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Abstract

Deep active learning is a promising method for
training a tagger when resources are low. In this
paper, we systematically analyse the impact of
differently performing initial acquisition mod-
els on the performance of each successor model
in a custom sequence labeling binary classifi-
cation task. For this purpose, we compare the
performance of 5 successor models. They are
trained on data queried by a random sampler
and two differently performing initial acquisi-
tion models. In this way, we get an impression
of the impact of an initial acquisition model
with a certain performance on the performance
of the successor models.

1 Introduction

Deep active learning (DAL) is used in sequence
labeling tasks like named entity recognition (NER;
e.g. Kim, 2020) or part-of-speech-tagging (POS-
tagging; e.g. Chaudhary et al., 2021). DAL is a
combination of deep learning (DL; first model pro-
posed by McCulloch and Pitts, 1943) and active
learning (AL; first introduced by Lewis and Gale,
1994). In DAL a DL model is initially trained on a
small amount of labeled data. This model is called
an initial acquisition model (Tsvigun et al., 2022).
The acquisition model is used to select data points
(samples) to be annotated from an unlabeled data
pool based on an algorithm, called a query strategy.
The samples are selected by the acquisition model
in a way that intends to increase the performance of
the model. The selected samples are then manually
annotated and added to the training data. A new
model, called a successor model is then trained on
the enlarged training data. The successor model
is used as an acquisition model in the next DAL
iteration. The iteration process is repeated until
a predefined termination condition is reached, for
example the model achieves a certain f-score.

We use DAL for the development of a monitor
corpus that consists of questions on the German

language, so-called language inquiries (Lang et al.,
2023a) as in (1) Heißt es der Bayrische Minister-
präsident oder der bayrische Ministerpräsident?
[’Is it the bavarian Minister-President or the
Bavarian Minister-President?’]1. Language in-
quiries serve as a primary source of authentic
language data for a variety of research questions
(Breindl, 2016). The core of the corpus is a col-
lection of approx. 50,000 language inquiries sent
by email from (supposed) laypeople to a language
consulting service between 1999 and 2019. To en-
sure that researchers have access to the data points
from the corpus that are relevant to their research
question, we tag the corpus in different ways (Lang
et al., 2023b). Annotating a subset of 500 ran-
domly extracted language inquiries from our cor-
pus showed that 98% of the data contain examples.
In most cases, the examples have the pattern as the
bold print in (1) (see Section 3.1). For this reason,
in this paper, we focus on this category of exam-
ples, that we call "list of alternatives". We train a
tagger that detects the span of a language inquiry
that is a list of alternatives.

The annotations obtained provide an interesting
insight for linguists: Extracting the most frequent
list of alternatives in language inquiries can help
to identify standardization gaps in grammar. More-
over, the list of alternatives can be used in gram-
matical online resources to make it easier for users
to find information about grammatical phenomena:
Rather than having to be familiar with the termi-
nology to look up grammatical information, users
could click on list of alternatives that matched their
question.

As we work with copyright-protected data, we
cannot rely on crowd-sourcing to annotate the data.
However, the spans to be tagged have a specific
pattern: The alternatives listed in the language

1Note that some translations are not in correct English
but given in a way that the semantic meaning of the question
becomes clear.



inquiries are very similar to each other (see (1)).
Since the samples to be annotated show a specific
pattern that is visible on the surface structure, it
can be assumed that a model does not need a large
amount of training data to learn this pattern. For
this reason, DAL seems to be a suitable method.
Although the spans to be annotated seem easy to
tag because they all show a specific pattern, in most
cases it is not possible to detect them with a rule-
based approach (see Section 4.1). One reason is
that the occurrences of the spans are not limited
to certain positions in the language inquiries. Ad-
ditionaly, the length of the spans to be tagged can
vary greatly: An annotation can span characters,
words, multiword phrases or whole sentences. We
therefore use DAL for our task for two key reasons:
firstly, a rule-based approach is of limited use and
secondly, DAL does not require a huge amount of
labeled data to train a model.

The main contribution of this paper is a system-
atic analysis of the impact of the acquisition model
on the performance of each successor model. We
identified for our task that the performance of the
successor model depends on the initial acquisition
model. The insights of this study could be trans-
ferred to similar sequence labeling tasks like auto-
matic tagging of paronym candidates. Moreover,
unlike many other studies on DAL (Zhang et al.,
2022), this task is not a simulation, so it is possible
for us to address aspects like real annotation cost
and time.

The paper is structured as follows: In Section 2
we give an overview of work relevant to our task.
After that, in Section 3 we explain our experimental
setup and present our results in Section 4. Finally
in Section 5 we then summarise our findings and
identify open questions.

2 Related work

As we are using DAL for a sequence labeling task,
we only focus on papers that take a similar ap-
proach, in order to apply the results to our work.
Studies with a textual data basis have shown that
DAL models perform just as well as DL models,
although significantly less data is used for training:
Mirbostani et al. (2023) trained a DAL model for
morphological inflection and morphophonological
processing in Cairene Egyption Arabic. Although
the model is only trained on 30% of the data in com-
parison to the state-of-the-art model it performs just
as well. Kim (2020) demonstrated for slot filling

that a DAL model trained only on 15% of the data
compared to the best-performing DL model still
achieved 98-99% performance. These results in-
dicate that DAL sounds promising for sequence
labeling tasks.

Studies on the ideal implementation of DAL
focus mainly on the selection of the best query
strategy. Query strategies can be divided into
uncertainty-based algorithms, diversity-based algo-
rithms and hybrid algorithms. Uncertainty-based
algorithms use the acquisition model to predict the
labels for the data points of the unlabeled data pool.
The data points are then ranked by the confidence
score of the model and the ones with the lowest
confidence scores are selected for manual anno-
tation. Diversity-based algorithms sort the data
points of the unlabeled data pool by their similarity
according to different strategies. The most differ-
ent data points are then selected for manual anno-
tation. Hybrid algorithms are a combination of an
uncertainty-based and a diversity-based algorithm.

Chaudhary et al. (2021) developed a suitable
query strategy for a DAL model trained for POS-
tagging. However, the proposed strategy cannot be
applied to our task because it considers the confu-
sion caused by different annotations for the same
token. For example, the German word die (’the’)
could either be a pronoun or an article. In our
task the probability is the same that a given token
is part of a list of alternatives or not. Mirbostani
et al. (2023) showed that using a suitable query
strategy, in their case: an uncertainty-based algo-
rithm, outperforms the model which is trained on
randomly selected samples from the unlabeled data
pool. They could not demonstrate that combining
uncertainty and diversity query strategies achieve
better results. In contrast, Kim (2020) showed that
a combination of uncertainty and diversity query
strategies yield better results in DAL for NER and
slot filling than pure uncertainty or pure diversity
query strategies as well as random sampling.

Radmard et al. (2021) focused on reducing the
cost of annotating the selected samples from the un-
labeled data pool by only querying subsequences of
each unlabeled sentence for NER. Annotated labels
are then propagated to the unlabeled data pool if
the subsequence is the same. Using subsequences
in our task is not feasible because in our case the
probability is the same that a given subsequence is
part of an annotation or not, unlike in NER.

While the works listed above have trained DL



models from scratch, Shelmanov et al. (2021) used
deep pre-trained models and showed that the latter
outperforms the former.

None of these works analysed the impact of the
initial acquisition model on the performance of the
successor models. This shortcoming in the research
to date will be addressed in this paper.

3 Experimental setup

3.1 Data preparation
The manually labeled data set consists of 500 lan-
guage inquiries. They have been randomly ex-
tracted from our corpus of approx. 50,000 language
inquiries. The vast majority of questions contain
explicit examples (see for example: (1)-(14)). The
data set was annotated in three steps:

(i) First, two linguists annotated the examples
found in the data with the following four categories:

• "list of alternatives", e.g. (1),

• "sentence", e.g. (2) Wie schreibe ich diesen
Satz richtig: Er ist am Witze erzählen". [...]
[’How do I write this sentence correctly: "He
is telling jokes".’],

• "expression", e.g. (3) Eigentlich sind Wörter
wie "kein" und "einzig" nicht stiegerbar [sic].
Allerdings frage ich mich, wie dann der Aus-
druck "in keinster Weise" zu erklären ist. [...]
[’Actually, words like "none" and "only" are
not gradable. However, I wonder how the
expression "in *nonest manner" can be ex-
plained.’] and

• "other" if an example does not fit in one of the
categories.

The classification is done in order to develop a strat-
egy based on the examples per category with which
the examples can be tagged automatically. The
distribution of the categories is as follows: About
50% of the examples can be assigned to the cate-
gory "list of alternatives", about 23% to "sentence",
about 18% to "expression", about 6% fall in the
category "other" and about 2% of the language in-
quiries do not contain an example at all. As "list
of alternatives" is the most common category, we
have opted for this paper to automatically tag it.

(ii) The language inquiries were tokenized by
splitting at white space. Each token of a language
inquiry tagged with "list of alternatives" in (i) were
annotated by the two annotators. Every token was

Set Token total Token alternative
Train 12,799 1,248
Val 2,180 168
Test 2,753 345

Table 1: The distribution of all tokens and tokens that
are part of a list of alternatives in the sets.

labeled according to the BIO format with "B-part-
of-a-list" for the beginning of a span, "I-part-of-
a-list" if the token is inside a span or "O" if the
token is not part of a span. The tokens of language
inquiries tagged with other categories than "list
of alternatives" were tagged with "O". 90% of
the annotated list of alternatives consists of two
alternatives, the remaining 10% of 3 to 6.

The inter-annotator-agreement is very high with
a Fleiss’ Kappa of 0.99. The two annotators dis-
cussed differing annotations and determined the
final annotation.

500 language inquiries comprising 17,732 to-
kens were tagged and randomly split in training
(approx. 70%), validation (approx. 15%) and test
set (approx. 15%) in a way, so that no question is
split in more than one data set (see table 1). Quo-
tation marks are removed from the questions to
prevent overfitting because 18% of the lists of al-
ternatives are written in between quotation marks.
Additionally, 36% of the language inquiries con-
taining a list of alternatives either do not have the
alternatives in quotation marks but other tokens or
closing quotation marks are missing. In 46% of the
data quotation marks are not used at all.

The remaining approx. 49,500 language in-
quiries from the corpus form the unlabeled data
pool and will be shown to the model during each
DAL iteration. 40 language inquiries are selected
in each iteration increasing the manually labeled
data set by approx. 10% per iteration. The unla-
beled data pool was split into four due to the RAM
size. Thus, per iteration four unlabeled data pools
were shown in succession to the acquisition model
and 10 language inquiries were selected from each.
Due to low annotation power, only one linguist
annotated the selected language inquiries per itera-
tion.

3.2 Task

Our model was trained to tag spans of list of alter-
natives proposed in language inquiries. The alter-
natives listed can be:



• different spellings, e.g. (4) ...sie spiegeln
den besonderen Charme des Schlosses wider.
Oder? ...sie spiegeln den besonderen
Charme des Schlosses wieder.
[’...they mirror the special charm of the cas-
tle. Or? ...they *miror the special charm of
the castle ’],

• syntactic alternatives, e.g. (5) [...] heiße Him-
beeren mit Vanilleeis, heiße Himbeeren auf
Vanilleeis. [...]
[’Hot raspberries with vanilla ice cream,
hot raspberries on vanilla ice cream. [...]’],

• (potential) synonyms, e.g. (6) gibt es das Wort
konzeptionalisieren/Konzeptionalisierung
als Alternative zu konzeptual-
isieren/Konzeptualisierung. [...]
[’Does the word *conception-
alise/*conceptionalisation as an alternative
to conceptualise/conceptualisation exist.
[...]’],

• a list of several possibilities, e.g. (7) [...]
Heißen derartige Läden nun Asiashop, Asien-
laden oder gar Asialaden?
[’[...] Are such stores now called Asia shop,
Asian store or even Asia store?’].

The alternatives can be presented in detail as in (4)
or shortened as in (8) [...] Ich arbeite in einer Firma,
deren spannende(n) [...] Aufgaben sehr reizvoll
sind. [’I work for a company whose *excit(e)ing
[...] tasks are very appealing.’]. Note that in (8)
the alternative is given within the parenthesis. In
some cases, the alternatives are connected by oder
(’or’) as in (1) and (4) but in other cases, there is
no connector at all.

The task is modeled as a sequence labeling, bi-
nary classification task. Every token will be labeled
according to the BIO format (see Section 3.1). The
length of spans can be whole sentences as in (4),
words as in (6) or characters as in (9) im Duden
steht Schmant mit t, auf den Sahnetöpfchen [...] mit
d. [...][’in the dictionary Schmant is written with a
t, on the cream pots [...] with a d.’]

The test set (see Section 3.1) contains 57 lists
of alternatives, including 30 language inquiries on
spellings, 11 on syntactic alternatives, 13 on syn-
onyms and 3 lists of several possibilities.

3.3 Model

We use Flair sequence tagger (Akbik et al., 2019)
as according to their GitHub page2 many trained
Flair sequence tagger models for different NLP
tasks are state-of-the-art.3

The sequence tagger consists of the following
layers: an embedding layer, an LSTM layer 4 and
a CRF-layer.

We have left the default values of the hyperpa-
rameters (see table 2) except for the embeddings:
We test two different pre-trained embedding set-
tings for the initial acquisition model:

• The pre-trained German BERT model5

dbmdz/bert-base-german-cased6 which
achieves better performance than google-
bert/bert-base-german-cased on NER7 as well
as in our study.

• German non-contextualized FastText embed-
dings8 stacked on German contextualized
Flair forward and Flair backward embed-
dings9 as suggested in Akbik et al. (2019).

BERT (Devlin et al., 2019) and Flair embeddings
(Akbik et al., 2018) are trained differently: while
BERT learns structures on token-level, Flair em-
beddings learn structures on character-level. On
the one hand character-level models are better in
handling typing errors (Gao et al., 2021), which is
a big advantage for our non-normalized data. On
the other hand, the span to be tagged is mostly a se-
quence of tokens. For these reasons, either BERT
or Flair embeddings could be beneficial for our
task.

2https://github.com/flairNLP/flair
3We also finetuned the models https://huggingface.

co/google-bert/bert-base-german-cased, https:
//huggingface.co/dbmdz/bert-base-german-cased
and https://huggingface.co/distilbert/
distilbert-base-german-cased for our task to use
as initial acquisition models but the f-scores are quite low
with 0.29, 0.36 and 0.08.

4We also tested the performance of the models with a
BiLSTM layer but the f-scores are lower than 0.15.

5We are aware that BERT only processes 512 subword
tokens. Since only about 0.28% of our data basis is longer
than this threshold, we accept the loss.

6https://huggingface.co/dbmdz/
bert-base-german-cased

7https://github.com/stefan-it/
fine-tuned-berts-seq

8https://flairnlp.github.io/docs/
tutorial-embeddings/classic-word-embeddings

9https://flairnlp.github.io/docs/
tutorial-embeddings/flair-embeddings

https://github.com/flairNLP/flair
https://huggingface.co/google-bert/bert-base-german-cased
https://huggingface.co/google-bert/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/distilbert/distilbert-base-german-cased
https://huggingface.co/distilbert/distilbert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-cased
https://github.com/stefan-it/fine-tuned-berts-seq
https://github.com/stefan-it/fine-tuned-berts-seq
https://flairnlp.github.io/docs/tutorial-embeddings/classic-word-embeddings
https://flairnlp.github.io/docs/tutorial-embeddings/classic-word-embeddings
https://flairnlp.github.io/docs/tutorial-embeddings/flair-embeddings
https://flairnlp.github.io/docs/tutorial-embeddings/flair-embeddings


Hyperparameter Value
Hidden size 256
Number of LSTM layers 1
Dropout 0.0
Classifier Softmax + CRF
Mini batch size 32
Activation function tanh
Max epoch 100
Initial learning rate 0.1
Patience 3
Annealing factor 0.5
Optimizer SGD
Learning rate Learning rate decay

Table 2: The default values of the hyperparameters.

Many aspects during training are set randomly,
e.g. weight initialization. This can affect the per-
formance of a model significantly (Reimers and
Gurevych, 2017). For this reason, we trained the
initial acquisition model five times.10

3.4 Active learning

We use the SeqAL framework11 to perform active
learning with the Flair sequence tagger. Various
considerations were taken into account when select-
ing the query strategy: Choosing a pure uncertainty-
based query strategy could result in samples that
represent rare edge cases, that would make it dif-
ficult for the model to generalize from them. In
addition to that, the model could select almost
only similar samples that would result in redundant
cases being annotated. Hence, a hybrid method
could result in better performance from the model
(Ren et al., 2022). Based on these arguments, we
chose a hybrid query strategy.12 As uncertainty-
based method we chose maximum normalized log-
probability (MNLP) which performs better than
least confidence because it has no bias towards
choosing longer sentences (Shen et al., 2017). The
confidence score for each prediction, calculated by
Viterbi loss, is used for this strategy. As diversity
sampling (DS) method, we chose distribute simi-
larity as it operates on token-level to compare the

10We only trained the initial acquisition model fives times
and not every successor model as we wanted to keep the initial
random weights constant for each acquisition model per itera-
tion. Whether this actually has an effect on the performance
of the successor models has to be clarified.

11https://github.com/tech-sketch/SeqAL
12We also experimented with selecting the samples only

with MNLP and only with DS but these models performed
worse than with a combination of MNLP and DS.

similarity of samples with each other, which is fit-
ting for our task. For this method, the tokens of
a sample are first embedded and the similarity is
than calculated based on the cosine similarity. In
contrast, cluster-based strategies are not suitable
because we only tag one class. For comparison, we
also selected samples randomly.

4 Results

4.1 Initial acquisition model

We report the performance of each model as f-
scores only for the positive spans so the imbalance
between the positive and negative class does not
distort the results. We implemented a simple rule-
based tagger as a baseline which detects the most
frequent kind of list of alternatives: spelling vari-
ants (see Section 3.2). The rule-based tagger is
only able to detect three types of spelling variants
listed in language inquiries containing the token
oder (’or’):

(i) the tagger checks if the token preceding oder
and the token following oder in the language in-
quiry have a Jaro-Winkler similarity greater or
equal 0.80.13 If this is the case the tokens are
tagged as "part-of-a-list". This way, cases like
(10) Essensmarke oder Essenmarke. Und warum?
[’Foodstamp or foodsstamps. And why?’] are
tagged.

(ii) The tagger checks if Token A preceding oder
is a substring of Token B following oder and if
the length of Token A is shorter than Token B. If
this is the case, Token C preceding Token A is
concatenated with Token A. If the concatenated
token equals Token B Token A, B and C are tagged
as "part-of-a-list". This way, cases like (11) hervor
lugen oder hervorlugen [’(to) peek out or (to)
peekout’] are tagged.

(iii) Analogous to (ii) except for the following
token, to tag cases like (12) hinunterfallen oder
hinunter fallen [’(to) falldown or (to) fall down’].

In addition, a random baseline was implemented,
which randomly assigns "part-of-a-list" to 13% of
the tokens and "not-part-of-a-list" to 87% as the
test data show this distribution.

Five random seeds were set for the training of
the sequence tagger with two different embedding
configurations as described in section 3.3. The
average performance of the models are reported in
table 3.

13We tested different thresholds and learned that 0.80 works
best.

https://github.com/tech-sketch/SeqAL


Embedding Prec Rec F-score
flair_emb 0.39 0.05 0.09
BERT 0.51 0.38 0.44
rule_based 0.91 0.06 0.11
random_baseline 0.15 0.15 0.15

Table 3: The performance of a rule-based baseline, of a
random baseline and of sequence taggers with different
embeddings on average of five random seeds.

Model Prec Rec F-score
BERT_0 0.46 0.35 0.40
BERT_1 0.46 0.38 0.42
BERT_2 0.56 0.36 0.44
BERT_3 0.51 0.41 0.45
BERT_4 0.55 0.41 0.47

Table 4: The performance of each initial acquisition
model trained with BERT and five different random
seeds.

The sequence tagger trained with Flair embed-
dings performed worst, even worse than the random
baseline and the simple rule-based baseline. It can
be deduced that character-level embeddings are not
suitable for our task, so we must use token-level
embeddings. The sequence tagger trained with
BERT performed by far the best. For this reason,
we decided to use the sequence tagger trained with
BERT and different random seeds for the analysis
of finding the ideal acquisition model. As shown
in table 4 the f-score of the models trained with
different random seeds range from 0.40 to 0.47.
We decided to use BERT_0, the worst performing
initial acquisition model, and BERT_4, the best
performing initial acquisition model, in our DAL
approach. The hypothesis is that the worst initial
acquisition model is not as confident as the best
and therefore selects more helpful samples.

4.2 Performance of the successor model

The overlap of selected samples of each acquisition
model initialized with BERT_0 and BERT_4 aver-
ages only 33% per iteration. There is no overlap of
selected samples between each acquisition model
and the random sampler. The differently perform-
ing acquisition models therefore actually select dif-
ferent samples from the unlabeled data pool per
iteration. Thus, in a next step it was possible to
analyse if one of the two differently performing
acquisition models selected better samples leading
to a better successor model.

This was indeed the case: The performance of
the successor models per iteration (see figure 1 and
2) are different depending on the model that se-
lected the training data. Figure 1 shows the f-score
for each successor model initialized with BERT_0
with different training data selected by its subse-
quent acquisition models, the acquisition models
initialized with BERT_4 (i.e. the best initial ac-
quisition model) and a random sampler. Figure
1 shows that the model achieves the best f-score
of 0.65 (precision: 0.67, recall: 0.64) in itera-
tion 19 when trained on the samples selected by
its subsequent acquisition models. This specific
successor model from iteration 19 is referred to
BERT_0_best in the following. In contrast, the
model only achieves 0.61 as the highest f-score in
iteration 20 when trained on the samples selected
by the acquisition models initialized with BERT_4.
Figure 2 seems to confirm our hypothesis from
Section 4.1: trained on data selected by the acqui-
sition models initialized with BERT_0, i.e. the
worst initial model, it achieves the overall highest
f-score of 0.67 (precision: 0.70, recall: 0.64) in
iteration 20. This specific successor model is re-
ferred to BERT_4_best in the following. However,
the difference in performance is not as pronounced:
trained on the samples selected by its subsequent
acquisition models, the model achieves an f-score
of 0.66 (precision: 0.66, recall: 0.66) in iteration
20. Still, it performed worse.

Figure 1: The f-score for all successor models initialized
with BERT_0 and trained on data sampled by three
different models per iteration.

To summarize: The best successor model of
BERT_0 is achieved when the model is trained
on data selected by its subsequent acquisition mod-
els in iteration 19 (BERT_0_best). The best suc-



Figure 2: The f-score for all successor models initialized
with BERT_4 and trained on data sampled by three
different models per iteration.

cessor model of BERT_4 is achieved when the
model is also trained on data selected by the ac-
quisition models initialized with BERT_0 in itera-
tion 20 (BERT_4_best). An error analysis of these
two models shows that both models tend to overfit.
Both models tend to tag spans that match a pat-
tern similar to a list of alternatives, for example:
(13) Zusammenstellung einer 14-tägigen all inclu-
sive Gruppenreise. Wie schreibt man all inclusive
Gruppenreise nach den neuen Regeln, [...]
[’Compilation of a 14-day all inclusive group tour.
How to write all inclusive group tour according
to the new rules, [...]’].
Conjunctions are in most cases not part of a list of
alternatives, that is the reason why BERT_0_best
overfits and tends to not tag a conjunction even if it
is part of an alternative, e.g. oder (’or’) in the first
sentence in (14) ..., danach das Fleisch medium
oder durchbraten. Oder: ..., danach das Fleisch
medium- oder durchbraten.
[’..., then roast the meat medium or well done.
Or: ..., then roast the meat medium- or well
done.’]. This is reflected in the slightly lower pre-
cision value of this model compared to the other.
In addition to that, BERT_0_best tags tokens that
are not alternatives more often than BERT_4_best.
However, we cannot make out a rule why the tokens
are falsely tagged by BERT_0_best.

The f-scores seem low, but if we look at the false
positives like in (13) we can see that in many cases
examples in the language inquiries were tagged
that are not list of alternatives but fall into other
categories (see section 3.1): For BERT_0_best it is
109 out of 127 false positives and for BERT_4_best

Model 0_train 4_train random
BERT_0 0.65 0.61 0.61
BERT_1 0.64 0.61 0.60
BERT_2 0.63 0.65 0.63
BERT_3 0.70 0.62 0.62
BERT_4 0.67 0.66 0.62

Table 5: The best f-scores through all iterations for each
random seed and each training data set sampled by the
acquisition models initialized with BERT_0 (0_train),
BERT_4 (4_train) and a random sampler (random).

it is 95 out of 109 false positives. These spans
are of great interest for us, even if they do not
correspond to the task at hand because we want to
extract all examples from the language inquiries
for the corpus development.

4.3 Train other models on the sampled
training data

We see that the best performance results from train-
ing the best initial model with the samples selected
by the acquisition models initialized with the worst
initial model. The fact that the training samples of
the worst initial model lead to a better performance
is not limited to the two models evaluated in detail,
BERT_0_best and BERT_4_best. Table 5 shows
the best f-scores of the successor models of all five
initial models differentiated according to the two
training sets. Except for the best performing suc-
cessor model initialized with BERT_2 the models
achieve a better performance with the training data
sampled by the acquisition models initialized with
BERT_0, i.e. the worst initial model. It can also
be seen, that the best f-score achieved by the mod-
els trained on the data sampled by the acquisition
model initialized with BERT_4, i.e. the best initial
model, is in most cases as high or similarly high as
the models trained on the data randomly sampled.
Although the models trained on the data sampled
by the acquisition models initialized with BERT_0
achieve mostly the highest f-score, the models re-
quire an average of 18 iterations to achieve it. The
models trained on the data sampled by the acquisi-
tion models initialized with BERT_4 achieve their
highest score on average after 16 iterations and the
models trained on the data sampled by the random
sampler need 13 iterations to achieve their highest
score. It is therefore a question of time resources
as to whether performance can be lost.



4.4 Time investment

The annotation of the initial data set (all three steps)
took about 14 hours in total for both annotators.
Overall annotating the selected samples for each
iteration in three DAL approaches took about 13
hours. Note that only one person annotated the
selected samples. The training of each model took
about 6.5 hours (approximately 20 minutes per it-
eration for each model) with 1 NVDIA Tesla V100
GPU. We set a cut at iteration 20 because by then
we reached the time we planned to invest in AL.

5 Conclusion

In our contribution, we analysed the impact of the
acquisition model to the performance of each suc-
cessor model. We have found that the performance
of the successor models in our task differ depend-
ing on which model has selected the data to be
trained with. Based on this finding, we suggest the
following approach:

(i) train several initial models with different ran-
dom seeds,

(ii) select the worst performing one as acquisi-
tion model,

(iii) train the other initial models from (i) on the
data selected by the subsequent acquisition models
defined in (ii) and

(iv) use the best performing model out of all
trained successor models from any iteration to
solve your task.

However, our analysis is restricted to only one
specific task using German language data and five
random seeds. For this reason, the experiment has
to be repeated with additional random seeds as well
as on other tasks in different languages to check
whether our findings can be confirmed. There is
still a lot to investigate, but this work provides the
initial basis for fruitful further research and for the
first time focuses on the initial acquisition model
in a DAL setting.

As for our task, we will expand it to examples
of different categories (listed in 3.1) as in the error
analysis (see Section 4.2) we learnt that the trained
model detects them. As we are interested in these
anyway, this is very practical. With the aid of a text
classification model (that is yet to be trained) or a
rule-based approach we can then tag the examples
with the corresponding categories.

Limitations

There is no state-of-the-art approach and we cannot
(afford) to annotate the whole unlabeled data pool:
therefore we do not know how the model would
perform on the whole dataset.

As we only analysed the impact of the acquisi-
tion models for one task and one language it re-
mains to be seen how scalable the findings are.

As only a limited number of random seeds are
considered for the initial acquisition model, it is
impossible to determine if a model exists that per-
forms worse than the already identified worst initial
acquisition model.
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