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Abstract
Abstract Meaning Representation (AMR) is
a semantic graph formalism designed to cap-
ture sentence meaning using a directed graph.
Many systems treat AMR-to-text generation
as a sequence-to-sequence problem, drawing
upon existing models. The largest AMR dataset
(AMR 3.0) provides a sequence format which
is considered equivalent to the graph format.
However, due to the position-sensitive nature
of sequence-to-sequence models, graph traver-
sal order affects system performance. In this
work we explore the effect that different, valid
orderings have on the performance of sequence-
to-sequence AMR-to-text systems and find that
changing the traversal order can result in a
BLEU score drop of up to 17.5 on a state-of-
the-art system.

1 Introduction

Abstract Meaning Representation (AMR) is a se-
mantic graph formalism designed to capture sen-
tence meaning using a directed graph. Nodes in the
graph represent semantic concepts and edges be-
tween nodes represent relations between concepts.
The original AMR paper (Banarescu et al., 2013)
describes three “equivalent formats” for a given
AMR (see Figure 1). The first is referred to as the
“LOGIC” format and is composed of a conjunction
of triples. The second is referred to as “AMR” for-
mat, which is based on PENMAN notation. The
third is referred to as “graph” format and is the
most common way to think about AMR graphs.
The three formats can be seen applied to the same
sentence in Figure 1.

The LOGIC format (logical triples) is used pri-
marily when scoring AMR parses. The AMR pars-
ing task seeks to generate AMR graphs from text
data. These AMR parses are primarily scored us-
ing the SMATCH metric (Cai and Knight, 2013).
SMATCH compares logical triples of the generated
parse to the reference to score the semantic similar-
ity. During SMATCH scoring, since conjunction

is a commutative operation, there is no inherent
ordering on the logical triples. Since AMR parsing
is often used as part of a pipeline for AMR-to-
text generation, it is important to keep the logical
triples in mind when considering how these sys-
tems would be used in practice.

The AMR format is the way that most AMR
datasets are distributed, including the AMR 3.0 re-
lease (Knight et al., 2021). This format is much
more human readable than logical triples. This for-
mat is based on PENMAN notation (Matthiessen
and Bateman, 1991) and is sometimes referred to in
this way. AMR-to-text generation systems which
use sequence-to-sequence networks typically op-
erate on this format (see for example Mager et al.
(2020) or Ribeiro et al. (2021)). Since these meth-
ods are sequence-to-sequence, the input is treated
as a sequence with some ordering information.
This is explored further throughout this current
work.

As a semantic graph formalism, the graph format
is the main format for AMR graphs. Graph-to-
sequence AMR-to-text generation systems attempt
to take advantage of the information captured in
this graph structure. They typically feature a graph
encoder with a sequence decoder. As the amount of
available AMR data has grown, graph-to-sequence
systems have grown in popularity. Despite these
advances, both sequence-to-sequence and graph-
to-sequence systems continue to push performance
higher.

Increases in the performance of AMR systems
has led to increased success in downstream tasks.
The number of downstream tasks for which AMR
has shown useful is continuously growing and in-
cludes summarization (Dohare et al., 2017), trans-
lation (Song et al., 2019), biomedical event extrac-
tion (Rao et al., 2017), understanding disrupted
sentences in speech recognition systems (Addlesee
and Damonte, 2023), human-robot communication
(Bonial et al., 2023), and more. As these systems



expand their usage, it is important to highlight the
impact that certain representation decisions can
have on performance. Systems which treat AMR
graphs as sequence input through linearization have
positional representations that rely on the ordering
of that linearization.

In this work we investigate the effects of differ-
ent choices for converting from graph format to
AMR format on sequence-to-sequence AMR-to-
text systems. This topic was considered in a re-
cent system (Bevilacqua et al., 2021), comparing a
breadth-first search traversal to a depth-first traver-
sal for their data. Since they found that breadth-first
search yielded inferior results, we do not explore
that here. In that work they followed the edge order
given by the dataset. Here, we focus on different
choices for picking the order to visit child nodes
when following a depth-first search traversal of a
graph. We find that consistent ordering is essen-
tial and that the AMR 3.0 dataset has a specific
ordering in its AMR format which provides useful
information. Inconsistent ordering from training to
dev sets can yield a drop of 5 points on the BLEU
score. Randomizing the order in which child nodes
are visited also yields a drop of nearly 4 BLEU
points, showing that the order given in the AMR
3.0 dataset is important for successful sequence-
to-sequence systems. The results are even more
drastic on a state-of-the-art system which showed
BLEU score drops of 9.4 and 17.5 when moving
from the ordering provided by the LDC data to a
random or reversed traversal ordering respectively.

2 Related Works

The work by Hoyle et al. (2020) investigates a sim-
ilar phenomenon of different graph traversal order-
ings. While the work is motivated by a similar
question, their approach to traversal orderings is
quite different from ours. In particular, they con-
sider three traversals. The first is a “canonical”
ordering which is identical to our “LDC” ordering.
The second is a “reconfigured” ordering in which
the top (root) node remains the same, but all other
nodes may be reordered and edges themselves may
be reversed (for example “ARG0(a,b)” may be re-
versed to “ARG0-of(b,a)”). In our work we do
not allow reversal of edges to be part of the graph
traversal choice. The third of their traversals is “ran-
domized”, which is similar to “reconfigured”, but
may not even respect the top (root) node placement.
Again, this type of scrambling of the AMR graph

LOGIC format:
instance(c, contrast-01) ∧
instance(d, disappoint-01) ∧
instance(q, quite) ∧
instance(a2, also) ∧
instance(a, acquire-01) ∧
instance(f, fall-through-06) ∧
ARG2(c, d) ∧
ARG0(d, f) ∧
degree(d, q) ∧
mod(q, a2) ∧
time(d, f) ∧
ARG1(f, a)

AMR format:
(c / contrast-01

:ARG2 (d / disappoint-01
:ARG0 f
:degree (q / quite

:mod (a2 / also))
:time (f / fall-through-06

:ARG1 (a / acquire-01))))

Graph format:
contrast-01

disappoint-01

quite

also acquire-01

fall-through-06

ARG2

degree time ARG0

mod ARG1

Figure 1: Three formats for the AMR graph for the sen-
tence “However, when the acquisition did fall through,
it was also quite disappointing.”

does not feel like a natural part of the sequence-
to-sequence pipeline, so we do not consider these
types of traversals in our work.

In the work by Konstas et al. (2017), there are
three linearization orderings tried. The first is “Hu-
man” which is identical to our “LDC” ordering.
The second is “Global-random” which imposes a
strict ordering on labels and always applies that
ordering when traversing a graph. The third is
“Random” which, by its description, appears to
match our “Random” traversal process. In their
work, they find that each of the three traversal or-
derings provided very similar BLEU scores. This
is in contrast to our findings. They do not present
any training mismatch scenario as we do (trained
with one traversal, tested on another). Furthermore,
the contrast between the relatively small BLEU
score differences in their work and the large BLEU



score differences we show on a current state-of-the-
art system demonstrates that this problem may be
getting worse as our systems have become more
tailored to the ordering given by the data.

After the work presented here was completed,
work by Gao et al. (2023) was published which
focuses on leveraging traversal order to improve
AMR parsing systems. In that work, child order
is determined fully by the order given in the LDC
release of the data. They define left-to-right (L2R)
as the order given (“LDC” ordering in our work)
and right-to-left (R2L) as the reverse order of chil-
dren given in the dataset (“reversed” in our work).
By combining both representations as part of their
training process, they are able to achieve a 0.5
SMATCH improvement on the AMR 3.0 dataset.
This shows a recent application of graph traversal
ordering improving a system. Since they are not
working on AMR-to-text generation, the concern
about mismatched training data compared to testing
data is not considered in their work.

3 Converting Between Formats

The motivation behind the three different formats
are to offer three equivalent ways to express the
semantic information contained in the AMR graph.
When you begin with an AMR in LOGIC format,
you can convert to either of the other two formats.
Upon converting back into the LOGIC format, you
will have the same set of triples that you started
with and, in this regard, the formats are viewed as
equivalent. However, when you convert from graph
to the sequence based AMR format, there may be
multiple ways to linearize the graph which result
in different sequences.

3.1 Graph Traversal Order

When converting between the graph format and
the linearized AMR format, changes to the order
in which graph nodes are visited can produce dif-
ferent resulting linearizations. In Figure 1 the lin-
earization begins with “contrast-01” followed by
“disappoint-01”, but then there is a choice that has
to be made. There are three edges coming out from
“disappoint-01” which can be followed in any order.
The choice made in the AMR 3.0 dataset was to
follow the “ARG0” edge, then the “degree” edge,
then the “time” edge. Additionally, the edge going
to “acquire-01” was not followed until all edges to
its parent were processed.

Another decision which must be made when

traversing graphs for linearization is whether to
take an edge-centric or node-centric view. In a
node-centric view, when you process a node (such
as “fall-through-06” in Figure 1), you process all
edges coming into the node (here both the “time”
edge and the “ARG0” edge). In an edge-centric
view, you process one out-edge at a time without
regard to whether multiple edges lead to the same
node or not. For example (referring back to Fig-
ure 1 again), the ordering in which the edges are
processed could be “ARG2”, “time”, “ARG1”, “de-
gree”, “mod”, and finally “ARG0”.

3.2 AMR 3.0

The largest high quality AMR dataset currently
available is the AMR 3.0 dataset (Knight et al.,
2021) which contains nearly 60, 000 sentences
paired with their corresponding AMR graph. This
dataset, and its prior two releases, have been widely
used to advance the study of AMR systems. While
typically AMR 3.0 follows a depth-first search ap-
proach by introducing node concepts at the first use
of their variable, this does not always happen. In
particular, out of 55, 635 training AMR graphs in
AMR 3.0 release, 4, 775 of them have at least one
variable written before its corresponding concept.
An example of this can be seen in Figure 1 since the
variable f comes before the corresponding concept
of “fall-through-06”.

The order in which out-edges should be pro-
cessed is not entirely determined by depth-first
search nor breadth-first search. For example, as
previously mentioned, parallel edges are of concern
for consistency in processing. Within the training
AMR graphs, there are 159 which contain occur-
rences of parallel edges which are separated in the
given linearization. Figure 1 shows this with the
two parallel edges from “disappoint-01” to “fall-
through-06” being separated in the AMR format by
the edge to “quite”. Overall, out of 55, 635 train-
ing AMR graphs, 4, 886 have at least one of these
two phenomena and 48 have both (including the
example from Figure 1).

There are also many instances of inconsistent
ordering within very similar subtrees across the
training AMR graphs. For example, subtrees rooted
at a “date-entity” node feature all of the following
edge orders within the training set:

• day then month

• month then day



• month then year

• year then month

• year then month then day

• day then month then year

• month then day then year

• month then year then day

This means that conversion from the given AMR
formatted data into either graph or logical triples
will result in certain ordering information loss.
While the edge traversal order given within the
AMR 3.0 dataset does not always match the sen-
tence token ordering (see for example Figure 2),
there may be some useful ordering information en-
coded in the ordering.

4 Experiments

To measure the effects of different linearization de-
cisions on an AMR-to-text system, we trained a
simple sequence-to-sequence model on the data us-
ing various linearization orders. In all experiments,
the same preprocessing steps were taken and the
model parameters were the same. Our preprocess-
ing steps followed steps common to other work
(Pourdamghani et al., 2016; Konstas et al., 2017).
These steps were to remove wiki entries, remove
variable names, remove quotation marks, remove
sense information, and finally to tokenize using the
Moses tokenizer (Koehn et al., 2007). Our scripts
are available on GitHub1.

Our sequence-to-sequence model for the experi-
ments was a Fairseq (Ott et al., 2019) implementa-
tion of a Transformer model (Vaswani et al., 2017).
We used a 4 layer encoder with embedding size
256, feedforward size 512, and 2 attention heads.
The decoder had 6 layers with embedding size 512,
feedforward size 1024, and 4 attention heads. The
learning rate was set to 5e-4 and early stopping was
used based on best dev BLEU score. We did not
use any external data such as silver training data
nor pretrained language models.

It is worth noting that the focus here was to train
a simple model to demonstrate the effects of lin-
earization order. While many other optimizations
can be made to improve the performance, these
models were kept as generic and simple as possi-
ble to be more widely applicable to other systems.

1https://github.com/jdebened/AMR-sequence-
ordering.git

To demonstrate the potential impact on a current
state-of-the-art system, we also tested a pretrained
system (described below in section 4.1) on the same
data.

4.1 AMRBART
Additional experiments were run on a pretrained
AMRBART system (Bai et al., 2022). As the
name suggests, AMRBART it built upon the BART
(Lewis et al., 2020) model. AMRBART focuses on
an AMR-to-AMR pretraining process at its core.
This then allows them to use this as the basis for
either an AMR parser or for an AMR-to-text gener-
ation system. In our work, the AMR-to-text system
is used for comparison. This is one of the best per-
forming systems currently for AMR-to-text genera-
tion and uses the sequence-to-sequence framework
(BART). This pretrained model was used without
any further modifications nor any additional fine-
tuning done to the model. The data from each of
the four traversal scenarios was fed into the model
for evaluation. Since AMR parsing models are
largely evaluated by SMATCH score (which is iden-
tical across our traversals), this set of experiments
demonstrates what could happen when pipelining
an AMR parsing system with an AMR-to-text gen-
eration system.

4.2 Linearization Orders
We compared four different linearization orders.
The first is the order given in the original dataset,
unchanged. This is called “LDC” in our results.
The second is obtained by removing the phenom-
ena discussed above (Section 3.2). Specifically,
a depth-first search traversal is respected in all
cases and a node-centric view of this traversal is
taken. The order in which child nodes were vis-
ited matches the LDC ordering. However, since
we convert to a graph before converting back to
AMR format, phenomena such as splitting paral-
lel edges cannot occur. Similarly, there are no
longer occurrences of a variable prior to its corre-
sponding node concept. This is called “Graph and
back” in our results. The third order is obtained
by choosing a random child to visit first during the
depth-first search. This seems quite natural when
viewing the graph as a set of logical triples. This is
called “Random” in our results. The final ordering
tried simply reverses the order given in the original
dataset. Thus when choosing which child to visit
first, it makes the opposite decision from the AMR
3.0 choice. This is called “Reversed” in our results.



LDC Graph and Back Random Reversed
LDC 16.0 16.1 12.5 10.8
Graph and Back 15.7 15.7 12.3 10.4
Random 12.3 12.4 12.1 11.9
Reversed 10.9 10.9 11.9 14.4
All 14.3 14.3 13.6 14.0
AMRBART 51.2 51.0 41.8 33.7

Table 1: Best dev BLEU scores for train/dev pairings. The row gives the training traversal method and the column
gives the dev traversal method. The “All” row concatenated the training data from all 4 other methods as a form of
data augmentation. AMRBART is a pre-trained model shown here to demonstrate the effects on a state-of-the-art
model.

LDC and Graph and Back:
(d / date-entity

:year 2012
:month 2
:day 29)

Reversed
(d / date-entity

:day 29
:month 2
:year 2012)

Random (2 of 6 possibilities shown)
(d / date-entity OR (d / date-entity

:month 2 :day 29
:day 29 :year 2012
:year 2012) :month 2)

Figure 2: Different linearization choices for the AMR
graph corresponding to the sentence “February 29, 2012”
in the AMR 3.0 training data. Here the LDC and Graph
and Back methods both match, but the Reversed and
Random methods produce different orderings. In this
case, Random produced the order closest to the sentence
order, but due to its random nature this may not always
be the case on this example.

These linearization options can be seen in Figure 2.

We wanted to know not only if one choice is
better than others for linearization, but also how
important consistency is between the linearization
choice for training and testing. As shown in Ta-
ble 1, we trained each model four times to maxi-
mize the BLEU score on the development set with
the various traversal methods. The AMR 3.0 given
orderings were the best to train with unless the dev
data was reversed. Training on reversed data had
the worst performance when the dev set was not
reversed. Overall, it is clear that the traversal order
should match your test set for best results. When
your training data traversal does not match your

dev/test data you can experience a performance
drop of 5 BLEU points as seen when comparing
LDC to reversed.

When considering which linearization order to
use, another possible option is to concatenate the re-
sults of all of the different methods into one larger
training set. This views linearization order as a
data augmentation technique. The “All” row in Ta-
ble 1 shows the results of training in this way. This
method showed the most consistency across dev lin-
earizations, but was only the best choice when the
dev data followed the random linearization. This
demonstrates that adding other linearization tech-
niques is not an effective data augmentation tech-
nique on its own. It is worth noting that “All” does
not appear as a column. This is because it is not
simply imposing a specific ordering to the dev data,
but rather changing the data by duplicating it once
for each of the four orderings. Therefore it is suit-
able to try as a training method (thus the “All” row),
but not as an evaluation method (thus no “All” col-
umn).

5 Conclusion

In this work we have explored different traversal
orders for AMR graphs. While most of the AMR
3.0 dataset follows a depth-first search traversal,
approximately 8.6% of the training graphs vio-
late this order. This dataset is distributed with a
certain edge ordering that leads to better BLEU
scores than other possible edge traversal orders.
We experimented with various traversal orders and
showed that consistent ordering from training to
dev sets is important and that the order given in the
dataset contains important ordering information
for training with sequence-to-sequence systems.
Conversions from AMR format to graph or logi-
cal triple format and back lose certain information.



We looked at one example, date-entity subtrees,
where an inconsistent edge ordering across training
graphs leads to some of the information loss.

AMR parsing systems are often judged by their
SMATCH scores. Since SMATCH is a metric com-
paring AMR graphs in their logical triple form, it
does not provide information about the node or
edge traversal order. In this work we showed that
this decision is important for the performance of
any system that uses these AMR graphs. In par-
ticular, all four traversal orderings tested receive
identical SMATCH scores since the set of logi-
cal triples is identical across the four traversal or-
derings. As more systems incorporate AMR as
an intermediate form for capturing semantic in-
formation, graph traversal order is a problem that
requires attention to maximize the system perfor-
mance. This is demonstrated through experiments
on a pretrained AMRBART system which had a
BLEU score drop of 9.4 when the random traver-
sal ordering was applied and a BLEU score drop
of 17.5 when the reversed traversal ordering was
applied. Since SMATCH does not differentiate
between these traversals, AMR parsing systems
evaluated primarily on SMATCH scoring may ben-
efit from additional ordering information before
being combined with an AMR-to-text generation
system.

While we highlighted certain inconsistencies in
the AMR 3.0 datasets representation, there is useful
ordering information encoded in the training set.
Further study could investigate if it is possible to re-
liably and automatically generate similar orderings
for AMR graphs produced through AMR parsing
systems. Additionally, graph-to-sequence AMR-
to-text systems could use the ordering information
encoded in the linearization order given by AMR
3.0 as additional information not directly provided
by the graph format. While graph encoders were
applied to AMR graphs as a means of reducing
the information loss encountered in linearization
and other preprocessing, this ordering information
already encoded in the dataset acts as a form of
information loss in graph-based systems.

If each of the three representations for AMRs
are to be considered equivalent, then the “useful”
ordering information in the training set should be
viewed as information leakage. With this perspec-
tive, AMR-to-text systems should be invariant to
the linearization ordering applied. While this can
be achieved in a variety of ways (imposing an order

on edge or node labels, using an order invariant neu-
ral architecture, etc), it remains an important con-
sideration for any system. For any system which is
not traversal order invariant, it is important for your
data to match the expected ordering for best per-
formance. Otherwise, as shown in our experiments
above (See Table 1), the system may experience
a BLEU score drop of more than 5 on a simple
system or 17.5 on a state of the art system.
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