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Abstract

Automatically generated summaries can be
evaluated along different dimensions, one be-
ing how faithfully the uncertainty from the
source text is conveyed in the summary. We
present a study on uncertainty alignment in au-
tomatic summarization, starting from a two-
tier lexical and semantic categorization of lin-
guistic expression of uncertainty, which we
used to annotate source texts and automatically
generate summaries. We collected a diverse
dataset including news articles and personal
blogs and generated summaries using GPT-4.
Source texts and summaries were annotated
based on our two-tier taxonomy using a markup
language. The automatic annotation was re-
fined and validated by subsequent iterations
based on expert input. We propose a method to
evaluate the fidelity of uncertainty transfer in
text summarization. The method capitalizes on
a small amount of expert annotations and on the
capabilities of Large language models (LLMs)
to evaluate how the uncertainty of the source
text aligns with the uncertainty expressions in
the summary.

1 Introduction and Motivation

Uncertainty is a multifaceted construct and can
stem from various sources. It may stem from a lack
of knowledge or information or constraints in data
availability (epistemic uncertainty), or variability
or noise in the data (aleatoric uncertainty) (Lahlou
et al., 2023; Hüllermeier and Waegeman, 2021;
Sankararaman and Mahadevan, 2011; Hofer et al.,
2002). Or it can result from a model’s limitation or
approximation, preventing it from perfectly repre-
senting the underlying data patterns, whether due
to inherent model constraints or approximations
(Kuhn et al., 2023).

Different linguistic expressions or textual ele-
ments may convey uncertainty, suggesting doubt,

possibility, ambiguity, or a lack of precision (Auger
and Roy, 2008; Juanchich et al., 2017; Walley and
De Cooman, 2001) and ultimately influencing com-
prehension and decision-making processes (Wang
et al., 2018; Juanchich et al., 2017; Gkatzia et al.,
2016). Understanding and effectively conveying
uncertainty within textual content is a crucial as-
pect of natural language processing (NLP) and
has been explored in downstream tasks such as
text and document classification (Hu and Khan,
2021; Mukherjee and Awadallah, 2020; Chen et al.,
2020; He et al., 2020; Zhang et al., 2019), question-
answering (Ünlü and Arisoy, 2021; Li et al., 2021;
Lyu et al., 2020), and natural language generation
(NLG, Kuhn et al., 2023; Xiao and Wang, 2021;
Rieser and Lemon, 2009) among others.

Despite the emergence of advanced methodolo-
gies in NLP, including pre-trained models like GPT-
3/4 (Koubaa, 2023; OpenAI, 2023), BLOOM (Scao
et al., 2022; Science, 2023), Llama models (Tou-
vron et al., 2023), as well as specialized variants
such as InstructGPT (Ouyang et al., 2022), Chat-
GPT (OpenAI, 2022), and Falcon-40B-instruct (Al-
mazrouei et al., 2023; Penedo et al., 2023; Xu et al.,
2023), the identification and assessment of uncer-
tainty remain difficult tasks. These advancements
have notably enhanced NLG performance; how-
ever, they have also introduced new dimensions for
uncertainty exploration and investigation, includ-
ing but not limited to issues such as hallucination
(Zhang et al., 2023b,a; Chen et al., 2023; Ji et al.,
2023), factuality and truthfulness (Raj et al., 2023;
Quelle and Bovet, 2023; Augenstein et al., 2023),
logical reasoning and self-consistency (Xiong et al.,
2023; Chen and Mueller, 2023; Cheng et al., 2023)
within LLM-generated output.

Text summarization aims to distill comprehen-
sive information into shorter, more concise ver-
sions while retaining the essential information and
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Figure 1: Categorization of semantic uncertainty introduced by (Vincze, 2014b)

preserving coherence (Allahyari et al., 2017; El-
Kassas et al., 2021; Nenkova and McKeown, 2012).
Uncertainty is important in the evaluation of sum-
maries, as it directly impacts the fidelity and ac-
curacy of condensed information. Recognizing
and appropriately handling uncertainty expressions
within a source text and effectively transferring
them to summaries is crucial for ensuring the in-
tegrity and relevance of the distilled information
(Zablotskaia et al., 2023; Xu et al., 2020).

Our work is guided by the linguistic taxonomy
of uncertainty described in Section 3, and tries to
answer the following research questions:

• RQ 1: How can LLMs be employed to identify
and annotate expressions of uncertainty in text
based on the taxonomy introduced in Section
3?

• RQ 2: How faithful are LLM-generated sum-
maries regarding the dimension of uncertainty,
and how do the uncertainty expressions in the
summary align with the corresponding expres-
sions in the source texts?

Firstly, we aim to establish a linguistically ori-
ented taxonomy of uncertainty in textual content,
building upon previous work (Section 2.1), to be
used as a simplified ontology for text annotation.
The taxonomy is described in Section 3. Sec-
tion 4 describes the material gathered from various
sources and describes the data annotation process.
Finally, in Section 5 we evaluate the fidelity of
uncertainty transfer in summarization processes.

2 Background and Related Work

2.1 Uncertainty from a Linguistic Perspective
The linguistic conceptualization and nuances of
uncertainty find their origins in philosophy, partic-
ularly in decision theory work by Luce and Raiffa

(1989). They delineate three key situations: cer-
tainty, risk, and uncertainty, each depending on the
probabilities and possibilities associated with the
potential consequences of an action. Bradley and
Drechsler (2014) further detail three distinctions
based on the nature of judgments, the object of
judgments, and the severity of uncertainty reflected
in the experience of the agent.

Rubin (2006) categorizes linguistic expressions
of uncertainty based on proximity to certainty and
proposes a four-dimensional model involving cer-
tainty level, perspective, focus, and time (cf. Fig. 4
in the Appendix). Expanding on Rubin’s work,
Szarvas et al. (2012) and later Vincze (2014b)
present a classification of uncertainty across seman-
tic, discourse, and pragmatic levels. At the seman-
tic tier, propositions are deemed uncertain under
truth-conditional semantics, branching into epis-
temic (uncertainty due to the lack of knowledge)
and hypothetical uncertainties with hypothetical
further branching into "investigation" (uncertainty
in exploring certain aspects or information) and
"condition" (uncertainty about certain conditions
or criteria) under paradoxical and "doxastic" (un-
certainty about beliefs or opinions) and "dynamic"
(uncertainty associated with variability or change)
under non-epistemic modality (Fig. 1).

EPISTEMIC: It may be raining.

DYNAMIC: I have to go.

DOXASTIC: He believes that the Earth is flat.

INVESTIGATION: We examined the role of NF-
Kappa B in protein activation.

CONDITION: If it rains, we’ll stay in.

The discourse level concentrates on sources’
fuzziness and subjectivity, categorizing expressions
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such as "hedges", "weasels" and "peacocks" as
shown in examples below (Vincze, 2014a,b, 2013;
Ganter and Strube, 2009).

WEASEL: Some note that the number of deaths
during confrontations with police is relatively
proportional for a city the size of Cincinnati.

HEDGE: Magdalene Asylums were a generally
accepted social institution until well into the
second half of the 20th century.

PEACOCK: The main source of their inspiration
was native Georgia, with its rich and complex
history and culture, its breathtaking land-
scape and its courageous and hardworking
people.

Pragmatic uncertainty arises when speakers ob-
scure their evidence or source, violating conver-
sational maxims of informativeness and evidence
provision (Grice, 1975). Auger and Roy (2008) ex-
pands these categories to encompass both linguistic
and extra-linguistic environments of information.

2.2 Linguistic Uncertainty Detection in NLP

Detection of linguistic cues of uncertainty in NLP
was first systematically introduced in CoNLL-2010
Shared Task, centering on identifying uncertainty
cues in English biological papers and Wikipedia
articles (Farkas et al., 2010). Earlier work on un-
certainty detection has mostly focused on rule-
based approaches (Light et al., 2004; Chapman
et al., 2007), followed by supervised approaches
(Morante et al., 2009; Morante and Sporleder,
2012; Farkas et al., 2010; Vincze, 2014a).

With the emergence of LLMs and their remark-
able generation capabilities, research on linguistic
uncertainty expression has taken multiple paths.
One approach has aimed at prompting models to
gauge their confidence levels. Lin et al. (2022)
introduced the concept of vanilla verbalized con-
fidence by prompting LLMs to both generate an-
swers and express uncertainty. Prompt strategies
were suggested by van der Gaag et al. (2013) (CoT
prompt strategy) and Tian et al. (2023) (Top-K
prompt strategy). Additionally, exploring human-
like behavior in the face of uncertainty, methods
such as self-consistency extension by Wang et al.
(2022) have been pursued.

Another strand of research has focused on uncer-
tainty estimation in Question Answering tasks with

LLMs, with Si et al. (2022) introducing logit cali-
bration. Kuhn et al. (2023) introduced semantic en-
tropy to handle uncertainty in Question Answering
by incorporating linguistic invariances. Tian et al.
(2023) evaluated computationally feasible meth-
ods to extract confidence scores from probabilities
output by Reinforcement Learning-trained LLMs,
and Chen and Mueller (2023) introduced BSDE-
TECTOR for detecting speculative answers. Baan
et al. (2023) emphasizes a more principled treat-
ment of uncertainty, characterizing major sources
of uncertainty in NLG, and proposes a taxonomy
of uncertainty linked to the data and the model.

To our knowledge, although various methodolo-
gies have been introduced to investigate linguistic
uncertainty cues within textual data, particularly in
the realm of NLG, none of these endeavors have
specifically concentrated on the task of summariza-
tion, in identifying linguistic elements of uncer-
tainty and understanding their fidelity and transfer
from the article to the generated summaries.

2.3 Uncertainty Annotated Datasets

Corpora across various domains and linguistic lev-
els have undergone annotation for uncertainty ex-
pressions. Concerning different domains, these
include biology (Nawaz et al., 2010; Kim et al.,
2008; Settles et al., 2008; Shatkay et al., 2008;
Vincze et al., 2008; Medlock and Briscoe, 2007),
medicine (Uzuner et al., 2009), news (Rubin, 2010;
Rubin et al., 2006), encyclopedic content (Vincze,
2014b; Farkas et al., 2010), reviews (Konstanti-
nova et al., 2012; Díaz, 2013), and social media
(Wei et al., 2018). At the linguistic level, Medlock
and Briscoe (2007) annotated hedge phrases, while
Vincze (2013) annotated for weasels, hedges, and
peacock expressions. The CoNLL 2010 dataset
also includes hedge phrases and weasels (Farkas
et al., 2010). Furthermore, Vincze (2014b) focused
on semantic category annotation across various cor-
pora while Rubin (2010) annotated for epistemic
modality in the context of information seeking, con-
tributing to the exploration of linguistic uncertainty.
While each dataset contributes valuable insights
into understanding uncertainty, it is important to
note that each dataset may capture certain annota-
tions while potentially missing others, leading to a
varied representation of linguistic uncertainty. Fur-
thermore, the categorization of uncertainty expres-
sions across these datasets may exhibit overlaps
and variations, indicating that the definition and
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taxonomy of such categories are not universally
standardized

3 A Two-tier Linguistic Taxonomy of
Uncertainty

This section delineates our linguistic taxonomy of
uncertainty to annotate linguistic cues in textual
data. We extend previous linguistic frameworks for
categorizing uncertainty, aiming at developing a
comprehensive yet easily adaptable framework en-
compassing various linguistic levels of uncertainty
representation in text. The taxonomy classifies rep-
resentations of uncertainty concerning the lexical
material which conveys the uncertainty (lexical)
and the type of uncertainty (semantic).

At the lexical level, our taxonomy distinguishes
between uncertainty expressions at word level,
phrase level, sentence level, section level, and dis-
course level (with discourse referring to the entire
analyzed text). Specifically, we elaborate on word-
and phrase-level uncertainty expressions based on
the grammatical functions of words or phrases
within their units. At the word level, we iden-
tify parts of speech such as adjectives, adverbs,
auxiliaries, verbs, conjunctions, and nouns. At the
phrase level, we look at adjective phrases, adverbial
phrases, noun phrases, prepositional phrases, verb
phrases, conjunctional phrases, infinitive phrases,
and participle phrases (cf. Fig. 5 in the Appendix).
For this research, we only focus on uncertainty
expressions at the word and phrase level.

At the semantic level, we focus on the semantic
uncertainty distinctions outlined by Szarvas et al.
(2012) and Vincze (2013, 2014b,a), which includes
categories like epistemic, dynamic, doxastic, inves-
tigation, and condition (cf. Fig. 6 in the Appendix).
We deliberately exclude discourse-level uncertainty
expressions such as hedges, weasels, and peacocks
to avoid dependencies on external information or
knowledge beyond the provided task information.
This decision is made to streamline the annotation
process and prevent potential complexities in eval-
uating the summaries at a later stage.

4 Data Acquisition and Annotation

4.1 Data Collection and Preprocessing

We extracted data from "Education Week" 1, an
educational website featuring a variety of articles
on educational topics, as this was part of a larger

1https://www.edweek.org/

research project related to the topic of education.
Additionally, we gathered content from "An Easy
& Proven Way to Build Good Habits & Break Bad
Ones" 2 website, a personal blog authored by James
Clear, known for his expertise as a life coach. The
reason for adding data from a personal blog was
that the text normally contains linguistic expres-
sions of uncertainty. This decision serves to add
variety to the data collected from the educational
website.

After conducting a minimal preprocessing step,
we filtered the articles to a word count range of 600-
700 words. This decision serves two objectives:
to control the variation in text length, which may
lead to significant statistical differences in uncer-
tainty expressions across articles, and to facilitate
more consistent and informed human evaluations,
as previous research suggests that time-constrained
human assessments with large texts may yield in-
consistent results (Krishna et al., 2023). Ultimately,
we acquired 150 article samples.

4.2 Generating Summaries

We provided a straightforward prompt to OpenAI’s
GPT4-8k, instructing it to generate summaries of
the articles within a maximum limit of 200 words.

4.3 Uncertainty Annotation Leveraging LLMs

As outlined in Section 3, a starting point to under-
stand LLM performance in transferring uncertainty
expressions to summaries is to annotate articles
and summaries. We propose a markup-based an-
notation syntax exemplified in Figure 2, inspired
by Yamauchi et al. (2023). The annotation relies
on XML syntax, employing a structured set of ele-
ments enclosing content within a start tag <Uncer-
tainty> and an end tag </Uncertainty>, with two
attributes: "POS" and "semantic".

Figure 2: Sample annotation of uncertainty in text using
XML syntax

Utilizing a markup language allows for precise
and fine-grained annotation, enabling the catego-
rization of uncertainty expressions based on the
lexical and semantic categories. Furthermore, the
predefined markup structure ensures consistency
and standardization in annotation practices across

2https://jamesclear.com/
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Figure 3: Sample GPT-4-8K annotated text from the dataset.

Errors per Category Tot. Reviewed GPT-4 Annotation
Correct Elements Missing Elements Semantic Attribute Error POS Attribute Error Span Error Elements Accuracy

189 39 49 29 15 321 (107 tags) 58.8 %

Table 1: Expert evaluation of GPT-4 annotation for 15 selected articles led to the review of 321 elements across
three categories: semantic, POS, and annotation spans. This process introduced 13 new attributes (39 elements).

different datasets and annotators. Lastly, the com-
patibility of markup annotations with various text
processing tools and their seamless integration into
NLP workflows significantly enhances their usabil-
ity across diverse applications.

We employed the GPT4-8k model to system-
atically generate uncertainty annotations for the
articles and the summaries. We used a structured
prompt template containing specific components:
an "instruction" guiding the model through the an-
notation task, a "context" providing taxonomy de-
scriptions and categories, an "input example" il-
lustrating a text excerpt, and an "output example"
showcasing the desired output format using the
markup language (cf. Fig. 7 in the Appendix). We
presented the model with articles and summaries
from the dataset described in Section 4.1, each pre-
ceded by this prompt as a prefix. The resulting
annotations were saved alongside the unlabeled
articles (cf. Fig. 3).

4.4 Uncertainty Annotation Evaluation and
Refinement

To ensure the accuracy of the annotations created
using the GPT4-8k model, we adopted two ap-
proaches: an expert evaluation and review, and
a self-refinement process guided by expert judg-
ments.

Expert Evaluation Initially, we randomly se-
lected 15 out of 150 samples from our annotated
dataset and engaged two linguists as experts to
review these annotations. Their task was to ex-

amine the annotations for consistency and correct-
ness based on the span’s accuracy, the correct POS,
and semantic labeling. The experts categorized the
extracted examples as either correct or incorrect,
introducing a new "evaluation" element under the
<Uncertainty> tag, and were asked to generate the
correct annotations for the incorrect ones. Further-
more, we requested that they provide explanations
for incorrect annotations, which we also collected.
The task instructions for the expert evaluation are
reported in Fig. 8 and a sample expert correction is
shown in Fig. 9.

Our initial prompt resulted in 94 uncertainty an-
notation tags across the 15 selected samples. Given
that the experts needed to evaluate the annotation
span, as well as the POS and semantic attributes, we
have a total of 282 elements (span and attributes)
to review. Table 1 illustrates the results of the re-
fined annotations performed by the linguists across
the 15 selected samples on these 94 tags and 282
elements, which resulted in 107 tags (and 213 ele-
ments) after the expert review and the addition of
missing tags and elements.

Expert Guided Self-Refinement Using Post-hoc
Prompting Previous studies have shown that re-
lying solely on LLMs for self-evaluation leads
to suboptimal outcomes due to their limited self-
assessment capabilities (Kolagar et al., 2023). To
enhance the model’s self-correction through rea-
soning, we leveraged both correct and incorrect
annotations alongside the associated rationales pro-
vided by expert linguists.
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Kim et al. (2023) and Shinn et al. (2023) propose
a three-step self-correction prompting approach
where the initial response serves as the standard
prompt and is then reviewed by the model using
a review prompt, where the model is asked to pro-
duce feedback on the previous response, followed
by the model’s new response to the original ques-
tion with the feedback produced by the model itself.
Huang et al. (2023) however, observed that the self-
correction behavior of the model does not yield
an improvement in the original reasoning of the
model when the external feedback (oracle) is re-
moved from the self-correction process. Hence,
they suggest integrating human-provided labels to
enhance the model’s reasoning based on its own
generated response.

We adopted a post-hoc prompting method simi-
lar to Huang et al. (2023), Kim et al. (2023), and
Shinn et al. (2023), but adapted and refined their
prompting strategy to suit our annotation refine-
ment task, introducing the subsequent elements:

• The "context" used for the initial prompting

• The annotated text with examples of correct
and incorrect labels

• The annotations provided by the experts for
missing elements

• The accompanying justifications and correc-
tions provided by the experts

After conducting two rounds of self-review and
refinement with the model on each of the 15 expert-
refined samples, we noticed remarkable improve-
ments in the model’s ability to fully correct its
initially generated annotations. The performance
enhancements observed align with the outcomes
discussed in Huang et al. (2023), Kim et al. (2023),
and Shinn et al. (2023), indicating the model’s ca-
pacity for self-correction and improvement. How-
ever, fewer rounds of post-hoc self-correction are
required when the model is provided with the rea-
soning in addition to the correct and incorrect la-
bels. Table 2 displays the model’s correction accu-
racy following the self-refinement process for the
15 samples.

Building on this progress, we extended the three-
round review and refinement process to the annota-
tion of the remaining articles in our dataset as well
as to the summariesAs those were not annotated
by our experts, we incorporated excerpts from the

Stages GPT-4 Accuracy
After expert assessment 58.8%

After the 1st round 89.3%
After the 2nd round 100%

Table 2: GPT-4 annotation accuracy at different stages
of the post-hoc refinement process compared to the base
results after expert assessment.

refined 15 expert annotations as examples into the
prompt to guide the model’s self-correction (Fig.
11).

We recognize a potential concern that the self-
correction ability of the model could diminish once
the expert refinement guidance is withdrawn dur-
ing post-hoc assessments. To investigate this, from
the pool of 135 remaining data after two rounds
of refinement, we randomly selected 2 articles for
expert assessment by linguists. Their evaluation
revealed a decrease in the model’s refinement accu-
racy to 80.4% (76.8 % for semantic attribute). We
consider this accuracy acceptable for the analysis
discussed in section 5.1.

4.5 The Dataset

The final dataset comprises the articles with an aver-
age of 653.7 words, the summaries with an average
of 153.5 words, the annotations, a sample subset of
corrected annotations verified by linguistic experts,
and the enhanced annotations after each round of
post-hoc refinement.

5 Analyzing Uncertainty Transfer in
Summarization

5.1 Evaluation of Uncertainty Representation
in Summaries

In this study, our attention is drawn to evaluating
the transference of uncertainty representation in
the summaries. We concentrate solely on analyz-
ing how well semantic annotation of uncertainty
expressions is conveyed in the summaries based on
the 5 semantic labels outlined in Section 3. We ex-
clude the analysis of POS in this evaluation, as POS
alterations might occur in summarization without
necessarily affecting the fidelity of uncertainty ex-
pressions. We also exclude a comprehensive evalu-
ation of other summary quality aspects, as previous
research confirms that LLMs excel in the task of
summarization, often surpassing human-generated
summaries in terms of preferred outcomes (Goyal
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Semantic Type Instances in the Article Matches in the Article Instances in the Summary Matches in the Summary Precision Recall
Epistemic 795 485 356 243 0.68 0.50
Dynamic 163 96 55 31 0.56 0.32
Doxastic 197 122 89 61 0.68 0.50
Investigation 221 133 97 79 0.81 0.59
Condition 49 36 35 12 0.34 0.33
Total 1425 865 632 426 0.67 0.49

Table 3: Precision and Recall calculated across all semantic categories for total found and matched instances in the
articles and the summaries.

et al., 2023; Kolagar et al., 2023; Pu et al., 2023;
Zhang et al., 2023c).

To execute this analysis, we need to align sen-
tences or clauses containing uncertainty annotation
in the summary to the corresponding sections in
the article. For this, we use semantic similarity
scores between sentences. Initially, we performed
sentence segmentation on the summaries using
SpaCy’s Sentencizer for English (Honnibal et al.,
2020) 3. Since sentences may encompass multiple
annotations, including coordinated conjunctions
or clauses, we further identified the boundaries
of each clause, using the main verb (ROOT de-
pendency tag) analysis provided by SpaCy’s de-
pendency parser 4. For the article, we divided it
into sections containing around 20-30 words, en-
suring sections concluded at a full stop to avoid
mid-sentence breaks. The reason for that is that the
summaries may refer to longer sections rather than
individual sentences or clauses in the article.

We used Sentence-Bert (Reimers and Gurevych,
2019) 5 to conduct a semantic similarity analysis
between segments in the summary containing a la-
bel and the sections in the article. This process
aimed to identify the section in the article most
closely related to the summaries. We then eval-
uated the highest-ranking section to ascertain the
presence of a label within it.

We compute precision and recall specifically
when there’s a precise match, signifying an exact
alignment between a semantic label in the sum-
mary and one or more identical labels in the article,
for the section in the article where the summary
stems from. The following cases were identified
between the matched instances (cf. Fig. 12 for
samples of the identified cases):

1. No annotation was found in the matched sec-
tion of the article, resulting in a score of 0.

3https://spacy.io/api/sentencizer
4https://spacy.io/usage/linguistic-features#dependency-

parse
5https://www.sbert.net/docs/usage-

/semantic_textual_similarity.html

2. One annotation was found in the matched sec-
tion of the article containing the same seman-
tic label, resulting in a score of 1.

3. One annotation was found in the matched sec-
tion of the article containing a different se-
mantic label, resulting in a score of 0.

4. Multiple annotations were found in the
matched section of the article containing the
same label, resulting in a score of 1.

5. Multiple annotations were found in the
matched section of the article containing dif-
ferent labels, resulting in a score of 0.

We have discovered a total of 1425 semantic
labels within the article and 632 semantic labels
within the summaries. Among these 632 labels,
there were 425 exact matches found correspond-
ing to 865 instances in the articles. Consequently,
the precision and recall were computed as follows.
Precision measures the accuracy of the aligned la-
bels in the summary concerning the total labels in
the summary, while recall measures the coverage
of the aligned labels in the summary concerning
the total labels in the article sections that have
matches in the summary.

Precision =
Number of aligned labels in summary

Total labels in summary

Recall =
Number of aligned labels in summary

Total labels in the matched sections of article

Table 3 shows precision and recall results for
the different uncertainty classes as well as general
precision and recall.

5.2 Discussion

We need to highlight two crucial aspects. Firstly,
we did not account for the ranking or significance
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of uncertainty expressions in the article and sum-
maries; our focus remained solely on alignment.
We assigned equal importance to all expressions
for precision and recall calculations, assuming that
only relevant and vital information appears in the
summaries. However, a more accurate assessment
requires further exploration into the significance
and hierarchy of these expressions.

Secondly, the automatic annotation; even after
the self-refinement procedure using expert annota-
tions and revisions, still yielded a lower accuracy
on the randomly selected articles, potentially influ-
encing the precision and recall outcomes. Varia-
tions in precision outcomes seem to also arise from
the differing number of semantic types available
in the article and summary. Conversely, the lower
recall is acceptable, considering that the frequency
of uncertainty expressions is much less in the sum-
maries. This demonstrates the challenging nature
of aligning uncertainty between source text and
summaries.

Notwithstanding these constraints, our methodol-
ogy demonstrates how precision and recall metrics
can be used to assess the summary’s faithfulness to
the source text, providing an evaluation approach
to assess the effectiveness of LLM-based summa-
rization. Our analysis emphasizes the need for
further exploration in evaluating summaries, partic-
ularly in domains requiring uncertainty alignment,
particularly in safety-critical scenarios such as sum-
marizing medical reports.

6 Conclusion and Future Work

In this study, we provided a framework to evaluate
automatic summarization. We introduced a two-tier
annotation taxonomy that categorizes linguistic un-
certainty expressions within the text, emphasizing
lexical and semantic expressions, and developed
an XML-based syntax framework to standardize
the annotation process for these expressions. We
conducted experiments involving expert linguists
to refine annotations and utilized their expert ratio-
nale to guide the LLM’s self-evaluation, enhancing
its ability to revise previous responses. We then
evaluated the fidelity of uncertainty transfer in sum-
maries using a straightforward precision and recall
method, offering clear insights into how well the
summaries align with the articles in terms of uncer-
tainty expressions.

For future research, one avenue to explore can
be additional dimensions of uncertainty in align-

ment with how human beings identify and solve
uncertainty. We believe a multi-modal approach,
integrating diverse linguistic cues beyond textual
information, could significantly enhance the over-
all understanding of uncertainty. This approach
might provide additional benefits to the study of
uncertainty.

Another avenue of research could be exploring
the practical application of enhanced uncertainty
understanding in decision-making tools reliant on
the summarization of lengthy documents across
various sectors, including healthcare, finance, or
risk assessment domains, offering insights into the
level and nature of uncertainty within data or infor-
mation sources.

Limitations

Primarily, our evaluation focused solely on uncer-
tainty as a measure of summarization quality, ne-
glecting other essential facets that might impact
the assessment, thereby confining the scope of our
study. Additionally, post-hoc evaluation process
can get costly if more rounds of self-correction are
required. Finally, in this study, we only focused
on lexical and semantic expressions of uncertainty
expressions at the word or phrase level and did
not consider e.g., discourse-level expressions of
uncertainty.

Ethics Statement

Web-Based Content for Research Purposes
Initially, we ensured that the content we gathered
from web sources was obtained from websites ex-
plicitly permitting web scraping. The collected
content was exclusively utilized for the sole pur-
pose of this research, focusing on identifying tex-
tual uncertainty and creating summaries, as high-
lighted in other sections of this study. Given the
diverse range of content collected from the in-
ternet—comprising personal blogs, news articles,
opinion pieces, among others—it is possible that
certain content might contain biased opinions or
lack factual accuracy. Therefore, we urge the NLP
community to utilize this dataset for its intended
purpose, specifically for uncertainty annotation and
evaluation, while being mindful of potential biases
or inaccuracies inherent in the collected content.

Experiment Involving Human Participants
To conduct human evaluations, we recruited two
linguists, who were recruited voluntarily and had
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the option to withdraw at any time. Compensation
rates followed the community norms for their in-
volvement and effort. Participants were informed
beforehand that any content conflicting with their
values or indicating bias did not reflect the authors’
opinions. We provided a feedback section for par-
ticipants to flag such articles, ensuring removal
from the experiment and final results for the re-
search community. However, no feedback or com-
ments regarding such content were received.
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A Appendix

Figure 4: Explicit certainty categorization model introduced by (Rubin, 2006)
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Figure 5: Lexical taxonomy of the linguistic expressions of uncertainty along with examples for each category
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Figure 6: Lexical taxonomy of the linguistic expressions of uncertainty along with examples for each category
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Figure 7: The prompt presented to GPT4-8k model to perform linguistic uncertainty annotation
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Figure 8: The instruction presented to the linguists for the correction of the GPT-4-8K annotated texts.
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Figure 9: An illustration of sample corrections implemented by the linguists. The color coding has been included
solely to enhance visual clarity.
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Figure 10: The post-hoc prompt presented to the GPT-4 model to reason about and correct previous annotations for
the 15 selected samples.
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Figure 11: The post-hoc prompt presented to the GPT-4 model to correct the rest of the dataset.
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Case 1: No annota,on was found in the matched sec,on of the ar,cle, resul,ng in a score of 0. 
 
Ar,cle: In fact, fewer than 1 in 6 educators—13 percent—surveyed by the EdWeek Research Center earlier 
this year say that A through F or numeric grades are a not “very effec@ve way” to give feedback to students or 
evaluate their progress.  
 
Summary: Some educators are <Uncertainty POS="adjec@ve phrase" seman@c="epistemic">somewhat 
uncertain</Uncertainty> that the scoring system captures student progress consistently. 
-------------------------------------------------------------------------------------------------------------------------------------------------- 
Case2: One annota,on was found in the matched sec,on of the ar,cle containing the same seman,c label, 
resul,ng in a score of 1. 
 
Ar,cle: Beeer demographic data about young children with disabili@es who need and receive federally funded 
early interven@on services, such as physical therapy, <Uncertainty POS="verb" 
seman@c="epistemic">could</Uncertainty> help policymakers address barriers to access.  
 
Summary: Beeer data about young children with disabili@es <Uncertainty POS="verb" 
seman@c="epistemic">could</Uncertainty> help address barriers. 
-------------------------------------------------------------------------------------------------------------------------------------------------- 
Case3: One annota,on was found in the matched sec,on of the ar,cle containing a different seman,c label, 
resul,ng in a score of 0. 
 
Ar,cle: In cases like these, when we are aeemp@ng to do something that is complex and mul@-faceted, I 
<Uncertainty POS="verb" seman@c="doxas@c">believe</Uncertainty> that being wrong is actually a sign that 
you’re doing something right. 
 
Summary: The text suggests that being wrong <Uncertainty POS="verb phrase" seman@c="epistemic">might 
be</Uncertainty> part of the process of making complex decisions. 
-------------------------------------------------------------------------------------------------------------------------------------------------- 
Case4: Mul,ple annota,ons were found in the matched sec,on of the ar,cle containing the same label, 
resul,ng in a score of 1. 
 
Ar,cle: In the early phases of any ac@vity like going to the gym or star@ng a new diet, it's <Uncertainty 
POS="adjec@ve" seman@c="epistemic"> probable</Uncertainty> that some errors <Uncertainty 
POS="auxiliary" seman@c="epistemic"> might</Uncertainty> occur that results in gegng nega@ve feedback. 
 
Summary: The ini@al stages of any endeavour are <Uncertainty POS="adverb" 
seman@c="epistemic">likely</Uncertainty> to be filled with mistakes. 
-------------------------------------------------------------------------------------------------------------------------------------------------- 
Case5: Mul,ple annota,ons were found in the matched sec,on of the ar,cle containing different labels, 
resul,ng in a score of 0. 
 
Ar,cle: I <Uncertainty POS="adverb" seman@c="doxas@c">believe</Uncertainty> that consistency is 
<Uncertainty POS="adverb" seman@c="epistemic">probably</Uncertainty> very important for making 
progress, doing beeer work, gegng in shape, and achieving some level of success in different areas of life. 
 
Summary: The author suggests that <Uncertainty POS="conjunc@on" seman@c="condi@on">if</Uncertainty> 
you are consistent, you see progress.  
 
 
 
 
 
 
 

Figure 12: Example of matched sections of the articles and the summary for the cases explained in Section 5.1.
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