
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4.3 GujiRoBERTa

We only employed GujiRoBERTa with an addi-
tional linear classifier to evaluate the NER tag-
ging results, without incorporating any additional
components. Nevertheless, this approach achieved
promising performance during training (see Ta-
ble 1).

Dataset P R F1

A 0.9170 0.9190 0.9180
B 0.9251 0.9221 0.9236
C 0.7744 0.8418 0.8067

Table 1: Performance of GujiRoBERTa

4.4 Cross-Comparison

Therefore, we conducted further cross-comparison
experiments, drawing parallels with typical config-
urations in NER tasks to assess the relative con-
tributions of different model components and po-
tential performance improvements. In the follow-
ing tables, “+” indicates the inclusion of the corre-
sponding module, while “-” denotes its exclusion.

BiLSTM CRF LC F1

- - - 0.9180
+ - - 0.9016
- + - 0.9143
- - + 0.9269
+ + - 0.8850
- + + 0.9213
+ - + 0.8976
+ + + 0.8947

Table 2: Results of Dataset A

BiLSTM CRF LC F1

- - - 0.9236
+ - - 0.8617
- + - 0.9278
- - + 0.9218
+ + - 0.9100
- + + 0.9308
+ - + 0.8594
+ + + 0.9012

Table 3: Results for Dataset B

BiLSTM CRF LC F1

- - - 0.8067
+ - - 0.7383
- + - 0.8112
- - + 0.8262
+ + - 0.7602
- + + 0.8314
+ - + 0.7547
+ + + 0.7804

Table 4: Results for Dataset C

Through cross-comparison of the results (see
Table 2, Table 3, and Table 4), we found that
CRF effectively captures sequence patterns in low-
dimensional label spaces by leveraging predefined
transition constraints. However, as the number of
labels increases, the performance of CRF decreases
by 1.3% and 0.5% on Datasets A and C, respec-
tively. This is likely because manually designed
transition matrices are less capable of covering
high-dimensional state spaces.

In contrast, the Logits-Constrained (LC) frame-
work demonstrates greater generalizability. In sce-
narios with six or more labels (L ≥ 6) (Datasets
A/C), our LC framework exhibits a significant ad-
vantage, achieving an average F1 improvement of
1.95%. Notably, on Dataset C, which features a
complex entity distribution, the dynamic masking
mechanism in LC raises the F1 score from the base-
line of 0.8067 to 0.8262 (+2.95%).

Moreover, the introduction of BiLSTM leads to
performance degradation across all datasets, with
an average ∆F1 = −3.8%. We speculate that this
is due to the disruption of the inherent attention
patterns in the pretrained model caused by the ad-
dition of BiLSTM, as well as the increased risk
of the bidirectional recurrent structure’s parameter
updates getting trapped in local optima.

4.5 Dataset Expansion

By integrating the annotated data from Dataset A
according to the specifications of Dataset B, we ex-
pand the sample size of the hybrid Dataset B from
3,434 sentences to 11,307 sentences (+229%), and
conduct the same experiments (see Table 5).
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Dataset Sentences Label Types

Dataset B 3434 13
Hybrid 11307 13

Table 5: Statistics of Datasets

BiLSTM CRF LC F1

- - - 0.9369
+ - - 0.8964
- + - 0.9465
- - + 0.9395
+ + - 0.8364
- + + 0.9439
+ - + 0.8957
+ + + 0.9401

Table 6: Results for Dataset B (Hybrid)

Table 6 demonstrates a positive correlation be-
tween dataset scale and model performance in
NER, with the baseline F1 score increasing by
1.33% under consistent model settings. Since the
CRF’s global normalization enhances long-range
dependency modeling and LC’s dynamic masking
mitigates overfitting in sparse label scenarios, the
combined application of the CRF and LC frame-
works yields optimal performance, surpassing the
performance of individual framework implementa-
tions.

4.6 Model Selection
As noted earlier, balancing dataset size and label
complexity is crucial in sequence labeling tasks.
We define the optimal model selection as a func-
tion of label cardinality L and sentence count N ,
yielding the following empirically optimized scal-
ing relationship:

Γ(L,N) =


− (LC) if L ≥ 20

∧N > 0.16L2.8

+ (CRF+LC) otherwise
(3)

Here, the threshold 0.16L2.8 is derived via pa-
rameter tuning across various datasets, and the ex-
ponent 2.8 accurately quantifies the super-linear
penalty imposed by increasing label complexity on
the required amount of data.

Within this framework, we identify two primary
operational regimes. When label complexity is

high and data is abundant, the Logits-Constrained
(LC) model effectively mitigates the overfitting risk
associated with the CRF’s transition matrix, lead-
ing to significant performance gains. Empirical re-
sults show that the LC model explains 82% of the
performance variance in this setting. Conversely,
for moderate label complexity or limited data, a
CRF+LC combination leverages both components:
CRF captures tag transitions, while LC acts as a
regularizer. The term L2.8 quantifies the exponen-
tial increase in data required to justify an LC-only
approach as label complexity grows.

To refine model selection, we formulate the con-
figuration problem as a constrained optimization:

min
α,β

4∑
i=1

(
F1

(i)
best − F1

(i)
pred

)2
e
−α

Ni

L
β
i (4)

This is solved via gradient descent, yielding opti-
mal parameters α = 0.16 and β = 2.8.

Ablation studies on BiLSTM integration show
consistent performance degradation (∆F1 =
−2.4%± 1.1%), with the negative impact increas-
ing in high-label, low-data settings:

deg(BiLSTM) ∝ L1.7N0.6 (5)

This suggests that BiLSTM’s detrimental effect is
amplified under high label density and limited data.

Based on the above analysis, we provide the fol-
lowing practical guidelines. First, eliminate the
BiLSTM module in all configurations. Second, use
the CRF+LC model by default when L ≤ 13 or
N ≤ 0.16L2.8 to fully capture transition depen-
dencies. Third, switch to an LC-only model when
L ≥ 20 and N > 0.16L2.8 to avoid overfitting and
leverage the benefits of abundant data.

5 Conclusion

We propose a Logits-Constrained framework with
GujiRoBERTa for ancient Chinese NER. The two-
stage pipeline enforces BMES constraints through
dynamic logits masking, eliminating invalid tran-
sitions while maintaining simplicity. Experiments
show that LC outperforms traditional CRF-based
methods, improving F1 by up to 2.95% in com-
plex label scenarios. BiLSTM integration degrades
performance, while dataset expansion and hybrid
CRF+LC improve robustness. A data-driven model
selection criterion shows LC alone excels when la-
bel count L ≥ 20 and data size N > 0.16L2.8.
This work offers a practical, theoretically sound
solution for ancient Chinese NER.
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6 Limitations

Although our framework achieves high accuracy
with a compact design, several limitations remain.
First, the predefined Logits-Constrained matrix M
is based on manual BMES rules, which may not
generalize well and is highly sensitive to the ac-
curacy of the initial token. Second, the two-stage
pipeline introduces additional inference overhead
compared to end-to-end models. Third, perfor-
mance depends on sentence segmentation quality,
making it vulnerable to errors in unpunctuated or ir-
regular historical texts. Future work could explore
adaptive constraint learning and unified architec-
tures to address these issues.
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