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Abstract

In this work, we propose a new task, com-
positional structured explanation generation
(CSEG), to facilitate research on compositional
generalization in reasoning. Despite the suc-
cess of language models in solving reasoning
tasks, their compositional generalization capa-
bilities are under-researched. Our new CSEG
task tests a model’s ability to generalize from
generating entailment trees with a limited num-
ber of inference steps – to more steps, focusing
on the length and shapes of entailment trees.
CSEG is challenging in requiring both reason-
ing and compositional generalization abilities,
and by being framed as a generation task. Be-
sides the CSEG task, we propose a new dy-
namic modularized reasoning model, MORSE,
that factorizes the inference process into mod-
ules, where each module represents a functional
unit. We adopt modularized self-attention to dy-
namically select and route inputs to dedicated
heads, which specializes them to specific func-
tions. Using CSEG, we compare MORSE to
models from prior work. Our analyses show
that the task is challenging, but that the dy-
namic reasoning modules of MORSE are effec-
tive, showing competitive compositional gener-
alization abilities in a generation setting.1

1 Introduction

Large-scale language models (Raffel et al., 2019;
Chung et al., 2022; Touvron et al., 2023) have
shown remarkable performance on reasoning tasks,
such as reading comprehension (Rajpurkar et al.,
2018), natural language inference (Williams et al.,
2018), story generation (Mostafazadeh et al., 2016),
etc. However, Russin et al. (2020); Mitchell (2021);
Yuan et al. (2023) argued that these models lack
human-like reasoning capabilities.

Humans excel in compositional generalization
(Hupkes et al., 2020), a capacity to combine an
inventory of known constituents to predict larger

1https://github.com/xiyan524/MORSE

sent1: puddles of water will receive sunlight
sent2: temperature is a measure of heat energy 
sent3: if something receives sunlight, it will increase in temperature 
hypothesis: the puddles of water will increase in heat energy

hypothesis: the puddles of water 
will increase in heat energy

int1: the puddles of water will 
increase in temperature

sent2: temperature is a 
measure of heat energy

sent3: if something receives sunlight, it 
will increase in temperature

sent1: puddles of water 
will receive sunlight

rt: if-then 

rt: substitution

entailment tree

candidate sentences & a hypothesis

Figure 1: Structured explanation generation: generate
an entailment tree including intermediate nodes (grey)
for a hypothesis (green) and given candidate sentences.
Each reasoning step (sent1 & sent3 → int1) is indepen-
dent and belongs to one of six reasoning types (rt).

compounds, during reasoning. For example, hu-
mans who understand calculation constituents,
e.g., subtraction sub(X,Y) and mixed addition-
subtraction operations sub(X, add(Y, Z)), can solve
larger compounds, e.g., sub(W, sub(X, add(Y, Z))).

Various studies (Hudson and Manning, 2019;
Goodwin et al., 2020; Yanaka et al., 2020; Liu et al.,
2022) have explored compositional generalization
abilities in reasoning tasks. But, these works focus
on compositionality units manifesting on the word
level and involving specific linguistic phenomena,
and neglect inferential processes holding between
sentences. But sentence-level composition can en-
hance the capacity of models to execute complex
contextual reasoning.

To fill this gap, we propose a new task, compo-
sitional structured explanation generation, CSEG.
CSEG is a new setting built on SEG (Dalvi et al.,
2021), a task for models to generate a multi-step
entailment tree – given a hypothesis and candidate
sentences. The tree indicates how the hypothe-
sis follows from the text. Fig. 1 shows an exam-
ple. Each step (e.g., sent1 & sent3 → int1) repre-
sents a multi-premise textual inference (Lai et al.,
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2017), belonging to one of six reasoning types,
such as if-then (it) and substitution (subs) (see Ap-
pendix A.1 and A.3 for examples). We consider
each reasoning type as a constituent unit. To test
compositional generalization in reasoning, our new
task CSEG requires models to generalize from en-
tailment trees with a limited number of reasoning
steps to trees involving more steps. For example, a
model is expected to generate a larger compound
(entailment tree) with more reasoning steps, e.g.,
c3: subs(subs(it(p1, p2) → h1, p3) → h2, p4) → h3,
by combining known constituents c1: subs(it(p1,
p2) → h1, p3) → h2 and c2: subs(p1, p2) → h,
where c1 replaces p1 in c2). Here, compositionality
units, i.e., reasoning types, operate on the sentence
level and involve reasoning components.

Our new CSEG task requires: i) reasoning ca-
pabilities, to infer new conclusions from existing
information; and ii) compositional generalization
capability, to generalize to unseen compounds us-
ing previously learned constituents. Recent ef-
forts (Dalvi et al., 2021; Saha et al., 2020; Tafjord
et al., 2021) aimed to improve reasoning abili-
ties, while ignoring the compositional generaliza-
tion capacity. Existing symbolic-based approaches
(Martínez-Gómez et al., 2017; Gupta et al., 2019;
Le et al., 2022) used multiple modules that each
perform unique types of reasoning, endowing mod-
els with strong compositionality. But they rely
on pre-defined reasoning rules and need training
data for each pre-defined module. Inspired by this,
we propose a dynamically modularized reasoning
model MORSE. Our model simulates the symbolic
process by specializing Transformer self-attention
heads to what we call dynamic modules. We de-
sign a modularized self-attention mechanism that
dynamically selects and routes inputs to dedicated
modularized heads, specializing them to specific
functions. The dynamics embodied in MORSE
through its self-assembling modules makes it ap-
plicable to multiple datasets without pre-defined
knowledge and extend to novel inference types.

Our main contributions are:

i) We propose a new compositional structured
explanation generation task, which aims to
explore compositional generalization capabil-
ities in reasoning. It requires models to gen-
eralize from entailment trees with a limited
number of inference steps to more steps.

ii) We design a novel dynamically modularized
reasoning model that specializes transformer

heads to specific functions, by dynamically
selecting related inputs to dedicated heads.

iii) Experiments on two benchmarks targeting
generalization over proof lengths and shapes
demonstrate MORSE’s advanced composi-
tional generalization abilities.

2 Related Work

Generalization in Reasoning Despite the suc-
cess of language models in solving reasoning tasks,
their generalization abilities have attracted atten-
tion, e.g., length generalization (Clark et al., 2020;
Wu et al., 2021; Anil et al., 2022), compositional
generalization (Liu et al., 2022), domain general-
ization (Niu et al., 2023), etc. In this work, we
explore compositional generalization in reasoning.

Compositional generalization has been resear-
ched for decades (Fodor and Pylyshyn, 1988; Mar-
cus, 2003; Lake and Baroni, 2018), including two
significant properties: productivity and systematic-
ity (Hupkes et al., 2020). Among these, produc-
tivity is similar to length generalization, in that
both evaluate generalization to deeper reasoning
chains. But for evaluating productivity, primitive
units needed for solving deeper samples must have
been learned during training. In contrast to the
related length-generalization work of Clark et al.
(2020), our CSEG task aims to evaluate produc-
tivity in a structured compositional generalization
reasoning task. We therefore guarantee that prim-
itive units (rule types) needed for solving deeper
samples have been learned in training. Importantly,
we frame CSEG as a generation task, which un-
like classification settings as in Clark et al. (2020),
makes it harder for models to exploit shortcuts.

Recently, there has been renewed interest in ex-
ploring compositional generalization in reasoning
tasks. Johnson et al. (2017); Hudson and Manning
(2019); Bogin et al. (2021); Gao et al. (2022) pro-
posed challenging compositional tasks in visual
QA. Liu et al. (2022) designed compositional ques-
tions for QA and found even the strongest model
struggled with these challenging questions. Other
works probed the compositional abilities of models
in natural language inference (Geiger et al., 2020;
Goodwin et al., 2020; Yanaka et al., 2020, 2021;
Fu and Frank, 2023, 2024), focusing on specific lin-
guistic phenomena, such as quantifiers, negation, or
predicate replacements. I.e., they investigate com-
positionality in phenomena manifesting at the word
level, in contrast to inferential processes holding
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between sentences.
To fill this gap, we examine compositional gener-

alization in a multi-step entailment tree generation
task, where different inference rules need to be
composed. Concurrent work (Saparov et al., 2023)
also concentrates on sentence-level compositional-
ity in reasoning, but is limited in using a synthetic
dataset. In comparison, we employ both natural
language and synthetic data, and introduce a new
model, with potential for further improvement, that
can serve as a strong baseline for the task.

Neural-Symbolic and Neural Methods Prior
works show that symbolic approaches (Angeli and
Manning, 2014; Mineshima et al., 2015; Martínez-
Gómez et al., 2017) that adopt pre-defined infer-
ence rules to establish derivations through iterative
reasoning, endow models with strong composition-
ality. But being dependent on pre-defined rules, the
models are limited to well-defined tasks. Recently,
Yi et al. (2018); Yin et al. (2018); Li et al. (2020);
Jiang et al. (2021) used neural networks to map
raw signals to symbolic representations and sub-
sequently performed symbolic reasoning to make
predictions. As symbolic reasoning is brittle, novel
works based on Neural Modular Networks (NMN)
(Andreas et al., 2016; Hu et al., 2017) combine
individual neural modules endowed with special-
ized reasoning capabilities. E.g., Jiang and Bansal
(2019); Gupta et al. (2019) designed various mod-
ules in an NMN to perform unique types of rea-
soning in end-to-end manner. Similarly, Khot et al.
(2021, 2023) proposed a Text Module Network for
complex reasoning tasks, where each module is an
existing QA system. However, all these approaches
require prior knowledge and rely on brittle sym-
bolic transfer, to subsequently deploy pre-defined
modules for each sub-task, and well-designed mod-
ules require substantial extra training data. Finally,
symbolic reasoning methods are typically driven
by weak supervision, given the lack of intermediate
labels. This can result in error accumulation and
time-consuming learning. To address these chal-
lenges, we propose a model with dynamic modules
that make specific module functions more indepen-
dent from prior knowledge, to endow models with
greater flexibility when handling new tasks.

Our work may seem related to Mixture-of-
Expert (MoE) models (Jacobs et al., 1991; Lepikhin
et al., 2021; Li et al., 2023) that aim to decompose
tasks by composing separate networks, each of
which is trained to handle a subset of a complete

shape - A1 shape - A2

shape - B1 = A1 + A2 shape - B2 = A3 + A2 shape - B3 = A1 + A2

shape - A3length 2length 1 length 3

hypothesis

intermediate 
conclusions
candidate
sentences

productivity

systematicity

systematicity

Figure 2: Entailment trees including different lengths
and shapes for compositional generalization testing.

set of training cases. By contrast, MORSE focuses
on decomposition and combining primitive units
in individual samples. In addition, it uses multi-
ple heads of the existing Transformer cell, without
inducing extra training parameters (such as FNN
layers of MoE) – which has higher efficiency.

3 Task Setup

Background The Structured Explanation Gen-
eration (SEG) task (Dalvi et al., 2021) requires
a system to generate a multi-step entailment tree
given a hypothesis and candidate sentences. The
tree serves as a structured explanation of how pre-
sented evidences leads to a conclusion.

Input to the task are i) a hypothesis H , a declara-
tive statement and ii) a set S of candidate sentences
that express relevant knowledge needed to infer H .
Outputs are valid entailment trees with intermedi-
ate conclusions not contained in S (Fig. 1). The
entailment trees are encoded as linear sequences
that can be generated by a generative model. The
tree depicted in Fig. 1 would be represented as:
sent1 & sent2 → int1: the puddles of water will increase in

temperature; sent2 & int1 → hypot

Leaves senti are sentences from the candidate set
S, and hypot is the tree’s root, given by the hypoth-
esis H . intj are inferred intermediate conclusions
that provide the basis for further reasoning steps.

Compositional Generalization Testing To ex-
amine compositional reasoning capabilities, we par-
tition our benchmark datasets along two general-
ization properties: productivity and systematicity.

Productivity–Length evaluates systems on lon-
ger proof lengths than they have been trained on,
where both train and test sequences are composed
of identical primitives. Hence, we rearrange the
data by proof length, i.e., number of intermediate
nodes in each tree (including hypothesis node). We
partition the data into: i) primitive entailment trees
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of length one or two; ii) compositional entailment
trees of length three.2 Fig. 2 shows examples.

Systematicity–Shape examines the capability
of (re)combining known constituents to a larger
compound. Hence, we rearrange the dataset by tree
shapes. To select appropriate data, we proceed as
follows: we i) limit the inference steps of each tree
to four – given that larger steps present an unsolved
challenge for existing neural models (Table A.3,
Dalvi et al. (2021)); ii) extract the tree shapes from
candidate data; iii) find there exist only six different
shapes, depicted as shape-* in Fig. 2 (details in Ap-
pendix A.2); iv) select, among six possible shapes,
simple structures (Shape-A*) as primitives, and
more complex (compositional) ones (Shape-B*) as
compositions for generalization testing. We guaran-
tee that compositional shapes are built from primi-
tive shapes: B1=A1+A2, B2=A3+A2, B3=A1+A2.
In Figure 2, we use dashed squares to single out
one primitive shape for each compositional shape.

4 MORSE: Dynamic Modularized
Reasoning Model

We introduce our Dynamic Modularized Reason-
ing Model MORSE that generates compositional
structured explanations. MORSE contains: i) an en-
coder consisting of original and modularized trans-
former blocks to perform reasoning; ii) a decoder
using original transformer blocks to generate the en-
tailment tree structure. See the overview in Fig. 3.

4.1 Module-enhanced encoder
We concatenate candidate sentences S and the hy-
pothesis H into an input sequence. For each sen-
tence in S, we add a prefix sent∗ following Dalvi
et al. (2021). Thus the example in Fig.1 is repre-
sented as a sequence of length n: ‘sent1: puddles
of water will receive sunlight; sent2: temperature
is a ...; ...; hypothesis: the puddles of water will in-
crease in heat energy’. For each token xi, we adopt
an embedding layer to generate its representation
ei, i.e., a summation of token embedding, position
embedding and segment embedding. An encoder
subsequently encodes input representations.

Fig. 3.A shows that MORSE’s encoder consists
of Transformer blocks for lower layers and Mod-
ularized Transformer blocks for higher layers: i)
Transformer blocks allow the model to focus on the

2We only test length three here, given the significant perfor-
mance challenge shown by experiments. However, our setting
is a living benchmark, which can be easily extended by future
research.

representation of words themselves (Raganato and
Tiedemann, 2018; Jawahar et al., 2019); ii) Mod-
ularized Transformer blocks perform modularized
reasoning, where each module is encouraged to
learn a different inference function.

Transformer All Transformer blocks consist of
two sub-layers: a multi-head attention layer and a
fully connected feed-forward network. Each sub-
layer is followed by layer normalization (Ba et al.,
2016) and a residual connection (He et al., 2016).
In the multi-head attention sub-layer, sequential
inputs are projected to different representation sub-
spaces (different heads) in parallel; the layer then
performs self-attention (Vaswani et al., 2017) in
each head. The heads’ output values are concate-
nated and again projected, resulting in final values.

In MORSE, we adopt p Transformer blocks in
lower layers, aiming to capture the representation
of words in their syntactic context. Given token em-
beddings e1, ..., en of a sequential input of length n,
we use p Transformer blocks to encode them and
generate corresponding hidden states sp1, ..., spn.

Modularized Transformer We construct a Mo-
dularized Transformer block based on the Trans-
former. The difference is that we factorize the en-
coding process, by modularizing the Transformer
so that each module can be tailored to a specific
function. We implement this design by using
Transformer ‘heads’. The process of modulariza-
tion is illustrated in Fig. 3 B.1: the modularized
Transformer block contains a modularized atten-
tion layer, which consists of multiple specialized
heads hi. E.g., h0 to h5 are modularized heads
that may express different inference functions. The
remaining heads h6,7 work as usual, offering space
to model general knowledge not covered by the
modularized heads. With such modularization, we
expect that each module will specialize for specific
responsibilities, further endowing MORSE with
more flexibility to perform different inference func-
tions during reasoning.

To allow a modularized head hi to specialize
for specific functions, we construct dynamic masks
mi ∈ [0, 1]n to select sequential inputs of similar
kinds to pass through hi. Specifically, we define
several vectors of trainable parameters for each
module as a latent representation of the module’s
function, e.g., rephi

∈ Rd for hi. Simultaneously,
we adopt a linear projection on candidate input
hidden states s1, ..., sn to derive their functional
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Figure 3: (A) MORSE for entailment tree generation. (B) A series of detailed illustrations of the Modularized
Transformer layer. (B.1) Our novel modularized multi-head self-attention block. Each head may serve as a module,
executing a specific function. (B.2) Computations for a single attention head with dynamic mask mhi

. Self-attention
is extended with a dynamic mask to filter out irrelevant input for a module. (B.3) Constructing dynamic mask mhi

using head function representation rephi and input hidden states.

representations f1, ..., fn ∈ Rd. Then, we use
cosine similarity cos over the input’s functional
representations fj and the head’s representation
rephi

to calculate a matching coefficient. If it ex-
ceeds a threshold τ , MORSE is able to decide if
an input word xj is allowed to join the module hi.
The mask calculation is shown below:

mj
i =

{
e1−cos(rephi ,fj), cos(rephi

, fj) > τ
0, else

(1)
where the threshold τ is a fixed hyper-parameter.
To avoid the vanishing gradient problem, we use
e1−cos(∗) to represent the mask for a selected word.
For unselected words, we ignore their gradient. In
this way, we can generate masks mi for each mod-
ule hi dynamically, given sequential inputs and
different module objectives.

We further adopt the generated mask mi for a
module hi in Modularized Self-Attention to filter
out unrelated inputs. Fig. 3 B.2 shows the process:
we multiply the mask mi with input hidden states
from the previous layer sl−1, where hidden states of
unrelated words are set to zero. Then, we generate
the query Qhi

, key Khi
, and value Vhi

matrices for
self-attention by different linear projections based
on filtered inputs:

Qi,Ki, Vi = s̃l−1WQ
i , s̃l−1WK

i , s̃l−1W V
i

s̃l−1 = mhi
× sl−1

(2)

where WQ
i ,WK

i ,W V
i ∈ R d×d/k are training pa-

rameters, d is the hidden state dimension and k is
the number of heads. We then adopt scaled dot-

product attention to perform self-attention:

ai = softmax(
QiK

T
i√

dk
)Vi (3)

We adopt t Modularized Transformer blocks in
deep layers, aiming to perform modularized rea-
soning. Given input hidden states sp1, ..., s

p
n from

lower Transformer blocks, the Modularized blocks
generate modularized hidden states st1, ..., s

t
n.

4.2 Decoder and training

We use a decoder consisting of Transformer blocks
to generate the entailment tree structure and inter-
mediate conclusions. The entailment tree is lin-
earized from leaves to the root. For example, the
tree in Fig. 1 is represented as “sent1 & sent2 →
int1: the puddles of water will increase in tempera-
ture; sent3 & int1 → hypo.” The output sequence
generation process is defined as:

sl = block(sl−1, enc_state), lϵ[1, q]

p(yk|y<k) = softmax(sNk W T )
(4)

where sl is the lth layer computed through Trans-
former blocks, W T is the training parameter and
k is the decoding step number. We deploy super-
vised learning with ground truth by minimizing the
objective in (5), where M is the maximum length
of the generated entailment tree, and H and S are
hypothesis and candidate sentences, respectively.

L = −
M∑

k=1

logp(yk|y<k, H, S) (5)
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5 Experiments Setup

5.1 Datasets

In this section, we prepare the compositional data
from EntailmentBank (EntB) and DBpedia (DBP)
for the CSEG task.

EntailmentBank (EntB) by Dalvi et al. (2021)
contains multiple-choice questions and candidate
sentences from the grad-school level science
datasets ARC (Clark et al., 2018) and WorldTree
(Jansen et al., 2018; Xie et al., 2020). 1,840 entail-
ment trees each show how a hypothesis is entailed
by a small number of relevant sentences. Each step
in the tree represents an entailment, i.e., the conclu-
sion expressed in each intermediate node follows
from the content of its immediate children. The
individual entailment steps instantiate six common
reasoning types (details in A.1) 3. EntB contains
three tasks. We focus on Task1, with only correct
inputs in S, as we focus on generalization testing.

DBpedia by Saeed et al. (2021) is a synthetic
dataset that was re-generated from the RuleBert
(Saeed et al., 2021) dataset4. We extracted six dis-
tinct logic rules mined from the DBpedia knowl-
edge graph and instantiated examples with a vary-
ing number of variables following ‘Chaining of
Rule Execution’ in RuleBert (cf. A.3). The reason-
ing chain provides a structured explanation: each
intermediate node is a conclusion inferred from
immediate children using a logic inference rule.

Compositional Generalization Testing Data To
construct the dataset for systematicity and produc-
tivity testing in reasoning explanation generation,
we rearrange the partitions of the above bench-
marks to focus on length and shape of entailment
trees following §3 (see A.4 for details). We con-
struct i) EntB(ank)-L(ength) and DBP-L(ength)
based on entailment tree length; and ii) EntB-
Sh(ape) based on entailment tree shape. Since DB-
pedia does not contain more complex tree shapes,
it is ignored in the shape test. For data statistics of
the created splits for length and shape testing, see
Appendix A.5.

5.2 Experiment Details

Settings Zero-shot compositional generalization is
highly non-trivial due to the long generated texts

3The number of reasoning types is a flexible parameter
depending on the dataset.

4https://github.com/MhmdSaiid/RuleBert

of the compositional samples.5. We therefore con-
sider a flexible learning scenario following Bogin
et al. (2021); Yin et al. (2021). Specifically, we
trained a model (both baselines and MORSE) with
primitives, and further fine-tuned the model with a
handful of compositional examples to familiarize
itself with a complicated space. For data statistics
details see Appendix A.5. To provide a comprehen-
sive analysis for future work, we also conducted
conventional zero-shot tests, where we trained a
model with primitives and tested on compositions
directly.

Model MORSE is built on T5-Small/-Large with
six/ twelve layers (cf. Dalvi et al. (2021)). For each
version, we use, for the lower 30% of layers (i.e.,
two/four layers), the original Transformer blocks,
to derive hidden representations of the input words.
The threshold τ for dynamic mask construction we
set to 0.1. All models were evaluated on three runs.
For further details see Appendix B.

5.3 Baselines

We choose three prior systems for structural expla-
nation generation as baselines, and report compara-
tive results for our new system MORSE.6

EntailmentWriter (Dalvi et al., 2021) is a T5-
based seq-to-seq model that generates a structured
explanation (tree) directly. It provides baseline
results on EntailmentBank for generating entail-
ment trees for answers to science questions.

PROVER (Saha et al., 2020) jointly answers
binary questions over rule-bases and generates the
corresponding proofs. The model learns to predict
edges corresponding to proof graphs using multiple
global constraints. Since PROVER focuses on edge
prediction, we only evaluate the tree structure.

ProofWriter-Iterative (Tafjord et al., 2021) it-
eratively generates 1-step conclusions and proofs,
adds intermediate conclusions to the context and as-
sembles a final proof chain from 1-step fragments.

5.4 Automatic Evaluation Metrics

We adopt the evaluation metrics proposed by Dalvi
et al. (2021) for the structured explanation genera-
tion task. Evaluation is addressed in two steps:

5The difficulty is primarily due to the decoder trained by
maximum likelihood, which relies heavily on the distributional
characteristics of the dataset and assigns low probabilities to
unseen combinations in test (Holtzman et al., 2020)

6For reference, the results obtained by MORSE on the orig-
inal structured explanation generation task SEG are reported
in Appendix D.
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EntailmentBank-Length (EntB-L) DBpedia-Length (DBP-L)

Models
Leaves Steps Intermediates Leaves Steps Intermediates

F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect

ProofWriter-It. 91.86(0.08) 84.55(0.78) 35.97(2.37) 18.81(2.76) 42.93(1.23) 11.88(2.14) 90.66(0.18) 93.09(0.72) 76.49(0.86) 75.44(1.04) 85.92(1.92) 76.73(2.24)
PROVER - - 39.27(2.65) 24.75(3.24) - - - - 79.88(0.98) 76.98(1.37) - -
EntWriter (T5-Small) 99.78(0.12) 98.02(1.06) 40.59(2.97) 29.70(2.92) 48.24(1.12) 22.77(2.25) 99.92(0.15) 99.49(0.67) 82.01(1.21) 79.28(1.52) 87.05(2.23) 78.26(2.37)
MORSE (T5-Small) 99.89(0.08) 99.01(0.62) 44.22(2.14) 32.67(2.32) 50.66(0.68) 25.74(1.92) 99.96(0.27) 99.74(0.84) 82.27(0.16) 80.31(0.18) 87.72(1.82) 79.80(1.87)

EntWriter (T5-Large) 99.78(0.11) 98.02(0.99) 52.80(3.35) 40.92(3.18) 56.62(1.06) 36.63(2.40) 99.36(0.13) 95.52(0.91) 82.49(1.09) 80.11(1.43) 88.98(2.16) 83.89(2.15)
MORSE (T5-Large) 99.82(0.06) 98.68(0.57) 53.31(2.26) 42.57(2.62) 57.78(0.81) 37.29(2.06) 99.53(0.11) 96.68(0.73) 86.79(0.12) 83.76(0.18) 92.62(1.70) 86.70(1.97)

EntWriter-0-shot (T5-L) 97.06(0.66) 85.73(1.61) 18.44(1.18) - 24.21(2.22) - 90.09(0.42) 29.27(0.2) 16.94(1.68) - 32.43(0.50) -
MORSE-0-shot (T5-L) 97.89(0.74) 86.83(1.52) 19.14(0.89) - 25.42(1.49) - 89.82(0.32) 30.05(0.90) 18.41(1.09) - 33.45(0.22) -

Table 1: Results on EntailmentBank-L(ength) and DBpedia-L(ength) for compositional generalization evaluation.
All modules are evaluated with 3 rounds, we show mean accuracy (std).

1) Alignment Exact matching between a pre-
dicted (Tpred) and a human-labeled (Tgold) entail-
ment tree ignores the different organizations among
tree nodes and leads to an inaccurate evaluation
score. To admit semantic variation, all Tpred nodes
are (greedily) aligned to nodes in Tgold using the
sent* labels of leaf nodes, followed by Jaccard sim-
ilarity calculation for intermediate nodes.

2) Score Once aligned, three metrics measure the
degree of similarity of Tpred and Tgold: (a) Leaves
evaluates if the generated tree selects the correct
leaf sentences from the candidate set S. (b) Steps
assesses if the individual entailment steps in the tree
are structurally correct. This is the case if for a pair
of aligned intermediate nodes, both children have
identical labels (sent* or int*) in Tpred and Tgold.
(c) Intermediates judges if all generated interme-
diate conclusions are correct. BLEURT (Sellam
et al., 2020) with the threshold 0.28 7 is applied for
intermediate conclusion evaluation. For each met-
ric, we compute an F1 score, and an ‘AllCorrect’
score for exact tree matching (F1=1).

6 Results

6.1 Overall Results
Results on Length Composition Table 1 displays
the results of MORSE using the small vs. large
T5 model as backbone, on the EntB-L and DBP-L
datasets. Note that PROVER (Saha et al., 2020),
EntailmentWriter (EntWriter) (Dalvi et al., 2021)
and MORSE generate the complete proof chain
from the input candidate set in one go, while
ProofWriter-Iterative (PW-Iterative) (Tafjord et al.,
2021) generates one-step implications iteratively.
We find that on both datasets, and for both T5
model sizes, MORSE achieves superior results
compared to all baselines, especially on ‘Steps’
(structural correctness) and ‘Intermediates’ (inter-
mediate conclusions). ‘Leaves’ is not a challenge

7The threshold is determined following (Dalvi et al., 2021).
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Figure 4: Results on EntB-Sh, testing for compositional
generalization, i.e., systematicity.

in our Task1 setup, but even here, MORSE out-
performs, being able to integrate almost all inputs.
The comparison with the most competitive system
EntWriter, in equivalent T5 model sizes, still shows
superior performance of MORSE with both model
sizes. We conclude that the advance of MORSE
is not restricted to small models, but persists with
models hosting richer knowledge. Compared to
DBP-L, the advance of MORSE over the other
baselines is stronger on EntB-L (e.g., +2.97 vs.
+1.03 for ‘Steps Acc’). This is explained by the
synthetic (template-based) nature of the DBP-L
dataset, which shows little linguistic variety.

To provide a comprehensive evaluation of the
proposed new setting for future research, we further
challenge MORSE by exposing it to a zero-shot test
for length composition. Here, models trained only
for trees up to depth two will directly receive inputs
for proof trees of length three. We mainly compare
with the most competitive system, EntWriter. In
this evaluation, we ignore the ‘AllCorrect’ scores
for ‘Steps’ and ‘Intermediate’ outputs, given the
difficulty of these generation tasks in low training
regimes. The last two lines in Table 1 show the
results. MORSE achieves superior performance (at
least +1 point improvement for zero-shot) for most
evaluation categories, or else comparable results
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Models Steps Intermediates

F1 Acc F1 Acc
MORSE (T5-Small) 44.22 32.67 50.66 25.74
freeze rep_embed 43.57 31.68 (-0.99) 50.66 25.74 (-0)
+ module 41.58 29.70 (-2.97) 49.13 23.76 (-1.98)
+ masking 38.28 25.74 (-6.93) 46.62 20.79 (-4.95)

Table 2: Ablation of MORSE components, freeze:
rep_embed: the representation of module repi; mod-
ule: parameters in specialized module; masking: dy-
namic mask in Fig. 3. d. Brackets: decrease in accuracy.

(F1 for ‘Leaves’). We conclude that our model
MORSE 8 outperforms other baselines in both zero-
shot and fine-tuning scenarios.

Results on Shape Composition Fig. 4 displays
the results for generalization testing on shapes.9

MORSE clearly surpasses the step accuracy of all
other baselines for all tested shape configurations.
Note that shape B1 is most difficult for all systems.
Entailment trees are linearized in bottom-up order.
While compositions in shape B2 and B3 happen at
the lowest tree level, composition in B1 happens
at a higher tree level, combining trees of unequal
depths. We hypothesize that combining trees of
unequal lengths at higher levels makes the task
more challenging compared to lower levels, given
that composition at higher levels requires a more
precise representation of previous reasoning steps
(see Appendix C for more details).

6.2 Analysis of Modularization

Ablation Study To gain more insight into the im-
pact of specific components of MORSE on gen-
eralization, we run an ablation study on EntB-L
during fine-tuning. We first freeze all module rep-
resentations rephi

(rep_embed). Further, we freeze
parameters in each specialized module (+module)
(cf. Fig. 3.B.2). By freezing these parameters,
we aim to preserve the function of different mod-
ules and expect a comparative performance by re-
using learned functions. In the third ablation, we
freeze the parameters of the dynamic mask process
+masking (cf. Fig. 3.B.3), which affects the dy-
namic mask of inputs to different modules. Results
in Table 2 indicate that the first two settings do not
affect results much, which suggests that each mod-
ule has roughly learned its specialized functions.
But +mask incurs large drops, which indicates that

8Experiments on more powerful backbones are provided
in Appendix F.

9Having seen linear behaviour of different model sizes in
Table 1, we further on use T5-Small versions of MORSE and
EntWriter, unless we explicitly say otherwise.

Figure 5: Correlations between reasoning rules R1-6
and module heads H1-6.

masking is significant for the model to adapt to
novel configurations. We hypothesize that for gen-
eralizing to longer proofs, mask generation helps
to connect existing modules.

Correlation Analysis To further explore the ef-
fects of modularization in MORSE, we conduct an
experiment on DBP-L by masking individual heads
only in testing. We select samples that: i) contain
three reasoning steps, ii) made correct predictions
for the first two reasoning steps, but iii) predict
the 3rd step incorrectly in case a certain head is
removed (see A.6 for details). This ensures that
the reasoning rule for the 3rd step is affected by
a specific removed head. We count samples that
are affected by removing head j for each rule Ri,
denoted as nRi

j . In case a model has T heads, we
normalize affected sample counts of Ri across all
heads, i.e., nRi

j /
∑T

j=1 n
Ri
j . This allows us to align

heads and rules as shown in Fig. 5.
The heatmap shows the correlations between

rules and heads, where R2-H1, R3-H3, R4-H2/H3,
R5-H1/H4/H6 and R6-H2/H3 stand out. In the
upper part of Fig. 5 we list all inference rules from
DBP-L, aligned with the heads they are strongly
correlated with, according to the heatmap. We find
that heads are correlated with some rules roughly:
1) H4 and H6 are quite similar, and both prefer R5.
2) H1 prefers R2, but is distracted by R5. This is
likely because R2 and R5 are similar by changing
‘parent’ to ‘child’ between A and C. 3) H2 prefers
R4 and R6, which both use the predicate ‘relative’
and share the same relation by changing ‘parent’ to
‘child’ between B and C. 4) H3 prefers R3, but is
distracted by R4 and R6. A plausible reason could
be configurations of R3, R4 and R6 are similar
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as they share similar predicates (‘spouse’ in R3,
‘relative’ in R4 and ‘parent’ in R6).

7 Conclusion

We present a new setup for explanation genera-
tion to facilitate compositional generalization in
reasoning research. Inspired by highly composi-
tional symbolic systems, we propose a novel mod-
ularized reasoning model MORSE that factorizes
reasoning processes into a combination of dynam-
ically specializing modules. Our results establish
MORSE as a strong baseline for the task, using two
benchmarks. A future direction is to learn how to
initialize more modules on demand.

8 Limitations

The dynamic modularized reasoning model
MORSE in its current state is limited by assum-
ing a pre-defined number of modules, for reason-
ing in various scenarios. The number of modules
in MORSE interacts with the ability of the model
when modularizing a given number of potential
logic rules in a dataset or task. A given available
number of functional units can simplify the rea-
soning process, enabling the model to focus on
module re-use similar to how a symbolic system
does, instead of distracting from confirming mod-
ule function granularity.
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A Data

A.1 Reasoning Types in EntailmentBank
We list six different reasoning types in Entailment-
Bank dataset in Table 5.

A.2 Data Shapes in EntailmentBank
People normally assume that trees can take var-
ious shapes, even when their depth is limited to
four. However, this assumption does not hold in
our CSEG task. We extract every potential shape
from the dataset (Dalvi et al., 2021) and find only
six different shapes (shape-* in Fig. 2) exist. This
is because trees do not reflect or distinguish the
different orders of siblings. That is, for a single
multi-premise step of an entailment tree, the order
of multiple premises (siblings) is underspecified.

A.3 Data Construction for DBpedia
We constructed the DBpedia dataset to evaluate
the compositional generalization of MORSE and
other baselines. Hence, DBpedia needs to contain
several rules, and instances using one of these rules
to process each step in multi-step reasoning. We
extracted six reasoning rules as shown in Table 3
from a rules pool. Following RuleBert (Saeed et al.,
2021) (Section 4.4 Chaining of Rule Executions),
we generate hypotheses given existing rules over
different relations and a depth D. Subsequently,
we instantiate variables in rules and hypotheses
from a name pool to generate instances. Rules and
hypotheses are eventually transferred to natural
language by pre-defined templates.

A.4 Data Construction for EntB-L and
EntB-Sh

EntailmentBank contains 1,840 entailment trees
showing how a hypothesis is entailed from a
small number of relevant sentences. We con-
structed the EntailmentBank-Length (EntB-L) and
EntailmentBank-Shape (EntB-Sh) for composi-
tional generalization evaluation. In terms of EntB-
L, we extracted data from the original dataset by
the ‘length_of_proof’ label. As for EntB-Sh, we
extracted data from the original dataset by the
‘lisp_proof’ label. An example of the shape of
extracted trees is shown in Fig. 2.

A.5 Data Statistics for EntailmentBank and
DBPedia

Table 6 provides detailed data statistics of Entail-
mentBank and DBPedia. It contains the general

Rules
R1: child(B,A) → parent(A,B)
R2: child(A,C) ∧ parent(C,B) → spouse(A,B)
R3: spouse(A,C) ∧ parent(B,C) → negspouse(A,B)
R4: relative(A,C) ∧ child(C,B) → relative(A,B)
R5: parent(A,C) ∧ spouse(B,C) → parent(A,B)
R6: parent(A,C) ∧ parent(B,C) → relative(A,B)

Table 3: Rules applied in DBpedia datasets.

data information for each dataset, and the data parti-
tions we created and used in generalization evalua-
tion. We use 20% of the training data for validation.

A.6 Data Statistic for Correlation Analysis
To visualize the correlations between modules and
rules, we constructed a new group of samples con-
taining three reasoning steps. We select samples:
i) that contain three reasoning steps, ii) that have
correct predictions for the first two reasoning steps,
but iii) where the third step is incorrectly predicted
in case a certain head is removed. The number of
selected samples for each head is given in Table 4.
We then count samples in each head over different
rules and show the correlations in Fig. 5.

H1 H2 H3 H4 H5 H6
cases 126 104 137 118 104 126

Table 4: Rules applied in DBpedia datasets.

A.7 Real Examples
We provide real examples of the productivity
(length) test in Fig. 6.

B Experimental Details

B.1 Hyperparameter
We use the T5 checkpoints from Huggingface
(Wolf et al., 2020). For initialization, we treat all
layers as plain transformer layers. We optimize
our model using Adam Optimizer (Kingma and Ba,
2014) with learning rate 1e-4 and batch size 4. In
inference, we adopt beam search decoding with
beam size 3 for all models and baselines. We set
the threshold τ for dynamic mask construction to
0.1 (details in Appendix B). We use 20% of training
or fine-tuning datasets for validation. All models
are evaluated with 3 rounds.

B.2 Training Details
MORSE We conduct out-of-distribution experi-
ments for increasing lengths and shapes of reason-
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Reasonoing Types Example

Substitution
s1: when a light wave hits a reflective object, the light wave will be reflected
s2: a mirror is a kind of reflective object
int: when a light wave hits a mirror, the light wave will be reflected

Inference from Rule
s1: puddles of water are outside during the day
s2: if something is outside during the day then that something will receive sunlight
int: puddles of water will receive sunlight

Further Specification or Conjuction
s1: an animal requires warmth for survival as the season changes to winter
s2: thick fur can be used for keeping warm
int: thick fur can be used for keeping warm as the season changes to winter

Infer Class from Properties
s1: A compound is made of two or more elements chemically combined
s2: sodium chloride is made of two elements chemically combined
int: sodium chloride is a kind of compound

Property Inheritance
s1: an animal’s shell is usually hard
s2: something hard can be used for protection
int: an animal’s shell is usually hard for protection

Sequential Inference

s1: In molecular biology, translation follows transcription
s2: transcription is when genetic information flows from DNA to RNA
s3: translation is when genetic information flows from RNA to proteins
int: In molecular biology, genetic information flows from DNA to RNA to proteins

Table 5: Six different reasoning types in EntailmentBank (Dalvi et al., 2021)

Dataset EntB DBP EntB-L(ength) DBP-L(ength) EntB-Sh(apes)
partitions tr ft te tr ft te tr ft te
#avg.nodes 7.6 4 L1 430 / / 1800 / / A1 390 / /
#avg.steps 3.2 1.7 L2 450 / / 1800 / / A2 391 / /
#reas.types 6 6 L3 / 300 101 / 160 391 A3 219 / /
#examples 1840 4560 B1 / 79 36

B2 / 63 26
B3 / 64 39

all 880 3600 all 1000 206 101

Table 6: Data statistics of Ent(ailment)B(ank) and DBP(edia). We split data into different partitions, including
tr(ain), f(ine-)t(une) and te(st). Ln denotes different lengths, and A*, B* means various shapes.

ing trees on two benchmarks, to test MORSE’s
generalization abilities. Our experiments are run
on Nvidia GTX 1080 Ti. As for length composi-
tional test, MORSE (T5-Small and T5-Large) is
trained for 33k steps and fine-tuning 4.5k steps
on EntailmentBank-Length; trained for 8.1k steps
and fine-tuning 0.6k steps on DBpedia-Length. In
shape compositional test, MORSE is trained 25k
steps and fine-tuning 5k steps.

Baselines Since ProofWriter-It and Entailment
Writer are all T5-based baselines, we keep their
settings as same as MORSE. In terms of Prover, we
choose to use BERT-base-uncased version, given
its parameters approach T5-small. We use the grid
search technology for generation and select the
best result. Its learning rate is 3e-5, trained for 36k
steps and fine-tuning 4.5k steps on EntailmentBank-
Length. In shape compositional test, Prover is
trained 27k step and fine-tuning 5.5k steps.

C Analysis for Different Shapes

In Fig. 4 we note that shape B1 is the most difficult
for all systems, and provide an empirical analysis:
we hypothesize that combining trees of unequal
lengths at higher levels makes the task more chal-
lenging compared to lower levels. Here, we further
conduct a statistical Spearman’s rank correlation
coefficient analysis of systematicity difficulty from
the complexity of tree properties to verify our hy-
potheses.

For each test shape, we aim to determine how
much the presence of specific tree properties in-
fluences the task accuracy of models (including
baselines and our model MORSE) when perform-
ing systematicity generalization from primitive to
compositional shapes. Specifically, we quantified
the increase of accuracy in view of the following as-
pects: i) increased number of the ‘Leaf’ (∆#Leaf)
nodes from (seen) primitive units to (predicted)
compositional structures. I.e., how much the leaf
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Figure 6: Three real examples for the productivity-length test of CSEG. For each example, an entailment tree
is generated based on candidate sentences and a hypothesis. Each tree is composed of several reasoning steps,
and each step belongs to one specific reasoning type, here, either [substitution] or [if-then]. The length of each
sample is determined by how many reasoning steps are required for the entailment tree generation. To evaluate the
compositional generalization ability, we design CSEG to generalize from limited reasoning steps (e.g., length 1 or
length 2) to more steps (e.g., length 3). Here, the sample of length three is compositional, and since its required
reasoning types have been learned before, it is expected to be solvable.

ComplexityDim ProofW PROVER EntailW Morse avg
∆#Leaf 0.5 0.86 0.5 0.5 0.59

∆#InterNode -0.86 -0.5 -0.86 -0.86 -0.77
∆#InterNode-L2 0.86 1.0 0.86 0.86 0.895
∆#InterNode-L3 -1 -0.86 -1 -1 -0.965

Table 7: Spearman’s rank correlation coefficient between the increase of training–test arithmetic complexity and the
compositional generalization performance (accuracy) across the three shapes. avg is the average value.

number increased from primitive samples (e.g., A1,
A2) to compositional samples (e.g., B1) and how
this influences accuracy; ii) increased number of
‘Intermediate Nodes’ (∆#InterNode) (again from
primitive to compositional structures) and how this
influences generalization accuracy.

Table 7 shows the results of our Spearman’s rank
correlation coefficient analysis between these two
complexity dimensions of trees and the composi-
tional generalization accuracy. Compared to the
‘Leaf’ dimension, ‘Intermediate Nodes’ shows a
more notable average coefficient value.10 That is,
the more intermediate nodes in the compositional
samples, the more difficult it is for the neural model
to perform compositional generalization.

Based on this result, we further explore whether

10The permutation of a small set (here, 3 dimensions) is
limited, thus limiting the range of variation of the correlation
coefficient. Hence, 0.59 is an irrelevant value.

the location of intermediate nodes will affect com-
positional generalization ability. We evaluate: i)
increased number of the ‘Intermediate Node’ at
layer 2 (∆#InterNode-L2). Layer 2 indicates the
second layer of a tree from the bottom up, e.g., B1
has one intermediate node in the second layer, and
B3 has two. ii) increased number of ‘Intermediate
Nodes’ at layer 3 (∆#InterNode-L3). Table 7 indi-
cates that more intermediate nodes in layer three
incur a notable negative value, i.e., intermediate
nodes at a higher layer result in lower accuracy,
meaning that compositional generalization is more
difficult.

In conclusion, Table 4 indicates that the system-
aticity test in CSEG is challenging for existing neu-
ral models. And further exploration verifies com-
bining trees at higher levels makes it even more
difficult compared to lower levels.
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Original EntailmentBank Dataset (EntB-Orig)

Models
Leaves Steps Intermediates

F1 AllCorrect F1 AllCorrect F1 AllCorrect

Task 1 (no-distractor) - EntailmentWriter - T511b 99.0 89.4 51.5 38.2 71.2 38.5
Task 1 (no-distractor) - EntailmentWriter - T5Large 98.7 86.2 50.5 37.7 67.6 36.2
Task 1 (no-distractor) - MORSE (ours) - T5Large 98.09(0.24) 86.37(0.11) 51.11(0.84) 39.70(0.77) 69.79(0.09) 40.97(0.34)

Task 1 (no-distractor) - EntailmentWriter - T5Small 98.40(0.41) 86.18(0.25) 41.72(0.96) 34.11(0.38) 56.95(0.21) 40.41(0.49)
Task 1 (no-distractor) - MORSE (ours) - T5Small 98.30(0.37) 86.47(0.21) 42.35(0.66) 35.00(0.32) 57.76(0.11) 40.88(0.51)

Task 2 (distractor) - EntailmentWriter - T511b 89.1 48.8 41.4 27.7 66.2 31.5
Task 2 (distractor) - EntailmentWriter - T5Large 84.3 35.6 35.5 22.9 61.8 28.5
Task 2 (distractor) - MORSE (ours) - T5Large 83.17(0.95) 34.41(0.59) 34.46(0.62) 21.96(0.60) 60.50(0.19) 28.24(0.37)

Table 8: Comparative results for Entailment Writer vs. MORSE on original EntailmentBank dataset for Task 1 and
Task 2 with different T5 model sizes

D Comparative results on original
EntailmentBank dataset

We conduct experiments of Task 1 and Task 2 from
Dalvi et al. (2021) on the original EntailmentBank
dataset and splits. The train, dev and test sets con-
tain 1,313, 187 and 340 instances. Task 2 includes
non-fitting distractor sentences in the input. We
compare differently scaled T5 models to assess
differences relating from T5 model sizes: T511b,
T5large. EntailmentWriter (EW) is equivalent to
MORSE modulo its modulated reasoning cell. For
EW we show published results from Dalvi et al.
(2021); for MORSE we report averaged results
over three runs w/ standard deviation in brackets,
for T5large. We observe comparable or superior
results of MORSE w/T5large over EW w/t5large,
especially for the difficult Steps (entailment tree
structure) and Intermediates (inferred intermediate
node label) evaluation criteria for Task 1. For Task
2, which poses a challenge by including noisy dis-
tractors, MORSE is still competitive, with ca. 1
percentage point distance. Comparing results of
EW w/T511b vs. MORSE w/T5large shows that
can MORSE rival and even outperform EW using
T511b, for Steps and Intermediats Accuracies in
Task 1, but not for the more difficult Task 2. The
experiment shows that despite using a variation of
the dataset in our main experiments to focus on
MORSE’s generalization abilities, it is still compet-
itive on the original dataset and data distributions.

E Analysis of Dynamic Masking
Mechanism

Mask Sparsity MORSE deploys masks to mod-
ularize a network dynamically. This allows each
module to specialize for a specific function while
selecting corresponding inputs. To gain more in-

sight into the role of dynamic masking, we anal-
yse masks used in length generalization testing on
EntB-L. We count the number of masks with non-
zero values for each module. Table 9 shows that
the percentage of non-zero values for heads H1-6
is relatively low, indicating that dynamic masks
are effective for filtering out potentially irrelevant
inputs. We also note higher percentages for some
modules (e.g., H4, H5). Different reasoning types
require disparate inputs that may account for this.

Head H1 H2 H3 H4 H5 H6
non-zero (%) 21.46 22.14 21.11 33.13 41.31 21.18

Table 9: Non-zero values in masks for each module (%).

Mask Effects We apply different masking strate-
gies to test if the observed performance improve-
ments arise from modularized masks – as opposed
to naïve ones. We construct a random_mask model
variant with 20 and 50% non-zero values, respec-
tively. These proportions are similar to what we
find in MORSE (Tab. 9). We apply random masks
in length composition testing on the EntB-L dataset.
Table 10 shows that compared to dynamic rout-
ing in MORSE, random masking incurs a severe
performance drop. We conclude that i) unselec-
tive masking risks shielding important information
from heads, and that ii) dynamic routing cannot be
considered as a simple dropout mechanism.

Models Steps Intermediates

F1 Acc F1 Acc
w modularized_mask 44.22 32.67 50.66 25.74
w random_mask (20%) 30.36 15.84 42.62 13.86
w random_mask (50%) 36.63 20.79 45.45 18.81

Table 10: Effects of different mask strategies. (*%)
indicates *% percentage of non-zero value in a mask.
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EntailmentBank-Length (EntB-L) DBpedia-Length (DBP-L)

Models
Leaves Steps Intermediates Leaves Steps Intermediates

F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect F1 AllCorrect

EntWriter
(T5-Large) 99.78 98.02 52.80 40.92 56.62 36.63 99.36 95.52 82.49 80.11 88.98 83.89
MORSE
(T5-Large) 99.82(+0.04) 98.68(+0.66) 53.31(+0.51) 42.57(+1.65) 57.78(+1.16) 37.29(+0.66) 99.53(+0.17) 96.68(+1.16) 86.79(+4.30) 83.76(+3.65) 92.62(+3.64) 86.70(+2.81)
EntWriter
(Flan-T5-
Large)

99.78 98.02 53.18 41.58 57.93 39.13 99.53 95.52 84.98 83.12 91.27 84.14

MORSE
(Flan-T5-
Large)

100.00(+0.22) 100.00(+1.98) 55.51(+2.33) 43.56(+1.98) 58.67(+0.74) 39.60(+0.47) 99.53(-0) 96.68(+1.16) 87.21(+2.23) 83.76(+0.64) 93.41(+2.14) 86.70(+2.56)

EntWriter-0-
shot
(T5-Large) 97.06 85.73 18.44 - 24.21 - 90.09 29.27 16.94 - 32.43 -
MORSE-0-shot
(T5-Large) 97.89(+0.83) 86.83(+1.10) 19.14(+0.70) - 25.42(+1.21) - 89.82(-0.17) 30.05(+0.78) 18.41(+1.47) - 33.45(+1.02) -

EntWriter-0-
shot
(Flan-T5-
Large)

98.79 91.09 20.59 - 31.68 - 90.05 30.69 18.46 - 33.30 -

MORSE-0-shot
(Flan-T5-
Large)

99.82(+1.03) 92.31(+1.22) 21.22(+0.63) - 32.07(+0.39) - 91.96(+1.91) 31.28(+0.59) 21.99(+3.53) - 33.92(+0.62) -

Table 11: Results on EntailmentBank-L(ength) and DBpedia-L(ength) for compositional generalization evaluation
based on Flan-T5. (+num) indicates the improvement of MORSE compared to the strong baseline EntWriter.

F Morse on powerful backbones

To further investigate the effectiveness of MORSE,
we conduct experiments for MORSE and the most
competitive baseline EntWriter on a more powerful
backbone, e.g., Flan-T5 (Chung et al., 2022). Ta-
ble 11 shows results. We find that: i) compared to
T5, FLAN-T5 has generally better results for both
models in both settings (fine-tuning and zero-shot).
With FLAN-T5, our extension with MORSE still
has superior results compared to the original T5
model. That is, our conclusions remain the same
with this new backbone. ii) for both EntWriter
and MORSE, FLAN-T5 shows increased perfor-
mance in the zero-shot setting. This indicates that
FLAN-T5 may serve as a better model variant to
address zero-shot setting – which is expected for
an instruction-tuned model.
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