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Abstract

Large Language Models (LLMs) demonstrate
strong semantic understanding ability and ex-
tensive knowledge, but struggle with Named
Entity Recognition (NER) due to hallucination
and high training costs. Meanwhile, supervised
Small Language Models (SLMs) efficiently
provide structured predictions but lack adapt-
ability to unseen entities and complex contexts.
In this study, we investigate how a relatively
weaker LLM can effectively support a super-
vised model in NER tasks. We first improve
the LLM using LoRA-based fine-tuning and
similarity-based prompting, achieving perfor-
mance comparable to a SLM baseline. To fur-
ther improve results, we propose a fusion strat-
egy that integrates both models: prioritising
SLM’s predictions while using LLM guidance
in low confidence cases. Our hybrid approach
outperforms both baselines on three classic Chi-
nese NER datasets.

1 Introduction

Large Language Models (LLMs) (Smith et al.,
2022; Du et al., 2022; Rae et al., 2021) have shown
remarkable abilities on various NLP applications.
LLMs can understand complex semantic informa-
tion and have extensive knowledge.

However, LLMs often suffer from the halluci-
nation problem, where they confidently classify
non-entity words as entities (Wang et al., 2023). In
addition, they require significantly higher training
costs to achieve performance comparable to super-
vised Small Language Models (SLMs) (Zhou et al.,
2024). In contrast, SLMs can achieve reasonable
levels of performance with lower training costs,
but struggles with unseen entities and lacks strong
semantic understanding in complex contexts.

This raises an important question: Can a rela-
tively weaker LLM in a particular task still provide
useful guidance to a smaller but supervised model?
If so, integrating LLMs’ broad knowledge with

SLM’s structured learning could boost NER perfor-
mance while keeping training costs manageable.

In this study, we first trained SLM and LLM
baselines with reasonable computational cost. To
enhance LLM performance, we applied LoRA-
based SFT and retrieved similar examples as
prompts for task-specific guidance. These improve-
ments brought LLM closer to the SLM baseline.
We then proposed a fusion strategy: SLM’s predic-
tion was preferred unless its confidence was low, in
which case the LLM output guided the final result.
Figure 1 illustrates this process.

Our final hybrid model outperformed both in-
dividual baselines, demonstrating that leveraging
LLM knowledge can effectively enhance SLM’s
structured predictions while maintaining efficiency.

2 Related Work

2.1 Named Entity Recognition

Named Entity Recognition (NER) is a tagging task
where each word in a sentence is labeled to indicate
whether it is part of a named entity and its corre-
sponding type. A common approach to NER is to
model it as a sequence labeling problem, where a
multi-layer perceptron with a softmax layer serves
as the tag decoder, framing the task as multi-class
classification. Additionally, Conditional Random
Fields (CRFs) (Liu et al., 2021), which condition-
ally model dependencies between labels, have been
widely used in feature-based supervised learning
methods. In addition, deep learning has become
a widely used approach for NER, and advances in
related upstream and downstream tasks, such as
sequence tagging and entity linking, have further
improved NER performance.(Roy, 2021)

2.2 Collaboration of Large and Small Models

Recent advances in pre-trained large-scale models
have enabled training on vast amounts of data, mak-
ing them adaptable to diverse downstream tasks
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Figure 1: Two cases of the hybrid system. The green tick in the picture represents that the model’s annotation for
this sentence is confident and correct, while the red question mark represents that its perplexity is high, and it is
actually incorrect. Therefore, based on the rules (detailed in Section 4), we select the results with high confidence
from both sides. More discussions about these two examples are in Section 5.2.

(Bommasani et al., 2021). However, studies (Ma
et al., 2023) suggest that while LLMs excel in ex-
tremely low-resource scenarios, they are not al-
ways effective for few-shot information extraction.
In particular, combining LLMs with SLMs sig-
nificantly improves performance in difficult cases,
demonstrating the potential of hybrid approaches
in NER.

3 Baseline Approaches for NER

3.1 SLM-Based Token Classification

To set a baseline, in the closed modality, we
use GujiRoBERTa_jian_fan1, a BERT model pre-
trained on massive traditional Chinese corpus. For
the training data set used to adapt to the down-
stream NER task, there are three different data sets:
Dataset A (from Shiji), Dataset B (from the Twenty-
Four Histories), and Dataset C (from Traditional
Chinese Medicine Classics).

During data processing, we mainly faced two
key issues: sentence segmentation and character
tokenization. To better leverage the context infor-
mation, we use periods, question marks, and excla-
mation marks instead of a fixed maximum length
as the end of a sentence. In terms of tokenization,
a character within a single label may be split into
multiple tokens, which requires careful processing
to keep the boundary information. Details are in
table 1.

1https://github.com/hsc748NLP/
GujiBERT-and-GujiGPT

Original label Assigned new labels
(for one char) (for multiple tokens)

[B−] [B−] [M−]∗(i−1)

[M−] [M−]∗i
[E−] [M−]∗(i−1) [E−]

[S−] [B−] [M−]∗(i−2) [E−]

Table 1: Details of changing labels for multiple-token
characters. "B-", "M-", "E-", "S-" are prefixes of labels.
i is the number of tokens for a single character.

3.2 Large Model-Assisted NER

Although LLMs show strong performance in a wide
range of tasks, their performance on NER is still
significantly below the supervised baselines. To
improve the performance of the LLMs in the NER
task, we explored two key strategies: LoRA fine-
tuning for better model adaptation and similarity-
based prompting for more effective few-shot learn-
ing. Both methods have a significant impact on
performance improvement.

3.2.1 LoRA fine-tuning
Considering the balance between performance
and cost, we employed Low-Rank Adaptation
(LoRA) (Hu et al., 2022) to fine-tune Qwen2.5-
14B-Instruct.

As for the data, we have transformed the token-
level training set into a special format that can be
understood by LLMs. The specific format is as
follows:

<NG>楚</NG>使怒去，归告<NR>怀
王</NR>。

2
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In this case, "楚" "怀" "王" are officially annotated
as "S-NG" "B-NR" and "E-NR" in the training data
set, so we use pairs of "<X></X>" to denote an
"X" category.

3.2.2 Similarity-based prompting
Beyond standard fine-tuning, we explored a
retrieval-based prompting approach to enhance in-
context learning. Specifically, we utilized SIKU-
BERT/sikuroberta2 to generate sentence embed-
dings and performed similarity matching to retrieve
the top 5 most similar sentences from the training
set for each test sample. Unlike traditional few-shot
prompting, which relies on a fixed set, similarity
prompting dynamically selects contextually rele-
vant examples, ensuring better alignment with the
input instance. This approach effectively solves
the transition labelling problem common to large
language models on NER tasks.

4 Model Fusion: Combining SLM and
LLM Outputs

4.1 Method

To leverage the strengths of both SLM-based token
classification and LLM-assisted NER, we propose
a fusion strategy that integrates their outputs. This
method selects the more confident answer when
the answers given by the two models are found to
be in disagreement.

4.1.1 LLM’s Category & Boundary
Probabilities

In order to better collaborate with and compare
against the small model, we need to define the
category probabilities and boundary probabilities
for the annotation results of the LLM.

The category probability is defined as the proba-
bility obtained after performing softmax normaliza-
tion on the logits of the positions where the tokens
corresponding to that category first appear, while
the boundary probability is defined as the average
of the probabilities of the first "<” token (denot-
ing the start of an annotation), the first "</“ token
(denoting the end of one annotation), and the to-
ken preceding each of them (denoting whether to
start or end an annotation). We will still use the
following example:

<NG>楚</NG>使怒去，归告<NR>怀
王</NR>。

2https://huggingface.co/SIKU-BERT/sikuroberta

In this case, "楚" "怀" "王" are officially annotated
as "S-NG" "B-NR" and "E-NR" in the training
data set, so we use pairs of "<X></X>" to denote
an "X" category. So the category probability for
"楚" is Softmax(Logit(NG)); and the boundary
probability for "怀王" is average of the softmaxed
logits of tokens "告" "<" "王" and "</". We do
need the token preceding "<", in that the LLM may
hesitate whether to start a new entity from token
"告" or "怀"; we also need the token preceding
"</", in that the LLM may hesitate whether to end
this entity in token "怀" or "王".

4.1.2 Hyperparameters and formulas

It was observed that the LLM confidence gap was
minimal; therefore, the decision was made to scale
it using the exponent of e. With regard to the values
of the hyperparameters, a search was conducted
across the training sets for the optimal results. If
SS < SL, choose the results of SLM; otherwise,
let the LLM’s results provide guidance. Here is the
final formulas.

Compare(SS , SL) = SS < SL (1)

where:

SS = 1− Entropy(SLM) (2)

SL = λ · eP (LLM) (3)

5 Experiments

All of our experiments were conducted on at most
4 NVIDIA A6000 GPUs. We train the SLM on
training set for 10 epochs, with a batch size of 64
and learning rate of 2e-5. For the SFT of the LLM,
we adopted a batch size of 64, learning rate of 2e-
5, a LoRA rank of 64 and an alpha of 128. All
the evaluation results below are token-level macro
scores (on a 10% test set splited from train set).

5.1 Results

We conducted ablation experiments for every ap-
proach and demonstrated that all approaches were
helpful in improving the ability of LLM to perform
the NER task on all three test sets.

First, we show that both methods of improving
LLM performance are effective. Details are in Ta-
ble 3.

3
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Character Real Label SLM Output (Entropy) LLM Output (Category/Boundary Prob.)
魏 B-NR B-NR (0.036) S-NG (0.7815)
丞 M-NR M-NR (0.038) B-NR (0.9986)
相 E-NR E-NR (0.033) E-NR (-)
诗 B-NB B-NB (2.537) S-NB (0.9062)
书 E-NB E-NB (2.425) S-NB (0.9998)

Table 2: Cases of SLM guiding LLM and LLM guiding SLM. The one above shows the category probabilities of
the LLM, and the one below shows the boundary probabilities of the LLM. Since the LLM only outputs category
probabilities for the entire entity once, there is no corresponding category probability for the Chinese character "相"
in line 3.

model A B C
few shot 0.2626 0.4072 0.2492
Sim. prompt 0.4400 0.6367 0.5182
SFT + few shot 0.6737 0.8329 0.5878
SFT + Sim. prompt 0.8350 0.8694 0.6381

Table 3: Results of two approaches to improve the abil-
ity of LLM on NER task. Based on Qwen2.5-14B-
Instruct. This ’Sim.’ means ’Similarity’, and ’SFT’
refers to ’Supervised Fine-Tuning’.

Then, despite the close results of SLM and LLM,
we merged the two with custom rules and got better
results in comparison to both on all three test sets.
Details are in Table 4.

Model A B C
SLM 0.8305 0.8738 0.7207
Sim. Prompt 0.8350 0.8694 0.6381
Sim. Prompt + SLM 0.8855 0.8824 0.7733

Table 4: Results from the fusion of the LLM and the
SLM model. "Sim. Prompt" refers to a fine-tuned LoRA
SFT model with similarity-based prompting.

5.2 Case Study

To better demonstrate the effectiveness of our
method, we will present two examples below. They
are respectively the case where the SLM success-
fully guides the LLM and the case where LLM
successfully guides the SLM. Table 2 presents two
typical examples.

Case 1: SLM guiding LLM. The phrase "魏
丞相" (the Prime Minister of the state of Wei) can
be annotated as "Personal Name (NR)" or "Coun-
try (NS) + Personal Name (NR)". Although the
former is better, it also depends on the annotation
style. In this case, due to its professionalism, the
SLM grasped the annotation style of the training
set more accurately. Therefore, it provided the
correct answer with a relatively low entropy (low

uncertainty). In contrast, the LLM gave a wrong
answer with a relatively low probability (which
also reflects its lack of confidence in itself). In such
situation, we follow the rules and adopt the result
provided by the small-scale model.

Case 2: LLM guiding SLM. "诗"(The Book of
Songs) and "书" (The Book of History) are two of
the "Six Classics" in ancient China, which is our
common cultural knowledge. Since the large-scale
model has incorporated a vast amount of knowl-
edge during the pre-training stage, it is highly likely
that it has learned this common sense and can ac-
curately annotate the Chinese characters "诗" and
"书" as "S-NB" respectively. In contrast, due to the
lack of this common sense, the small-scale model
tends to mis-annotate things it doesn’t recognize
with a very high entropy (high uncertainty). Ac-
cording to our rules, this situation can also be suc-
cessfully corrected.

6 Conclusions and Future Work

In this paper, we presents an efficient approach
to enhancing LLM performance in NER to match
a supervised SLM. Using LoRA fine-tuning and
similarity-based prompting, we improved the
LLM’s entity recognition. We also introduced a
fusion strategy that prioritizes SLM’s predictions
while leveraging LLM guidance when SLM’s con-
fidence is low. This hybrid approach consistently
outperformed both baselines.

However, our method did not fully utilize the
LLM’s reasoning and analytical capabilities. In
particular, enabling a 14B parameter model with
limited domain knowledge of classical Chinese to
self-correct remains challenging. Future work may
explore ways to enhance LLM’s domain adapta-
tion, allowing it to better leverage contextual un-
derstanding and reasoning for collaborative NER
frameworks.
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A Detailed Experimental Results

In this section we show detailed experimental re-
sults individually. Table 5, table 6 and table 7 are re-
sults of LLM Qwen2.5-14B-Instruct on NER tasks
A, B and C. Here ’Sim.’ means ’Similarity’, ’SFT’
refers to ’Supervised Fine-Tuning’, ’P’ refers to
’Precision’, ’R’ refers to ’Recall’, and ’F1’ refers
to macro F1 scores.

Model P R F1
few shot 0.2529 0.3167 0.2626
Sim. prompt 0.4369 0.4645 0.4400
SFT + few shot 0.6566 0.7161 0.6737
SFT + Sim. prompt 0.8143 0.8746 0.8350

Table 5: Results for A.

Model P R F1
few shot 0.4477 0.4087 0.4072
Sim. prompt 0.6528 0.6364 0.6367
SFT + few shot 0.8601 0.8124 0.8329
SFT + Sim. prompt 0.8823 0.8592 0.8694

Table 6: Results for B.

Model P R F1
few shot 0.2719 0.2642 0.2492
Sim. prompt 0.5280 0.5483 0.5182
SFT + few shot 0.6776 0.5412 0.5878
SFT + Sim. prompt 0.6874 0.6172 0.6381

Table 7: Results for C.

Table 8, table 9 and table 10 are results of
the fusion of LLM and SLM model. Here "Sim.
Prompt" refers to a fine-tuned LoRA SFT model
with similarity-based prompting, ’P’ refers to ’Pre-
cision’, ’R’ refers to ’Recall’, and ’F1’ refers to
macro F1 scores.

Model P R F1
SLM 0.8223 0.8646 0.8305
Sim. prompt 0.8143 0.8746 0.8350
Sim. prompt +SLM 0.8841 0.8901 0.8855

Table 8: Results for A.

Model P R F1
SLM 0.8844 0.8648 0.8738
Sim. prompt 0.8823 0.8592 0.8694
Sim. prompt +SLM 0.8986 0.8685 0.8824

Table 9: Results for B.

Model P R F1
SLM 0.6954 0.7522 0.7207
Sim. prompt 0.6874 0.6172 0.6381
Sim. prompt +SLM 0.7641 0.7904 0.7733

Table 10: Results for C.
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