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Abstract

Scientific discovery is an iterative process that
requires transparent reasoning, empirical vali-
dation, and structured problem-solving. This
work presents a novel human-in-the-loop AI
system that leverages case-based reasoning to
facilitate structured scientific inquiry. The sys-
tem is designed to be note-centric, using the Ob-
sidian note-taking application as the primary in-
terface where all components, including user in-
puts, system cases, and tool specifications, are
represented as plain-text notes. This approach
ensures that every step of the research process
is visible, editable, and revisable by both the
user and the AI. The system dynamically re-
trieves relevant cases from past experience, re-
fines hypotheses, and structures research work-
flows in a transparent and iterative manner. The
methodology is demonstrated through a case
study investigating the role of TLR4 in sepsis,
illustrating how the system supports problem
framing, literature review, hypothesis formu-
lation, and empirical validation. The results
highlight the potential of AI-assisted scientific
workflows to enhance research efficiency while
preserving human oversight and interpretabil-
ity.

1 Introduction

Large language models (LLMs) have the potential
to transform scientific research. They offer broad
domain knowledge and the ability to synthesize
complex information. However, their application
in scientific inquiry is hindered by issues such as
hallucination, lack of transparency, and difficulty in
tracing the reasoning process behind generated in-
sights (Sanderson, 2023). To ensure that AI-driven
research remains reliable, verifiable, and ethical,
human-in-the-loop methodologies are essential.

Here we present a system that integrates case-
based reasoning (CBR) (Kolodner, 1993; Watson,
1997) with a note-centric workflow to facilitate
AI-assisted scientific inquiry. The system is de-

signed around the Obsidian note-taking application
(https://obsidian.md/) such that all elements
of the workflow are represented as first-class plain-
text notes in Obsidian. This structure provides a
transparent, revisable, and interactive environment
where users can inspect, modify, and refine the
reasoning process at every stage.

The core workflow of the system follows a struc-
tured inquiry process. When a user poses a sci-
entific question or problem, the system assesses
whether it aligns with existing case knowledge and
retrieves or adapts cases from prior solutions. Im-
portantly, every step of a solution is documented
within the note interface, including both user and
LLM input, ensuring full traceability. Each step
makes use of tools which can be called on explic-
itly, or searched for based on context.

We illustrate the potential of this approach
through a case study exploring the role of TLR41

in sepsis. This example illustrates how the system
facilitates problem framing, literature review, hy-
pothesis generation, and data integration. The case
study highlights the advantages of this structured,
AI-augmented workflow.

2 Methods & Design

The system uses a human-in-the-loop approach that
is note-centric. That is, all components of the sys-
tem are stored as notes in the Obsidian note-taking
application. All notes are plain-text documents.
This includes not only user notes but all system
CBR cases as well as tool specifications. This
approach means that all elements of the system
are transparently available to both the user and
LLM as part of the workflow. This approach also
means integration with the note-taking application
is minimized making the system interface agnostic.

1Toll-like receptor 4 (TLR4) plays a central role in detect-
ing bacterial infections. However, in some cases, it can trigger
an excessive immune response, leading to sepsis.
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This stands in contrast with fully integrated LLM-
assisted note taking applications (Suh et al., 2023)
(https://notebooklm.google/).

2.1 System Workflow

Figure 1 gives an overview of the system work-
flow. The user interacts with Obsidian, the note-
taking application. While taking notes, the user
may prompt the system to answer a question or
solve a problem. The system evaluates the request
and searches for any applicable CBR case. A new
instance of the most similar case is then created and
linked to from the current user note. If no case is
found, a default case is created to initiate stepwise
problem solving.

Figure 1: System workflow.

2.2 Case-based Reasoning

Case notes are structured documents that encapsu-
late knowledge for solving problems. Each case
includes: a description of the problem, a series of
steps for solving the problem and references to op-
tional resources. Steps include an Action and may
specify pre-conditions (Requires). The action is
typically composed of a combination of free text
instructions and references to system tools. When
a tool is executed its response may be included
inline in the note, or stored in a context variable.
Variables may be passed to later steps. Abstractly,
cases represent system experience based on pre-
vious problem solving instances. Cases may be
reused, revised or adapted as new problems are
encountered.

2.3 The Collaboration Process

After a case is instantiated and linked to the user’s
note the system begins execution of the steps. Be-
cause the case is a plain-text note, the user sees

execution as it progresses. The user may pause ex-
ecution to review, revise, and/or repeat steps. This
keeps the user in-the-loop and makes the reasoning
process interactive, transparent and traceable.

2.4 Language Enabled Tools
Tool usage and interface is specified in tool notes.
As notes, this makes tools searchable both by the
user and the system. This means that if a case step
specifies some action, the system can search tool
specifications for an appropriate tool to perform
that action. Tools can also perform language func-
tions (e.g., summarize) as well as retrieve or manip-
ulate data (e.g., from user experiments) through a
REST API. This also allows interface to any third-
party database.

2.5 Implementation
The system is written in Python and interacts with
the Obsidian note-taking application through notes
written in plain-text markdown. For LLM-based
tools Python interfaces to models (GPT4o and
o1) through OpenAI’s API (OpenAI, 2023). A
Pinecone (https://www.pinecone.io/) server-
less vector database maintains embeddings (text-
embedding-ada-002 model) for all documents.

3 Case Study

Given that most available benchmarks assume sig-
nificant autonomy/agency in performing knowl-
edge discovery tasks (Liu et al., 2024; Majumder
et al., 2024; Chen et al., 2024) or focus on a sin-
gle correct/best answer (Rein et al., 2023; Chollet
et al., 2025), we instead provide an end-to-end case
study to demonstrate how a note-based system fa-
cilitates scientific inquiry through collaboration
with a user. Specifically, the researcher initiates an
exploration of how the TLR4 gene is related to sep-
sis. The approach supports an iterative framework
that integrates user input, literature review, exter-
nal database searches, hypothesis formulation and
experimental results. Each step builds upon the pre-
vious, ensuring a well-documented and transparent
reasoning path that is flexible, adaptable and sup-
ports a productive collaboration between human
and machine.

3.1 Research Question
We begin by adding the following question to a
new Obsidian note:

How is TLR4 related to sepsis?
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The system must first contextualize the ques-
tion/problem within the broader framework of sci-
entific inquiry. This helps to set expectations for
the nature of the insights and, more importantly,
identify appropriate case-based reasoning (CBR)
cases relevant to the question. A summary (Fig-
ure 2) is prepared by the Note Change case which
assesses the original question.2

Figure 2: Defining the question type and identifying
CBR cases (e.g., Mechanistic and Causal questions)

The user reviews the assessment, makes any
needed changes and approves the summary (by
checking "Step Completed"). This step will act as
a guide for subsequent steps. That is, it informs and
constrains subsequent step formulation as a part of
any reasoning by the LLM. Note, especially, that
this text is added to the original user note.

3.2 Initiating Case-based Reasoning

If available, an applicable "Question Type" case
is chosen as a top-level starting point (if not, a
"default" case formulates one). Here we have two
main case types: mechanistic and causal, as well
as three subtypes: descriptive, experimental and
predictive. The original user note with question
(and summary) will act as a top-level note with
links to each subsequent reasoning step (Figure
3). The link is not to the Question Type case, but,
rather, a copy which will be "populated" as each
step in the case is completed and can be edited at
any time by the user.

Note that steps in the following sections are spe-
cific to the above CBR case and, in fact, are only
for the "Mechanistic" portion of the question as
formulated in Figure 2. Though case specific, each
step highlights features of the system available to

2Note that most figure screenshots include red spell check
underlines from Obsidian.

Figure 3: Instantiate intial CBR case, Mechanistic Gene
Function, based on previous experience. Link this (red
arrow) to the top-level user note.

any case.

3.3 Defining Scope
The first step of the ’Mechanistic - Gene Function’
case is to define the scope of the problem. This
requires user input. The step definition specifies
this dependency in the Requires section with the
instruction: "User input" (Figure 4). From what is
known so far about the problem (which required
user approval, see Figure 2) the LLM constructs a
list of questions for gathering scoping information.

Figure 4: Case reasoning step requiring user input as
part of the scope definition action.

Given the task of exploring a gene, this list (Fig-
ure 5) asks a series of questions designed to set
bounds on what is to be investigated about that
gene (e.g., species, interactions, relationship to dis-
ease).

Key to the system’s collaborative design is that
this is not a passive solicitation of information from
the computer. Rather, the user may edit the list in
any way, including using strikethrough to signal
that items should be ignored. User answers are
interleaved with questions and checkboxes are used
to indicate the user has completed the question.

Given the user feedback, the Action portion of
the step proceeds and the system proposes a work-
ing definition of scope (Figure 6). Again, the user
may edit and revise as appropriate since all text is
part of an Obsidian note. At this point the step is
checked as completed and the next step begins.

3.4 Refining the Problem
We are now in a position to refine the original prob-
lem statement based on the agreed upon scope. In
this step the Action implicitly uses the LLM to
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Figure 5: Requested user information for scope defini-
tion. User interleaves answers and then checks boxes.
Users may also use strike-through to indicate informa-
tion that should be ignored (i.e., is out of scope).

Figure 6: Final system composed question scope defini-
tion.

generate a Refined Problem Statement and propose
Key Questions. The Step definition and results are
both given in Figure 7.

Figure 7: Refined problem statement and key questions.
An additional question has been added by the user (blue
highlight).

Notice that the user has exercised the option
of adding an additional question (blue highlight).
More generally, the system also fully supports not
only editing responses, but also the Action defi-
nition itself. This serves two purposes, improv-
ing responses for a particular problem step, but
also providing a mechanism for system learning.
Since all case instances represent experience, any
changes in how a problem is approached becomes

an opportunity to refine and adapt CBR cases for
future problems.

3.5 Quick Review
The adoption of LLMs for scientific research has
been hindered by, among other things, their propen-
sity to fabricate both information and citations sup-
porting those fabrications (Jones, 2025). Never-
theless, their breadth of training can make them
invaluable partners if verification is included.

In this step the LLM is used to provide a quick
(though potentially unreliable) review of the prob-
lem. The Action uses an explicit system tool call
to effect a search given the previously generated
Problem Statement (Figure 8).

Figure 8: Explicit tool call to ask OpenAI o1 model for
"quick" non-authoritative answer.

By making the call explicit the return response
can be captured in a named variable, res0. In doing
so, the response will not be included as part of the
note, however, by using a substitution statement
after the tool, {res0["answer"]}, the response (aka
answer) is both included in the note text (Figure 9)
and now stored in a variable for later use (see 3.7
below).

Figure 9: "Quick" answers to the refined problem’s key
questions.

The LLM (OpenAI o1 in this case) answers each
Key Question in a plausible, though unverified,
manner. This step is meant to offer the user a quick
overview as orientation to the problem space as
well as prompt revision of earlier steps if the user
believes this is appropriate (e.g., answers do not
support a hypothesis the user has in mind).
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3.6 Literature Review
With this cursory look at the answer in mind we
may now undertake a more rigorous literature re-
view. In this step the Action explicitly requests a
search of PubMed articles to answer the Key Ques-
tions (Figure 10). Key to this tool is its design to
explicitly not answer questions using the LLM. In-
stead, it collects articles based on a keyword search
of PubMed (e.g., genes, diseases, pathways), in-
dexes them and uses retrieval-augmented genera-
tion (RAG) to answer the questions (Lewis et al.,
2020).

Figure 10: Initiate a literature search of PubMed on the
list of Key Questions. Search results are stored in res1
and references for search results are passed to another
tool to be summarized.

Answers include paragraph-level citations to all
articles used to answer the question as well as a
complete linked bibliography (Figure 11).

Figure 11: Literature Review answer to first Key
Question. Answer is based only on PubMed articles
with paragraph-level links to citations and bibliogra-
phy (Fernández-Martín et al., 2022; Jeon et al., 2024;
Kuzmich et al., 2017; Park et al., 2023; Perrin-Cocon
et al., 2017; Punch et al., 2022; Qiu et al., 2023; Shen
et al., 2024).

Though not shown here, the user has the option

of revising any question, asking additional ques-
tions or otherwise annotating these results.

3.7 Knowledge Gaps
Having completed a first review of the Key Ques-
tions, we can now attempt to identify knowledge
gaps that may warrant further investigation. This
step (Figure 12) uses the same GPT tool as before
but now incorporates information from previous
steps (3.5 and 3.6) as part of the prompt using
variable substitution (red arrows). It also explic-
itly specifies the structure of the response using a
function prototype. Although this may border on
"programming" for many users, it is shown here
to demonstrate the level of control a user has over
how the LLM answers questions.

Figure 12: GPT API is used to assess knowledge gaps.
An explicit prompt is provided along with results from
the previous Quick Review and Literature Review. The
response is structured using a function prototype param-
eter.

The LLM, using both reviews, then provides a
list of nine potential gaps in knowledge (Figure 13
shows the first two).

Figure 13: First two identified knowledge gaps (of nine)
summarized and annotated by difficulty and reward.

Again, the strength of the LLM to identify and
summarize is leveraged to provide a concise anno-
tated summary of each potential gap. It remains
up to the user to review, refine and approve the
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results. However, the system, by design, provides
a documented, transparent path of reasoning steps
to assist in this task.

3.8 Database Review
In addition to GPT and PubMed reviews, the user
can also incorporate knowledge from other sources.
This step (Figure 14) demonstrates the use of
system tools to search, summarize and structure
information from external sources, in this case:
Wikipedia and GeneCards.

Figure 14: Step definition to use two external data
sources (Wikipedia and GeneCards) to summarize more
information about the TLR4 gene.

The dbSearch tool takes a list of sources, queries
them and then returns them to the user note. As
before, these are added to the note, but also saved
to a variable, res3, for later use by other functions.

3.9 Hypothesis Formulation
Given our Problem Statement; literature and
database reviews; and, assessment of knowledge
gaps, we can now attempt to formulate reasonable
research hypotheses (Figure 15).

Figure 15: Using the results of multiple previous steps:
formulate research hypotheses.

Reiterating: all work to this point has been
recorded in a single user readable/editable note
in Obsidian. It is available to the user, but also to
the system. The Action in this step takes advantage
of the accumulation of knowledge to formulate the
hypotheses (Figure 16).

Three hypotheses are stated. The rationale for
each is summarized and potential approaches for

Figure 16: Proposed Hypothesis 2, including: rationale
and potential stepwise approach.

their study are given. This step in particular is a
starting point. A user is expected to iterate and
refine a hypothesis. This may mean qualifying or
constraining a given hypothesis and re-running, or
it may involve returning to earlier steps to gather
more information (e.g., literature review). The use
of a note taking system is meant to encourage and
support the dynamic collaboration that is key to a
scientific workflow.

3.10 Experiments and Data Collection

Another key feature of the system is the ability to
seamlessly incorporate external data into reasoning
tasks. In this case study the user has indicated
an interest in Hypothesis 2 which integrates gut
microbiota with changes in TLR4 signaling during
sepsis (Figure 16). The Action has been edited
by the user to focus data source search on this
hypothesis (Figure 17).

Figure 17: Implicit search of external resources for
datasets suitable for preliminary results.

This search utilizes another section of the CBR
case: Suggested Resources (Figure 18). This gives
the system an implicit starting point for finding rel-
evant data. Note that initially the databases are not
themselves searched, but, rather, the LLM (Ope-
nAI o1) utilizes its own training to locate possible
sources. Like the GPT Literature Review (see 3.5)
this is not meant to be a final authoritative search.
Rather, it quickly locates possible data as well as
giving guidance to the user (not shown) on how
to search the database resources (e.g., GEO and
SRA).
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Figure 18: The CBR case includes Suggested Resources.
This includes one for gene expression (GEO) and one
for microbiome profiling (SRA).

Excerpted search results for both gene expres-
sion (from GEO) and microbiota profiling (SRA)
are given in Figure 19. These results include acces-
sion identifiers (red arrows) as well as descriptions
and relevance for Hypothesis 2 use.

Figure 19: Excerpts from the search using OpenAI
o1 model. Public datasets are identified (red arrows).
Searches may also be done using tools to directly access
resource APIs.

Again, this is meant as a way of using the LLM
to quickly assess the availability of relevant public
datasets. The user may then utilize other system
tools (not shown) to search and download the actual
data from GEO and SRA.

3.11 Differential Expression Analysis

Given that most data analysis, especially in the bio-
logical sciences, involves a multi-step pipeline, the
advantages of initiating and monitoring a pipeline
from a notes interface are limited. However, the
system does have access, via its built-in REST API
interface, for accessing the results of any analysis.
What this means practically, is that these results can
be incorporated into the workflow like any other
text source.

Figure 20: Explicit tool identification for computing
differential gene expression on retrieved datasets.

Figure 20 implicitly calls a tool to interpret the
results of a standard DESeq2 differential gene ex-
pression analysis. In this case the tool expects a list
of genes in CSV format that includes: gene symbol
(e.g., TLR4), log fold-change and significance of
the change (typically, adjusted p-value). The re-
sults of the step are to summarize those genes that
have been found to be significantly differentially
expressed.

The user may then qualify these results relative
to the workflow by posing additional questions
(e.g., "Are other genes associated with an inflam-
matory response also up-regulated?").

3.12 Experimental Insights and Reflection

LLMs are particularly adept at summarization tasks.
This CBR case takes advantage of this feature and
asks the LLM in this final step to reflect on what
has been discovered thus far and to suggest next
steps (Figure 21).

Figure 21: Preliminary results analysis and assessment
of next steps sensitive to this analysis (if results are
available).

Recall that each step has the accumulated context
of all previous steps, so, although the Action may
seem vague by asking for "insights," it is actually
operating on the accumulated text of everything
that has come before (nearly 20 pages in this case
study).

In contrast to many autonomous reasoning sys-
tems (e.g., OpenAI’s o1 model), this system is de-
signed to support a scientific workflow that is ex-
pected to be open-ended and subject to continuous
revision as hypotheses are generated and exper-
iments are performed and interpreted. There is
rarely, if ever, one right answer.

Figure 22 supports this workflow not only with
a summary and critique of foregoing steps, but
by giving guidance for refining and extending the
work.
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Figure 22: First two (of six) suggested next steps for the
investigation including, hypothesis refinement, valida-
tion and prospective controlled studies.

4 Discussion

The case study presented here illustrates how a
human-in-the-loop AI system can enhance the pro-
cess of scientific discovery. By structuring inquiry
through case-based reasoning, the system provides
a transparent, traceable, and iterative approach that
naturally aligns with standard scientific workflows.
A key strength of this approach is its ability to lever-
age LLMs as an integral tool for productive human
collaboration.

A critical challenge in leveraging AI for sci-
entific discovery is ensuring that the generated
insights remain grounded in empirical evidence.
LLMs are known to generate plausible yet unver-
ified statements, which can mislead researchers
if used uncritically. This system mitigates such
risks by explicitly incorporating verification steps,
including literature searches using PubMed and
database reviews via other trusted sources. The
interactive nature of the system ensures that the
user remains an active partner in refining problem
definitions, verifying outputs, and shaping hypothe-
ses. This stands in stark contrast to many recent
autonomous-blackbox approaches to LLM reason-
ing.

The foregoing case study demonstrates the value
of structuring problem-solving through an evolv-
ing CBR system. Cases represent human-machine
experience and as such can be reused, refined and
adapted for new problems. Their implementation
as first-class notes ensures transparency and encour-

ages human collaboration as part of the reasoning
process. In this example the iterative approach to
scope definition, literature review, and hypothesis
refinement steps serve as checkpoints, reinforcing
scientific rigor while allowing for flexibility and re-
finement in inquiry. Using an LLM to help identify
knowledge gaps and synthesize insights from multi-
ple sources highlights the strength of this approach
and demonstrates how AI can enhance, rather than
replace, the natural reasoning process of scientific
experts. Providing a mechanism for retrieving user
experimental results further enhances the workflow
by facilitating a seamless transition from hypothe-
sis generation to empirical validation.

By embedding this approach within a human
note-taking system, LLM-based tools become an
integral component of the workflow, fostering a
continuous cycle of learning and adaptation driven
by user-machine collaboration. Furthermore, stor-
ing all CBR cases, tools, and generated results as
user notes enhances transparency and traceability,
ensuring that each step in the reasoning process
remains accessible for review and refinement.

5 Conclusion

Our approach underscores the potential for human-
in-the-loop AI systems to enhance scientific dis-
covery by structuring inquiry, verifying insights,
and integrating empirical data. By leveraging case-
based reasoning, the approach ensures that LLM-
generated outputs remain contextually relevant, em-
pirically grounded, and are subject to a continuous
step-by-step review by a collaborating human user.

The results demonstrate that while LLMs pro-
vide valuable breadth and summarization capabili-
ties, their true scientific utility emerges when cou-
pled with a human-in-the-loop. The interplay be-
tween user expertise and LLM-based tools creates
a workflow that is not only transparent and account-
able, but also adaptable to the evolving nature of
all scientific inquiry. Ultimately, this approach rep-
resents a step toward AI-assisted research frame-
works that align with the principles of scientific
rigor and iterative discovery, paving the way for
more effective collaboration between AI systems
and domain experts in the pursuit of knowledge.
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